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Abstract
Resolvent operator has been increasingly used to investigate turbulent flows and develop control strategies. Recently, Towne
et al. (J Fluid Mech 883:A17, 2020) proposed a resolvent-based estimation (RBE) method for predicting turbulent statistics
in a channel flow. In this paper, we utilize the RBE method to predict the root-mean-square (RMS) and space–time energy
spectra of streamwise velocity fluctuation, where the input is the space–time energy spectra at a reference horizontal plane
located in the logarithmic layer and the output is the space–time energy spectra in the buffer layer. The explicit formulas for
the RBE method are given in detail for numerical implementation. The results show the capability of the RBE method in the
prediction of the convection velocity and bandwidth of the space–time energy spectra. Furthermore, we make a systematic
evaluation of the performance of the RBE method by varying the input configurations, including the wall-normal location
of the reference plane, the inclusion or exclusion of the pressure as an input variable, the implementation approach of the
pressure boundary condition, and the choice of the window function. It is found that the results of both RMS velocity and
space–time energy spectra obtained from the RBE method are sensitive to the location of the reference plane. However, the
pressure boundary conditions and inclusion of pressure as an input do not cause significant change in the RMS velocity and
space–time energy spectra. Although it does not influence the prediction of the RMS velocity, a window function is found
crucial in the RBE method for the prediction of the space–time energy spectra.

Keywords Space–time energy spectra · Turbulent channel flow · Resolvent operator

1 Introduction

Space–time energy spectra are used to describe turbulent
flows in a wavenumber–frequency space to provide a pre-
cise assessment of the characteristic length and time scales of
turbulent motions. Therefore, the space–time energy spectra
are fundamental for the investigations of dynamical coupling
among turbulent motions at different scales [1] with broad
applications in the noise [2], wind energy [3], and wave–
turbulence interactions [4]. In order to obtain the complete
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space–time energy spectra, the dataset of the flow field in
the problem of interest needs to cover all the length and time
scales, ranging from the Kolmogorov scales to the integral
scales. This requirement is challenging for both numerical
simulations and experimental measurements. Specifically, to
contain the largest scale of turbulent motions, the spatial
domain needs to be sufficiently large, while the time dura-
tion needs to be sufficiently long. Meanwhile, to capture the
turbulent fluctuations at the smallest scales, the spatial reso-
lution needs to be fine, while the sampling frequency needs
to be high. As a result, the computational cost is prohibitively
high to obtain the data at all scales [5], especially for turbulent
flows at highReynolds numbers,while the experimentalmea-
surements of time-resolved three-dimensional flow fields are
also expensive [6,7]. Furthermore, storage resources needed
for saving the simulation or measurement data are enormous.
These challenges are even more critical in wall-bounded tur-
bulence, due to the presence of large-scale coherent structures
[8–10]. To overcome the difficulties in the data acquirement
and the limitation in the storage resources, various statis-
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tical reconstruction methods and theoretical models for the
prediction of the space–time energy spectra have been devel-
oped.

Statistical reconstruction methods [11–13] are developed
to predict the space–time energy spectra using the time series
of measurement data at two neighboring points, which pro-
vide the frequency spectra at these two points. In these
models, a transfer function is applied to reconstruct the
energy distribution over different wavenumbers at each given
frequency to obtain the space–time energy spectra. Due to the
restriction of measurement resolution, it is challenging to
provide accurate measurement data for the statistical recon-
struction methods in the buffer layer. Based on the random
sweeping hypothesis [14,15], theoretical models not relying
on the measurement data are derived to predict the space–
time energy spectra [16,17], which show agreement with
the large-eddy simulation (LES) results in the logarithmic
layer of turbulent channel flows. Similar to the statistical
reconstruction methods, the theoretical models focus on the
space–time energy spectra in the logarithmic layer. Consider-
ing the dominant contribution of the buffer layer to the energy
production in wall-bounded turbulence [18] and noting that
turbulent statistics in the logarithmic region are relatively
easy to obtain, it is useful to develop a predictive model to
estimate space–time energy spectra in the buffer layer using
available data in the logarithmic layer.

Marusic et al. [19,20] develops a predictive model for
streamwise velocity fluctuation in the buffer layer of a wall-
bounded turbulent flow by accounting for the superposition
andmodulation effects of very large scale motions in the log-
arithmic region. This model first obtains a “universal signal”
in the buffer layer through simultaneousmeasurements at two
points (one in the buffer layer and the other in the logarithmic
region). The universal signal can be regarded as the near-wall
velocity fluctuations without the influence of any very large
scale motions, which is found insensitive to the Reynolds
numbers. The universal signal and the measured large-scale
motion in the logarithmic region are then used to reconstruct
the time series of the streamwise velocity fluctuation in the
buffer layer, of which the statistics are in agreement with
those obtained directly from the measurements. Following
the pioneeringwork ofMarusic et al. [19,20], other predictive
models are proposed based on a similar philosophy [21–23].
However, the outputs of thesemodels are either time series of
velocity fluctuations at a single spatial point [21,22] or a flow
field in a wall-parallel plane at a specific time instant [23],
while the complete space–time energy spectra are unavail-
able.

Following the previous works for estimating flow statis-
tics from a limited set of known value [24–26], Towne et al.
[27] further proposes the resolvent-based estimation (RBE)
method formapping the space–time energy spectra in the log-
arithmic layer to the space energy spectra in the buffer layer.

This method is developed based on the resolvent analysis
of McKeon and Sharma [28], in which the transport equa-
tions of velocity fluctuations are linearized to formulate an
input–output linear dynamical system. The nonlinear terms
are treated as an excitation of the linear system, while the
velocity fluctuations are the outputs. The Reynolds stresses
terms are approximated using an eddy-viscosity model [29–
35]. The RBEmethodmakes a good prediction of the profiles
of root-mean-square (RMS) of velocity fluctuations below
the reference plane. In particular, the location and magnitude
of the peak of the streamwise RMS velocity are predicted
accurately.

The objective of the present paper is to use the RBE
method to predict the space–time energy spectra in the buffer
layer of a turbulent channel flow. We also conduct a sys-
tematic examination of predictive performance of the RBE
method under different parametric configurations, includ-
ing the location of the reference plane, the implementation
approach of the pressure boundary condition, and inclusion
or exclusion of pressure fluctuations as an input, and the
choice of the window function. In Sect. 2, we present the
numerical implementation of the RBE method. The formu-
las for the RBEmethod presented in this section can be found
in [27]. In Sect. 3, the numerical set-up and data processing
procedure are described. In Sect. 4, the RBE method is used
to predict the space–time energy spectra in the buffer layer
from those in the logarithmic region. Conclusions are drawn
in Sect. 5.

2 Implementation of the RBEmethod

Towne et al. [27] proposed the RBE method to predict the
energy spectra in the buffer layer using the known spectra
at a reference plane in the logarithmic layer of a turbulent
channel flow. We introduce the concept of resolvent oper-
ator in turbulent channel flows in Sect. 2.1 and present the
numerical implementation of the RBE method in Sect. 2.2.

2.1 Resolvent operator for turbulent channel flows

Figure 1 shows the sketch of the turbulent channel flow
under investigation. The coordinates in the streamwise, wall-
normal, and spanwise directions are denoted as x , y, and
z, respectively, and the components of velocity fluctuations
in the corresponding directions are denoted as u, v, and w,
respectively. The RBE method is developed based on the
resolvent formula [28], of which the derivation starts from
the following non-dimensionalized continuity and momen-
tum equations of velocity fluctuations
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Fig. 1 Schematic illustration of spectra-estimation problem in turbulent
channel flow

∇ · u = 0, (1)
∂u
∂t

+ (u · ∇)U + (U · ∇) u + ∇ p − 1

Reτ

∇2u

= − (u · ∇) u + 〈(u · ∇) u〉 , (2)

where U = [U(y), 0, 0]T is the mean velocity, ∇ =
[∂/∂x, ∂/∂ y, ∂/∂z]T is the gradient operator, p is the pres-
sure fluctuation, 〈·〉 represents an ensemble averaging.All the
variables are non-dimensionalized using one-half the chan-
nel height h and the wall-friction velocity uτ = √

τw/ρ as
characteristic length and velocity scales, respectively, where
τw is the wall shear stress averaged over time and horizon-
tal plane and ρ is the fluid density. The Reynolds number is
defined as Reτ=uτh/ν, where ν is the kinematic viscosity.
In the framework of resolvent analysis, the nonlinear term
− (u · ∇) u in Eq. (2) is treated as an external forcing, and
the Reynolds stress term 〈(u · ∇) u〉 is approximated as [29]

〈(u · ∇) u〉 = 1

Reτ

∇ ·
[νe

ν

(
∇u + ∇uT

)]
, (3)

where the eddy viscosity νe is given by the semi-empirical
Cess model as [37]

νe = ν

2

√
1 + κ2Re2τ

9

(
1 − y2

)2(1 + 2y2
)2(1 − e−y+/A

)2

−ν

2
. (4)

The Kármán constant κ and constant A are set to 0.426 and
25.4 following del Álamo and Jiménez [20]. The dimension-
less wall-normal coordinate y ranges from −1 to 1, and the
wall coordinate is defined as y+ = Reτ (1 − |y|). Eq. (2) is
then rewritten as

∂u
∂t

+ (u · ∇)U + (U · ∇) u + ∇ p

− 1

Reτ

∇ ·
[νT

ν

(
∇u + ∇uT

)]
= f ,

(5)

where νT=νe+ν is the total viscosity, and f = − (u · ∇) u
is treated as a forcing term in the resolvent analysis. To ensure
the momentum conservation, the mean streamwise velocity
at an arbitrary wall-normal location y is calculated by inte-
grating −Reτ · yν/νT from wall to y [35].

Assuming that the fully developed turbulent channel flow
is statistically stationary in time and homogeneous in the
wall-parallel directions, Fourier transform in time and in the
streamwise and spanwise directions can be applied to an arbi-
trary field variable ϕ as

ϕ̂(kx , kz, ω; y)

= 1

Lx LzT

∫ Lx

0

∫ Lz

0

∫ T

0
dxdzdt

× w(t)ϕ(x, z, t; y) exp[−i(kx x + kzz − ωt)],
(6)

where the variable with a hat ϕ̂ represents the Fourier
coefficient of ϕ, w(t) is the window function in the time
domain, Lx and Lz are the domain sizes in the x− and
z−directions, respectively, T is the time window length,
kx = 2πmx/Lx and kz = 2πmz/Lz are wavenumbers in
the x− and z−directions, respectively, ω = 2πl/T is the
frequency, mx , mz and l are integers, and i = √−1 is
the imaginary unit. Applying the Fourier transform given
by Eq. (6) to the continuity and momentum equations, i.e.,
Eqs. (1) and (5), results in the following governing equations
of û in the Fourier space:

∇̂ · û = 0, (7)

−iωû +
(
û · ∇̂

)
U +

(
U · ∇̂

)
û + ∇̂ p̂

− 1

Reτ

∇̂ ·
[νT

ν

(
∇̂ û + ∇̂ ûT

)]
= f̂ , (8)

where ∇̂ = [
ikx , ∂/∂ y, ikz

]T is the gradient operator in the
Fourier space. Eqs. (7) and (8) can be re-arranged to obtain
the following input–output relationship between the nonlin-
ear forcing f̂ and the primitive state variable q̂:

q̂ =
[
û
p̂

]
=

(
−iω

[
I
0

]
−

[
L −∇̂

−∇̂T
0

])−1

︸ ︷︷ ︸
H

[
I
0

]

︸︷︷︸
B

f̂

= H · B · f̂

= R · f̂ ,

(9)

where q̂ = [
û, v̂, ŵ, p̂

]T is employed to include pressure
explicitly, R is the resolvent operator, I is a unit matrix, and
L is the eddy-viscosity-enhanced linearized Navier–Stokes
operator [38], defined as
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L =

⎡
⎢⎢⎣

−ikxU + νT
ν

∇̂2

Reτ
+ 1

Reτ
dνT
νdy

∂
∂ y − dU

dy + ikx
Reτ

dνT
νdy 0

0 −ikxU + νT
ν

∇̂2

Reτ
+ 2

Reτ
dνT
νdy

∂
∂ y 0

0 ikz
Reτ

dνT
νdy −ikxU + νT

ν
∇̂2

Reτ
+ 1

Reτ
dνT
νdy

∂
∂ y

⎤
⎥⎥⎦ , (10)

where ∇̂2 = ∂2/∂ y2 − k2x − k2z is the Laplace operator in the
Fourier space. Operator B is used to enforce the right hand
side of the continuity equation to be zero, which takes the
following form

B =
[
I
0

]
=

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦ . (11)

The no-slip and no-penetration boundary conditions are
adopted for the velocities at the wall, i.e.,

u = v = w = 0 at y = ±1. (12)

The boundary condition corresponding to the continuity
equation can be the divergence-free condition at the wall,
i.e.,

∂v

∂ y
= 0 at y = ±1, (13)

or the wall-normal momentum equation at the wall, i.e.,

− ∂ p

∂ y
+ 1

Reτ

∂2v

∂ y2
= 0 at y = ±1. (14)

Equation (13) ensures that the velocity field is divergence-
free at any location in the computational domain, including
the wall. The pressure is regarded as a passive quantity. This
approach for implementing the pressure boundary condition
is similar to the one used by McKeon and Sharma [28].
They projected the Navier–Stokes equations onto a group
of divergence-free basis functions that satisfy the no-slip
and no-penetration conditions at the wall. The pressure is
as such eliminated in their formulas. Equation (14) is similar
to the boundary condition used for solving the pressure Pois-
son equation, where the wall-normal momentum equation is
kept to give a Neumann boundary condition for pressure at
the wall. The effect of the boundary condition correspond-
ing to the continuity equation on the predictive performance
of the model is presented in Sect. 4.2. Resolvent analysis
has been successfully applied to explain the formation of
hairpin vortices [39], study the optimal growth of coher-
ent streaks [30,31,33,34], model the dynamics of idealized
turbulent bursting event [35], estimate large-scale structures

[36], and analyze the convective velocities [40]. The statisti-
cal interpretation of resolvent analysis can be found in Ref.
[41].

It is also effective to use resolvent analysis [to be specific,
use Eq. (9)] to construct a predictive model of space–time
energy spectra since its output is the velocity and pressure
fluctuations in the Fourier space. As indicated by Eq. (9), the
input forcing f̂ ismapped to the output state variable q̂ by the
resolvent operator R. In the literature, the resolvent analyses
[28–35] focus on the properties of the resolvent operator R,
while f̂ is modeled as a harmonic, impulsive, or broadband
stochastic forcing. However, to develop a predictive model
for the space–time energy spectra, it is also crucial to give
a precise forcing f̂ . Moarref et al. [42] and Zare et al. [26]
use a convex optimization method to model f̂ in the resol-
vent formula, which further results in the predictive model
of the spatial energy spectra. More relevant to the present
research, Towne et al. [27] develops the RBE method for the
prediction of the space energy spectra, which approximates
the space–time spectra of f̂ using the known space–time
energy spectra at a reference wall-normal location. Com-
pared to [26,42], the method of Towne et al. [27] avoids the
complex convex optimization algorithm. In Sect. 2.2., we
provide the detail equations for the numerical implementa-
tion of the RBE method.

2.2 Numerical implementation of the RBEmethod
for space-time energy spectra

For numerical implementation, we first derive the discrete
form of the resolvent operator R̂, state variable q̂ and nonlin-
ear forcing f̂ . Let q̂d = [û0, v̂0, ŵ0, p̂0, û1, v̂1, ŵ1, p̂1, ...,
ûN , v̂N , ŵN , p̂N ]T∈ C

4N+4 be the discrete state variable,
where the subscript d represents variables after wall-normal
discretization, C represents a set of complex matrices. As
denoted using point A in Fig. 1, the RBE method needs the
space–time spectra tensor known at a specific y-location as
the input. This y-location is also called the reference plane
in this paper.

Assuming that the reference plane is located at the kth
discrete point, the subset of state variable θ̂d at this point is
related to the full set of discrete state variable q̂d as

θ̂d = [ûk, v̂k, ŵk]T = Cq̂d , (15)
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where C∈ C
3×(4N+4) is a linear operator, expressed as

C =

⎡
⎢⎢⎣

. . .

0
. . .

1
1
1︸ ︷︷ ︸

(4k+1)−(4k+3)

. . .

0
. . .

⎤
⎥⎥⎦ . (16)

Columns (4k + 1)–(4k + 3) of C form a unit matrix, while
other entries of C are zero. It should be noted that the compo-
nents of θ̂d are not limited to the velocities. The pressure can
also be involved. The influence of the inclusion of pressure
in θ̂d is discussed in Sect. 4.3.

In the RBE method, the space–time spectra tensor Sθθ

(kx , kz, ω) at the reference plane is needed as the input, which
is defined as

Sθθ (kx , kz, ω) =
〈
θ̂d θ̂

∗
d

〉
∈ C

3×3, (17)

where the superscript “*” denotes aHermitian transpose. The
aim of the RBEmethod is to predict the following full spectra
tensor of q̂d

Sqq (kx , kz, ω) = 〈
q̂d q̂

∗
d

〉∈ C
(4N+4)×(4N+4). (18)

To derive the prediction model of Sqq , we start with the
following discrete form of Eq. (9)

q̂d = HqBq f̂ d = Rq f̂ d , (19)

where Rq∈ C
(4N+4)×(3N−3) is the discrete resolvent opera-

tor, and Hq ∈ C
(4N+4)×(4N+4) and Bq ∈ C

(4N+4)×(3N−3)

are the discrete form of H and B in Eq. (9).

The matrix Hq can be written as the summation of two
parts as

Hq = Hd + Hnd . (20)

The first term Hd is a quasi-diagonal matrix, which includes
all the terms in Hq except for wall-normal derivatives, viz.

Hd = diag
{
Hd;0, ...,Hd;n, ..., Hd;N

}∈ C
(4N+4)×(4N+4),

(21)

where diag {·} denotes a quasi-diagonal matrix composed of
the blocks in the brace, and Hd;n is expressed as

Hd;n =

⎡
⎢⎢⎢⎢⎢⎣

−iω + ikxUn + νT ,n
(
k2x+k2z

)
ν·Reτ

dUn
dy − ikx

Reτ
dνT ,n
νdy 0 ikx

0 −iω + ikxUn + νT ,n
(
k2x+k2z

)
ν·Reτ 0 0

0 − ikz
Reτ

dνT ,n
νdy −iω + ikxUn + νT ,n

(
k2x+k2z

)
ν·Reτ ikz

ikx 0 ikz 0

⎤
⎥⎥⎥⎥⎥⎦

, (22)

where Un , νT ,n , dUn/dy, dνT ,n/dy are the values of U , νT ,
dU/dy, dνT /dy at the nth discrete point, respectively. The
second term Hnd in Eq. (20) includes the rest wall-normal
derivative terms and can be written as

Hnd =

⎡
⎢⎢⎢⎢⎢⎢⎣

Hnd;0
...

Hnd;n
...

Hnd;N

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ C
(4N+4)×(4N+4), (23)

where

Hnd,n = [
Hnd,n,0, ...,Hnd,n,m, ..., Hnd,n,N

]∈ C
4×(4N+4).

(24)

The component Hnd;n,m is expressed as

Hnd;n,m =

⎡
⎢⎢⎢⎢⎣

− νT ,nM2;n,m
ν·Reτ − M1;n,m

Reτ
dνT ,n
νdy 0 0 0

0 − νT ,nM2;n,m
ν·Reτ − 2M1;n,m

Reτ
dνT ,n
νdy 0 M1;n,m

0 0 − νT ,nM2;n,m
ν·Reτ − M1;n,m

Reτ
dνT ,n
νdy 0

0 M1;n,m 0 0

⎤
⎥⎥⎥⎥⎦

, (25)

whereM1 = [
M1;n,m

]∈ R
(N+1)×(N+1) andM2 = [

M2;n,m
]

∈ R
(N+1)×(N+1) are the matrices for calculating the first and

second-order derivatives in the wall-normal direction, and R
represents a set of real matrices. In the present research, we
follow Towne et al. [27] to discretize Eq. (9) at Chebyshev
collocation points yn = cos (nπ/N ). The detailed forms of
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M1 and M2 can be found in Trefenthen [43]. To incorporate
the boundary condition, Hd;0, Hd;N , Hnd;0 and Hnd;N in
Eqs. (21) and (23) need to be modified. The details are given
in Sect. 4.2.

The matrix Bq in Eq. (19) is expressed as

Bq =
⎡
⎣

Bu

Bmid

Bd

⎤
⎦∈ R

(4N+4)×(3N−3), (26)

where Bu = Bd = 0∈ R
4×(3N−3), and Bmid = diag{B1,

..., Bn, ..., BN−1}∈ R
(4N−4)×(3N−3) is a quasi-diagonal

matrix, with

Bn =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦ , n = 1, 2,...,N−1. (27)

The zero matrices Bu and Bd appear because there is no
forcing in the boundary conditions given by Eqs. (12)–(14).

So far, the discrete forms ofmatrices Hq and Bq are given,

and thus according to Eq. (19), q̂d is obtained if f̂ d is known.
Therefore, to develop the predictive model of the space–time
spectra tensor of q̂d , the key process is to connect f̂ d with θ̂d .
To this purpose, the matrix C given by Eq. (16) is multiplied
to Eq. (19) to yield

θ̂d = Rθ f̂ d , (28)

where Rθ = CRq∈ C
3×(3N−3) is a localized resolvent oper-

ator at the reference plane. Substituting Eqs. (19) and (28)
into Eqs. (18) and (17), respectively, results in the following
relationships

Sqq = 〈
q̂d q̂

∗
d

〉 = Rq S f f R∗
q∈ C

(4N+4)×(4N+4), (29)

Sθθ =
〈
θ̂d θ̂

∗
d

〉
= Rθ S f f R∗

θ∈ C
3×3, (30)

where S f f =
〈
f̂ d f̂

∗
d

〉
∈ C

(3N−3)×(3N−3) is the space–time

spectra tensor of f̂ d . Eq. (29) shows that Sqq can be cal-
culated if S f f is given. To obtain S f f based on the given
Sθθ , the singular value decomposition (SVD) of the local-
ized resolvent operator Rθ is conducted as

Rθ = Uθ�θV ∗
θ , (31)

whereUθ∈ C
3×3,�θ∈ C

3×(3N−3) andV θ∈ C
(3N−3)×(3N−3)

are response modes (output resolvent modes), singular value
matrix, and forcing modes (input resolvent modes), respec-
tively. To simplify the mathematical representation, matrices
�θ and V θ are written in a block form following Towne et
al. [27] as

�θ = [
�1 0

]
, (32)

V ∗
θ = [

V 1 V 2
]∗

, (33)

where �1∈ R
3×3 is the diagonal singular value matrix,

V 1∈ C
(3N−3)×3 andV 2∈ C

(3N−3)×(3N−6) are forcingmodes
that have non-zero and zero responses, respectively.

The forcing modes V θ are the orthogonal basis of f̂ d ,
while the response modes are the orthogonal bases of the
output state variable θ̂d . The forcing f̂ d is then projected as

f̂ d = V θ e, (34)

where e∈ C
3N−3 is the expansion coefficients vector of f̂ d .

Multiplying Eq. (34) with its Hermitian transpose, and taking
ensemble averaging yields the following expansion of S f f

on the forcing modes

S f f = [
V 1 V 2

] [ E11 E12

E21 E22

] [
V 1 V 2

]∗
, (35)

where Ei j are coefficient matrices. Note that the degree of
freedom of S f f is larger than that of Sθθ . This spectra-
estimation problem is thus undetermined. If it is required
that the space–time energy spectra at the reference plane are
recovered exactly, the coefficient matrix E11 is determined
by substituting Eq. (35) into Eq. (30) as

E11 = �−1
1 U∗

θ SθθUθ�
−1
1 . (36)

In the method of Towne et al. [27], it is assumed that the
nonlinear forcing only has non-zero expansion coefficients
on V 1, and as a result E12 = E21 = E22 = 0 holds.
It is proved that this approximation is equivalent to taking
the least squares approximation of S f f [27]. Substituting
Eq. (36) into Eq. (35) and setting other coefficient matrices
zero yields

S f f = V 1�
−1
1 U∗

θ SθθUθ�
−1
1 V ∗

1. (37)

Finally, substituting Eq. (37) into Eq. (29) results in

Sqq = RqV 1�
−1
1 U∗

θ SθθUθ�
−1
1 V ∗

1R
∗
q . (38)

Equation (38) gives the relationship between Sθθ and Sqq in
the RBE method. The (4k + 1)–(4k + 3) diagonal elements
in Sqq are the space–time energy spectra in three directions
at the kth collocation point. The RMS velocity profiles then
can be calculated as the summation of the space–time energy
spectra over all wavenumbers and frequencies.
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3 Numerical set-up and data processing

To carry out the numerically implement and evaluate theRBE
method, direct numerical simulation (DNS) is conducted to
obtain the data of turbulent channel flow at Reτ = 187.
The flow is driven by a constant pressure gradient in the
streamwise direction. The computational domain size is Lx×
Ly × Lz = 2π × 2 × π, and the number of Fourier modes
is 64 in both streamwise and spanwise directions, while 129
Chebyshev polynomials are used for the discretization in the
wall-normal direction. The setting is kept identical to Towne
et al. [27]. The DNS code has been well tested and used
in Refs. [12,44,45]. The mean velocity and RMS velocities
obtained from the present DNS agree with those of Moser et
al. [46].

The flow fields are stored at 20000 time instances with the
time separation between two storage time instances being

t+ = 0.75. To conduct Fourier transform in time, 512
successive time instances are grouped as a time windowwith
75% window overlap. The numerical setting ensures that the
frequency resolution are in agreement with Ref. [27]. In each
timewindow, the state variable is Fourier transformed in time
to obtain the frequency modes. Since the flow quantities are
not strictly periodic in time, the following standard Hanning
window [47] is used in the Fourier transform

û(x, ω) = 1√
T
∫ T
0 w2

H (t)dt

∫ T

0
wH (t)u(x, t) exp(iωt)dt,

(39)

where wH (t) is the Hanning window, expressed as

wH (t) = 1

2

[
1 + cos

(
2πt

T
− π

)]
. (40)

Note that a rectangular window function is adopted byTowne
et al. [27]. A detailed discussion about the window function
is given in Sect. 4.4. The ensemble averaging is calculated by
the averaging over all time windows. The energy spectra for
64 × 64 × 512 wall-parallel wavenumbers and frequency
combinations are estimated using the method introduced
in Sect. 2. For a given wavenumber–frequency mode, the
SVD and other computation of large-scale matrices are com-
puted. Therefore, a total of about one million SVDs need
to be conducted, which is time consuming. To speed-up the
computation, we developed a parallelized FORTRAN code.
Wavenumber–frequency combinations are divided into dif-
ferent groups to be processed on different CPU cores.
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Fig. 2 Profiles of the streamwise RMS velocity uRMS obtained from
the RBE method for different wall-normal locations of the reference
plane. The DNS result is shown for comparison

4 Numerical evaluation

4.1 Locations of reference planes

In this section, we study the effects of the location of the
reference plane on the resolvent-based estimation. Figure 2
shows the predicted profiles of the streamwise RMS velocity
uRMS by setting the reference plane at y+

r = 15, 39, 70 and
100. The DNS profile is plotted for comparison. It is seen
from the figure that when the reference plane is located at
y+
r = 39, the profile of uRMS obtained from the RBEmethod
is in good agreement with theDNS result below the reference
plane, while its magnitude is underestimated above the refer-
ence plane. This observation is consistent with Towne et al.
[27]. However, if the reference plane is shifted to y+

r = 15,
the magnitude of uRMS obtained from the RBE method is
over-predicted below y+

r = 15 and under-predicted above
y+
r = 15. In the cases for y+

r = 70 and 100, the magni-
tude of uRMS is under-predicted across the entire channel.
The results of uRMS shown in Fig. 2 indicate that the loca-
tion of the reference plane influences the prediction of the
streamwise RMS velocity.

Figure 3a, c compare the contours of space–time energy
spectra Φ(kx , ω) at y+ = 15 predicted by the RBE method
based on two different reference planes (y+

r = 39 and
70, respectively) with the DNS results. To highlight the
wavenumbers and frequencies with high energy levels, the
contours corresponding to lower energy levels (Φ(kx , ω) <

10−9) are clipped. As shown in both Fig. 3a, c, the RBE
method appropriately captures the Doppler shift and broad-
ening of the space–time energy spectra caused by the
convection and sweeping, respectively [17]. However, the
bandwidths of the space–time energy spectra obtained from
the RBE method are narrower than the DNS result. Further-
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Fig. 3 Comparison of the space–time energy spectra at y+ = 15 obtained from the RBEmethod and DNS. a, c show the contours of the space–time
energy spectra obtained from the RBE method (dashed lines with dots) and DNS (color contours). b, d show the space–time energy spectra as a
function of the frequency at three given wavenumbers, i.e., kx = 4, 10, and 20, denoted using the vertical dotted lines in a, c, respectively. The
results of the RBE method and DNS are shown using the dashed and solid lines, respectively. The reference plane is located at a, b y+

r = 39 and
c, d y+

r = 70

more, from the comparison between Fig. 3a, b and c, d, it
is seen that the spectral bandwidth for y+

r = 70 is narrower
than that for y+

r = 39, especially at high wavenumbers. This
indicates a less satisfactory performance of the RBE method
by setting the reference plane at y+

r = 70 than at y+
r = 39, an

observation that is consistent with the results of the stream-
wise RMS velocity shown in Fig. 2.

To facilitate a quantitative comparison of the space–time
energy spectra obtained from the RBE method and DNS,
we examine the wavenumber-dependent convection velocity
Uc(kx ) and spectral bandwidth B(kx ) of Φ(kx , ω), defined
as [12,13]

Uc(kx ) =
∫

ω · Φ(kx , ω)dω

kx
∫

Φ(kx , ω)dω
, (41)

and

B(kx ) =
∫

(ω −Uc(kx )kx )2Φ(kx , ω)dω∫
Φ(kx , ω)dω

, (42)

respectively. Figure 4a, b compares the values of Uc(kx )
and B(kx ) as functions of the streamwise wavenumber kx
obtained from the RBE method and DNS. The convection
velocity Uc(kx ) characterizes how the propagating speed of
an eddy is related to its length scale [48]. It is observed from
Fig. 4a that if the reference plane is set to y+

r = 39, the
convection velocity of the RBE method is close to the DNS
result. However, as the reference plane is shifted to y+

r = 70,
the RBE method overestimates the value of Uc(kx ) at all
wavenumbers under investigation.

Thebandwidth B(kx ) is the standardvarianceofΦ(kx , ω),
which characterizes to what extent the space–time energy
spectra deviate from the Taylor’s frozen flowhypothesis [49].
Figure 4b shows that the values of B(kx ) for both y+

r = 39
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Fig. 4 Comparison of a the wavenumber-dependent convection veloc-
ityUc(kx ), b spectral bandwidth B(kx ) and cHellinger distance dH (kx )
of space–time energy spectra at y+ = 15obtained from theRBEmethod
(with the reference plane located at y+

r = 39 and 70) and DNS

and y+
r = 70 are underestimated by the RBE method. At

relatively low wavenumbers for kx < 8, the results for y+
r =

39 and y+
r = 70 are close, but at larger wavenumbers, the

result for y+
r = 39 is closer to the DNS result than that for

y+
r = 70.
The performance of the RBE method in the prediction

of the space–time energy spectra can be further quantified
using the Hellinger distance [13,50] between the RBE and
DNS results, defined as

dH (kx ) =

√√√√2
∫ (√

ΦRBE (kx , ω) − √
ΦDNS(kx , ω)

)2
dω

ΦRBE (kx ) + ΦDNS(kx )
.

(43)

where Φ(kx ) is the streamwise wavenumber spectrum. The
value of the Hellinger distance equals to zero if and only if
ΦDNS(kx , ω) = ΦRBE (kx , ω) holds, while it reaches the
maximum

√
2 when ΦDNS(kx , ω) is significantly larger or

smaller thanΦRBE (kx , ω). Figure 4c compares theHellinger
distance at y+ = 15 corresponding to y+

r = 39 and y+
r = 70.

As shown, the value of the Hellinger distance for y+
r = 39

is smaller than that for y+
r = 70. Furthermore, the Hellinger

distance increases with wavenumber, indicating a better per-
formance of RBE at larger scales.

4.2 Pressure boundary conditions

In the numerical implementation of the resolvent analysis, the
pressure boundary condition needs to be satisfied at eachwall
to close the equations. In general, there are two approaches
given by Eqs. (13) and (14), respectively, for the incorpo-
ration of the pressure boundary condition. To implement
Eq. (13), Hd;0, Hd;N , Hnd;0, and Hnd;N in Eqs. (21–25)
are modified as

Hd;0 = Hd;N = diag{1, 1, 1, 0}, (44)

Hnd;0,l =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 M1;0,l 0 0

⎤
⎥⎥⎦ , (45a)

Hnd;N ,l =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 M1;N ,l 0 0

⎤
⎥⎥⎦ , l = 0, 1, ..., N . (45b)

To implement the other pressure boundary condition given by
Eq. (14), the diagonal part of H is also modified by Eq. (44),
while the non-diagonal part is prescribed as

Hnd;0,l =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

0 M2;0,l
Reτ

0 −M1;0,l

⎤
⎥⎥⎦ , (46a)

Hnd;N ,l =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

0 M2;N ,l
Reτ

0 −M1;N ,l

⎤
⎥⎥⎦ , l = 0, 1, ..., N . (46b)
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Fig. 5 Profiles of the streamwise RMS velocity uRMS obtained from
the RBE method based on different implementations of the pressure
boundary condition. The DNS result is superimposed for comparison.
The reference plane is located at a y+

r = 39 and b y+
r = 70. The

location of the reference plane is demarcated using the vertical dashed
line

Figure 5 compares the profiles of uRMS obtained from
the RBE method based on different implementations of the
pressure boundary condition. We have examined different
locations of the reference plane, among which the results for
y+
r = 39 and y+

r = 70 are depicted as representations. The
DNS result is also shown for comparison. It is evident from
Fig. 5 that the profiles of uRMS based on the two different
boundary conditions collapse. The examination results of the
predicted space–time energy spectra are not shown to keep
the paper concise. We found that the pressure boundary con-
dition also imposes no influence on the predicted space–time
energy spectra. The results shown in this section indicate that
the two types of the pressure boundary condition are essen-
tially equivalent in the RBE method.
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Fig. 6 Profiles of the streamwise RMS velocity uRMS obtained from
the RBE method with and without the inclusion of pressure as an input
variable. TheDNS result is superimposed for comparison. The reference
plane is located at a y+

r = 39 and b y+
r = 70. The location of the

reference plane is demarcated using the vertical dashed line

4.3 Inclusion of pressure as an input

In above sections, the input local state variable θ̂d consists of
the three velocity components [Eq. (15)] following Towne et
al. [27]. In this section, we further examine if the inclusion of
pressure as an input variable influences the performance of
the RBEmethod. To include the pressure as an input variable,
the local state variable θ̂d is modified as

θ̂d = [ûk, v̂k, ŵk, p̂k]T. (47)

Accordingly, the pressure spectra and velocity–pressure co-
spectra are included in Sθθ (kx , kz, ω). The matrix C is then
modified to

123



Numerical implementation and evaluation of resolvent-based... 785

y

u R
M
S

10-1 100 101 102
0

0.5

1

1.5

2

2.5

3

3.5
DNS

Hanning

Rectangular

a

y

u R
M
S

10-1 100 101 102
0

0.5

1

1.5

2

2.5

3

3.5
DNS

Hanning

Rectangular

b

Fig. 7 Profiles of the streamwise RMS velocity uRMS obtained from
the RBE method using different window functions in time–frequency
Fourier transform. TheDNS result is superimposed for comparison. The
reference plane is located at a y+

r = 39 and b y+
r = 70. The location

of the reference plane is demarcated using the vertical dashed line

C =

⎡
⎢⎢⎢⎢⎣

. . .

0
0

. . .

1
1
1
1︸ ︷︷ ︸

4k+1∼4k+4

. . .

0
0

. . .

⎤
⎥⎥⎥⎥⎦

∈ R
4×(4N+4).

(48)

The procedure for predicting the space–time energy spectra
given by Eqs. (15–38) remains the same, but the sizes ofmost
matrices are changed, due to the change in the size of C .

Figure 6 compares the predicted profiles of uRMS with and
without including pressure as an input variable. The results
for y+

r = 39 and 70 are shown as representations. It is seen
from both Figs. 6a and 6b that including pressure leads to
little change in the profile of u+

RMS for both y+
r = 39 and

y+
r = 70, respectively. The space–time energy spectra are
also not influenced by the inclusion of the pressure as an

Fig. 8 Contours of the space–time energy spectra Φ(kx , ω) predicted
by the RBEmethod at y+ = 15 using aHanning and b rectangular win-
dow functions in the time–frequency Fourier transform. The reference
plane is located at y+

r = 39

input, which is not shown to keep the paper concise. The
results shown in this section indicate that the pressure is to
some extent “passive” in the RBE method. This conclusion
also supports the approach of McKeon and Sharma [28] that
projects the fluctuating velocities onto a set of divergence-
free basis functions satisfying the no-slip and no-penetration
conditions at the walls to eliminate the pressure in the resol-
vent operator.

4.4 Window function

In this section, the effects of the window function on the
space–time energy spectra are investigated. The window
function is introduced to calculate the space–time energy
spectra because the velocity signal is not strictly periodic in
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Fig. 9 Contours (dashed lines with dots) of the rescaled space–time
energy spectra at y+ = 15 obtained from the RBE method based on
a Hanning window and b rectangular window. The DNS results are
superimposed as the color contours with the solid lines for comparison.
The reference plane is located at y+

r = 39

time. When the space–time energy spectra are calculated by
processing the DNS data, a window function should be used
to restrain the spectral leakage when the velocity signal is
transformed from the time domain to the frequency domain.

Figure 7 compares the predicted profiles of streamwise
RMS velocity uRMS using the rectangular and Hanning win-
dow functions. The results for y+

r = 39 and y+
r = 70 as

shown. It is seen that the window function imposes almost no
influence on the predicted profiles. However, a further exam-
ination of the space–time energy spectra shows the effects of
the window function.

Figure 8 compares the contours of the space–time energy
spectra Φ(kx , ω) predicted by the RBE method at y+ =
15 using different window functions in the time–frequency
Fourier transform. It is seen that if the Hanning window is

adopted, the predicted contours ofΦ(kx , ω) are closed curves
(Fig. 8a). However, if a rectangular window is used, the pre-
dicted contours are not closed (Fig. 8b). The spectral leakage
can be observed in the frequency direction. At small stream-
wisewavenumbers for kx < 10, the kinetic energy leaks from
low frequencies to high frequencies. Therefore, although the
predicted profiles of the streamwise RMS velocity are not
influenced by the window function, the Hanning window
can effectively reduce the spectral leakage in the space–time
energy spectra.

To further demonstrate the effects of window functions on
the prediction of space–time energy spectra using the RBE
method, the space–time energy spectra obtained from the
RBE method is rescaled using the technique proposed by
Wu et al. [12], which uses the following linear transforma-
tion to ensure that the rescaled RBE spectra have the same
energy, convection velocity, and spectral bandwidth as the
DNS results:

ω̃ = λ2(kx )ω + λ3(kx ), (49)

Φ̃(kx , ω̃) = λ1(kx )

λ2(kx )
Φ(kx , ω), (50)

where the tilde denotes the rescaled variables, and the trans-
formation coefficients λ1, λ2, and λ3 are calculated as

λ1(kx ) = ΦDNS(kx )/Φ
RBE (kx ), (51)

λ2(kx ) =
√
BDNS(kx )/BRBE (kx ), (52)

λ3(kx ) = kx ·
(
UDNS
c (kx ) − λ2(kx )U

RBE
c (kx )

)
, (53)

respectively. Figure 9a, b show the contours of the rescaled
space–time energy spectra at y+ = 15 based on the Hanning
and rectangular windows, respectively. The DNS results are
superimposed for comparison. Figure 9a shows that the con-
tours of rescaled space–time energy spectra based on the
Hanning window is close to the DNS contours, especially
in the energy-containing scales. In contrast, the contours of
space–time energy spectra obatined from the rescaled RBE
using rectangularwindow (Fig. 9b) deviate significantly from
the DNS contours due to the spectral leakage. Specifically,
the spectra at high frequencies are evidently over-predicted.

5 Conclusions

In this paper, the resolvent-based estimation is utilized to
predict the space–time energy spectra in turbulent channel
flows. We take the same reference plane as that in Ref. [27],
which is located in the logarithmic region. The predicted
space–time energy spectra in the buffer layer are close to the
DNS results. This observation shows that RBE method has
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the capability to predict space–time energy spectra. Further-
more, we evaluate the performance of the RBE method. The
main observations are summarized below:

1. The location of the reference plane influences the results
of both RMS velocity and space–time energy spectra
obtained from the RBE method. The optimal location
is y+

r = 39 for the Reynolds number Reτ = 187
under investigation. Setting the reference plane to either
y+
r < 39 or y+

r > 39 results in a less satisfactory predic-
tive performance of the RBE method.

2. The implementation approach of the pressure boundary
condition does not influence the results of RMS velocity
and space–time energy spectra obtained from the RBE
method.

3. The inclusion of pressure as an input does not change the
results of the RBE method.

4. A window function is needed in the RBE method to pre-
vent the energy leakage from low to high frequencies in
the space–time energy spectra, although it imposes little
effect on the streamwise RMS velocity.
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