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Abstract

In the current paper, we are concerned with waves propagating through the deformation of a thin elastic
sheet between two incompressible and inviscid fluids, which are usually called hydroelastic waves in the
literature to model deformable sheets interacting with surrounding fluids. The main purpose of the present
study is to solve a basic question on the theoretical side, i.e. the local well-posedness issue. The problem
is formulated by the full Euler equations (without the assumption of irrotationality) for fluids, combined
with the Plotnikov-Toland model for the elastic sheet. Based on geometric considerations, we derive energy
estimates and prove the local existence and uniqueness of solution for this system in n (= 2) dimensions
even if velocity fields are rotational.
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1. Introduction
1.1. Mathematical formulation

This paper is devoted to theoretical studies of a free boundary problem. We first obtain local-
in-time energy estimates, and then prove the local existence and uniqueness of hydroelastic
waves. We adopt the elastic model proposed by Plotnikov & Toland in [34], but do not assume
the irrotationality of the flow.

We focus on interfacial waves between two incompressible and inviscid fluids that occupy
domains Q;7 and Q; in R” (n > 2) at time ¢. Assume that R” = Q" U Q; U S, where S, =
BQ,i, and let the unknown functions p+ and vy, and constants p1 > 0 denote the pressure,
velocity vector field, and density, respectively. On the interface S;, we let N1(¢, x) denote the
unit normal vectors to Q,i pointing outward (thus Ny + N_ =0), H(t,x) € (T} S,)l denote the
mean curvature vector, and x+ = H - N1. Thus the motions of fluids away from the interface is
governed by the Euler equations

(1.1)

v+ Vyu=—Vp, xeR"\S,
V'UZO, .XER”\S;.

The boundary conditions for the evolution of the interface and the pressure jump are given by

D; =3, +v- Vistangent to | J S, c R™+!
i (1.2)
p+(t7-x)_p—(tv-x)zKE,-f—(tax)a xeSt-

Here kg + are defined as

1
kg +(t,x) = —Agke(t, x) + [‘E”i“’ x) + 2+ (t, x)o (¢, x)] Ekp kg, (13)

with the Guass curvature o (¢, x) at the interface S;, where Ag, is the Beltrami-Laplace on S;.
It is obvious that k4 = —k_, hence kgy = —kg_. In the following, we also write x4 as k, and
KE+ aSKE.

Throughout this paper, we neglect the effect of gravity as it only contributes to lower-order
terms in energy estimates (the interested reader is referred to the discussion of Section 6 in [37]
for more details). For the sake of convenience, S; is assumed to be compact, and the same results
also hold if we assume it is asymptotically flat.

1.2. Known results

The free boundary problem for the Euler equations, i.e. free-surface water waves, is a classical
problem in fluid dynamics, and has been studied extensively. The first basic question is the local
well-posedness, which has been proved to be highly non-trivial due to the complicated nature
of the equations. Early results on local well-posedness of pure gravity waves can only deal with
small perturbations of a flat surface (see Nalimov [32], Shinbrot [38], Yosihara [46,47] and Craig
[12]). In recent years, a breakthrough for handling the local well-posedness with general initial
data is due to Wu [42,43] for irrotational flows. Later on, Christodoulou & Lindblad [10] and
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Lindblad [28] considered the problem with vorticity, Beyer & Gunther [8] took into account the
effects of surface tension, and Lannes [27] treated the problem with variable bottom topography.
Furthermore, Ambrose & Masmoudi [5,6], Coutand & Shkoller [14], and Shatah & Zeng [35-37]
extended these results to the two-fluid system where surface tension is necessary to control the
Kelvin-Helmholtz instability. In terms of the local regularity problem, Christianson et al. [11]
and Alazard et al. [1] proved recently a nonlinear smoothing effect arising directly from the
dispersive property of free-surface water waves.

Another important problem in this research field is the global existence of solutions and
relatively fewer results have been obtained. All the results in this aspect were obtained for
irrotational flows. The first progress was made by Wu [44], who proved the almost global ex-
istence of pure gravity waves in two dimensions. Later on, Germain et al. [16] and Wu [45]
independently proved the global well-posedness of gravity waves in three dimensions. Wu’s
two-dimensional almost global result was also improved to the global result by the independent
work of Ionescu & Pusateri [23] and Alazard & Delort [2,3]. Recently, Ifrim & Tataru provided
shorter and simpler proofs for two-dimensional gravity waves, first for the almost global well-
posedness result in joint work with Hunter [19], and then for the global result in [20]. When the
surface tension effect is much stronger than gravity, Germain et al. [17] proved the global ex-
istence for three-dimensional pure capillary wave problem. And later on, the two-dimensional
capillary wave problem was also shown to have global solutions by Ifrim & Tataru [21]. A
similar result was obtained by Ionescu & Pusateri [22], based on a different argument. When
gravity and surface tension are equally important, Deng et al. [13] proved the global regularity
for capillary-gravity waves in three dimensions. On the other hand, some mathematicians were
concerned with large initial data problems which lead to the finite-time breakdown (see, for ex-
ample, the papers on ‘splash’ singularities [9,15]). The interested reader is referred to [24] for
more results on the local and global existence theories for the initial value problem of water
waves.

In the present paper, we are interested in hydroelastic waves which describe interactions be-
tween elastic sheet and hydrodynamics. This problem is important in biology, medicine and
ocean engineering (see [4,25,30,31,33,39,40] and references therein). Korobkin et al. [26] sum-
marizes recent work on analyses, numerical simulations and applications of hydroelastic waves.
The mathematical description of the problem is similar to the classic water-wave problem, but
with the restoring forces due to gravity or surface tension replaced by the flexural elasticity. A
nonlinear model describing the deformation of a thin and heavy elastic sheet was recently pro-
posed by Toland [41] and Plotnikov & Toland [34] for two and three dimensions respectively.
Their derivation is based on the Cosserat theory of shells satisfying Kirchhoff’s hypothesis. This
new model has a clear elastic potential energy which is equivalent to the Willmore functional.
For hydroelastic waves, most of the theoretical results till now were obtained in two-dimensional
flows. Of note is the work of Groves et al. [18] who proved the existence of solitary waves in
relatively shallow fluids, Ambrose & Siegel [7] who proved the local well-posedness in potential
flows, and Liu & Ambrose [29] who proved the local well-posedness when the inertial effect is
also taken into account. In this paper, we consider a more general case, that is, the local well-
posedness of hydroelastic waves with vorticity in dimension n (= 2).

1.3. Main results

We now state in precise the main results of this paper.
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Theorem 1.1. Given initial surface Sy € H 3k+2 and initial velocity vy € H%k(QO) with %k >

% + 1, then the problem (1.1)-(1.2) has a solution in the space

S, eC® ([o, 7], H%"“) and veC® ([0, al H%k(sz,))

for some small time interval [0, T], and the energy estimate (3.30) holds. If k > 2, then the
problem is locally well-posed, that is, the solution is unique and depends continuously on the
initial data.

1.4. Difficulties

As mentioned above, the local well-posedness theory for water waves has been extensively in-
vestigated by various groups using different formulations. For our problem, the flexural elasticity
kg is very complicated and involves a lot of geometry. This observation motivates us to use the
geometric point of view due to Shatah & Zeng [35-37] to formulate the problem. In contrast to
pure capillary waves, we need to handle the flexural elasticity kg in the hydroelastic wave prob-
lem instead of the mean curvature «. Since kg introduces a higher-order term in comparison with
Kk, the geometric calculations related to kg are more complicated, and the following difficulties
distinguish our problem from pure capillary waves.

e For the capillary wave problem, Shatah and Zeng reduced the Euler equations with a free
boundary to the evolution equation of the mean curvature k. For the hydroelastic wave prob-

lem, if we perform the same transformation, then S; € A (So, %k + %, 8) is required for the
local well-posedness. However, from the regularity of Lagrangian coordinate maps, we can

only obtain S; € A (So, %k - %, 8) at most. We have to reduce the Euler equations with

free boundary to the equation of Kiﬂ = —Ag,k. Since the geometric formulas involved the
higher-order term /cg is much more complicated, it will be more difficult to distinguish these
formulas’ leading-order terms and lower-order terms.

e In [36], it is enough to reduce the system to the following form

32k — A5, N = the lower-order terms,

where N is the Dirichlet-Neumann operator. For our problem, the corresponding equation
reads

N rp+ AZN i = the lower-order terms.

However, in the process of deriving energy estimates, we find that the integral arising from
the lower-order terms contains a derivative out of control. We will overcome this difficulty
by constructing an auxiliary ‘Energy’ to cancel these terms.

The rest of the paper is organized as follows. In Section 2 we introduce notations used through-
out the paper. In Section 3 we focus on a priori estimates. In Section 4, we provide the proof of
the local well-posedness. Some detailed calculations associated with geometric properties of the
Dirichlet-Neumann operators A and A that can be found in [35,36], are omitted.
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2. Notations

A*: adjoint operator of an operator

g+ the quantity defined on ;"

q—: the quantity defined on €2,

1 and T: the normal and the tangential components of the relevant quantities
A;l: the inverse Laplacian with zero Dirichlet data in Qti

H 4 : the harmonic extension of functions defined on S; into Q,i
N.: the Dirichlet-Neumann operators in the domain Q,i

N = p%rj\/lr + pi_./\L, where p- are the densities in Q;°

N~ the inverse of the operator A\

D: the covariant differentiation on S;

D; = 0; + v - V: the material derivative along the particle path.

I1.4: the second fundamental form of S; associated with N4

A (So, % - % 8): the collection of all hypersurfaces S such that a diffeomorphism F : Sy —

S exists with | F — ids, .

s < 8, where Sy is a given hypersurface.

2 (s0)
3. A priori estimates

3.1. Preliminary results

3.1.1. Material derivative D;

In this section, we recall some expressions involved the material derivative D; = 9; + v - V.
In [35], the authors obtained the following formulas:

DNy = —((Dv)*(N£) " . 3.1)

Henceforth, the script & stands for 4+ or — corresponding to the quantities in Q,i respectively.
For example, identity (3.1) implies

DNy =—((Dv)*(N )T, DN_=—((Dv)*(N-)'.
On the hypersurface S;, we have
D.dS = (viks +D-v])dS. (3.2)
For D;« 4, we have

D/t =— Agvg - Np — 214 - (D |75,)v4)

(3.3)
=— As vt —vi|ML> +(D- M),
and for any smooth function f(¢, x), x € Sy, we have
Dy, Half = AL @Dvs - D fp, +V fry, - Avg), (3.4)

D, AZ'1f = AT @Dvs - D’AL f + Avy - VAL ), (3.5)
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D, Nilf =Vy. AL @Dvs - D* fry, +V fay - Avs) — V i, - Vv v — Vo v - N,

(3.6)
Dy, As1f ==2D*f - (D" |r5)ve) = V' [+ Agve +ksVyrpve-Ne.  (3.7)
Note that,
Dl =D, (—Agks) = —AgDikcs — [Dy, Ag, It
from (3.3) and (3.7), we have
Dk, =— As,Dikcx — [Dy, Ag, Tk
=As, (Asvd + MNP = V,1ks) +2D% - (DT Irs o)
T
+V ks Ag vy _KiVVTKivi'Ni (38)

=A%, vx + As (03 [Te ) — Ag, (VUIK:I:) +2D%cx - (DT |7s,)v)
+ VTI{i - Ags vy — KivaKivi -Ny
:=A§t vl 4.
3.1.2. The expression of pressure
In this part, we explain how to express the pressure in terms of the velocity. The most of the

calculations is the same as [36]. For the sake of completeness, we give details of calculations.
Taking the dot product of Euler equations (1.1) with N4,

—Ni-Vpi=piDix(ve - Ni) — prvs DNy

By using the fact that vi + vt =0, we obtain

1
v T VY -

1 1
— VN, p++ —VN.p-=vy DNy +v_ D N_ =V 7_
o+ p— +
From (3.1), we have

1
vIv+ :

1 1
— VN, p++—VnN_p_= H+(UI, UI) + -, vl — 2V, T_
P+ p- ¥
Since p1+ = H+(p+ls,) + A;lApi in Qti on S; we have

1 1
— VN, p++ —VnN_p-
P+ P

1 _ 1 _
=— —Vy, A Apy — —Vy AT AP
P+ o—
+ (vl o) + T, v]) - 2V,7_

€1
TV
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The boundary condition p4 — p_ = kg 4+ on S; implies that
_1 1 1 _ 1 1
pe=N"'[ = —Nikps— — V. AT Aps - —Vy AT Ap.
PF o+ o—
+ M v D) + o@D 0D =29, vt ]
Finally, since V- v =0in R" \ §;, we have

—Ap=pV - (Vyv) = p tr(Dv)? (3.9)

for x € R"\ S;. Therefore,

1 1 1
pils, =N [ — —Ngkg .z — — Vi, AT tr(Dv)> — —Vy_ A~ 'tr(Dv)?
PF P+ P— (3.10)
+ H+(UI, UI) + l'L(vj, UI) — ZVUIﬂJ vi] .

Note that the quantity inside brackets has zero mean on S; and thus p is well-defined.
3.2. Lagrangian formulation

We will obtain a priori estimates by the energy method in this section. The main difficulty is
to find an appropriate energy, and the following analyses will give a clue on how to construct
the ‘proper’ energy. We first establish the geometric formulation of the problem (1.1)-(1.2) and
obtain the linearization of the problem, which explains the motivation for the specific expression
of energy. The calculations are essentially same as [36], and the major difference is that the
surface tension x should be replaced by the flexural elasticity xg.

Multiplying the Euler equations by v = v+19;+ +v_ 197 and integrating over R" \ S; give the
conserved energy Eo:

2
|
Eo= Eo(S;, v) = / p';" dx+/§,<2ds, G.11)

R\ S; St
where p = p+19t+ + po- IQ;, and in the following, we write ¢ means g = q+th+ + q_IQ; for

any quantity ¢ defined on R" \ S;.
For y e Q(j)t, letu =u, IQ,+ +u_ 197 be the Lagrangian coordinate map solving

dx
E:v(t,x), x(0)=y, (3.12)

then we have v = u; ou™!, and for any vector field w on x € R" \ S;, D;w = (wou); o u L.

Therefore, in Lagrangian coordinates, the Euler equations take the form
puy=—(Vp)ou and u(0)=idrms,, (3.13)

where the pressure p is given by (3.9) and (3.10).
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Now, let ®4 satisfying (i) &4 : S_Zat — dDi(S_Z(f), a volume-preserving homeomorphism, and
(i) 90 (QF) = @1 (IQF = Sp), and set ' = {® = @4 lgi +®_lg-}. Then, as a manifold, the
tangent space of I is given by divergence-free vector fields with matching normal component in
Eulerian coordinates:

Tol = {0 :R"\ Sp — R"|V - w=0and w + w|es,) =0, where w = (o d~1)}.

Denoting S(®; k2) = /. ®(So) %sz S, then the energy E in Lagrangian coordinates can be rewrit-
ten as

1
Eo = Eo(u,u)) = 5 / plu*dy + S(u; k®),  (u,u) €TT, (3.14)
R™\Sp
where the volume-preserving property of u is used. This conservation of energy suggests: (1) 7T

is endowed with the L2(,od y) metric, and (2) the free boundary problem of the Euler equations
has a Lagrangian action

1
1(u)=5 // ,0|u,|2dxdt—/S(u;/<2)dt, u(t,)erl.
R"\Sp

Let 2 denote the covariant derivative associated with the metric on I', and a critical path u(z, -)
of I (u) satisfies

Dour + S'(u; k%) =0. (3.15)

Next, we will verify that the Lagrangian coordinate map u (¢, -) of a solution of (1.1) and (1.2)
is indeed a critical path of 7 ().

We first recall Hodge decomposition. For any vector field X defined on ®(R” \ Sp), we have
Hodge decomposition: X = w — Vy with ¢ = 1ﬁ+193 + 196’ where w =w o ® € TeI™ and

Vi o ® € (ToI")L. Thanks to [36], we have

(TeT)™ = {—= (V) o ®|p4 ¥y = p_Y— on B(Sp))

and
—AY =V X,
Valosy = oo ¥° (3.16)
=N XL+ X5 - VN, ATAV - X —Vy g ATIAV - X)),

where Y5 £ p vy =p_ Y.
For a given path u(z,-) € I', let v = u;, Sy = u(t, So), and w(t, -) € Ty(»yI". Then the covariant
derivative Z;w, I, (w, v), and the second fundamental form respectively satisfy

W = G + My (0, 0),  Zw € TuyT, Ty (i, D) € (Tyn D).
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Letv=u;ou"' =vou"! and w =1w o u~!. From the above Hodge decomposition, for X =

D;w, there exists py, , = pltle;r + P;,ulsz,—: R™ \ u(t, Sp) :— R determined by (3.16) such
that

P+PE = P-Ppyon Si, T (@, 0) = —(Vpuy) ou € Ty .
Hence, in Eulerian coordinates, the expression of the covariant derivative is
Ziw = (Zw)ou" =Dyw + V.,
where py, , is given by

—Apy.y =tr(DvDw),

+ 1.5 __
pw,v|Sr = p_ipw,v -

_ (3.17)
_plij\/' l[vvi—vi wi+ A vi— Tl w])) —H_@l, wl)
—Vn, A7'tr(DvDw) — Vy_ AZ'tr(DvDw)].
From the divergence decomposition formula,
0=V-vi=D-v] +xtvi+Ni-Vy,vxr ons, (3.18)

where D is the covariant derivative on S;. Hence, we have

Vuw v+ - Ny = levi Ny — Kiwivl —-D- (wi‘vl) + Vvlwi‘ .
Thus, we can also write p;fw as follows:

P =—N""Vu,vi Ny +Vu v_- N +D- (wi(v] —v]))

— VN, AZ'tr(DvDw) — Vy_AZ'tr(DvDw)}.

Moreover, for any smooth function f defined on S;, from the divergence theorem we have
/—fVNiAlltr(Dvtii)dS =— / V. -VA;ltr(Dvtii) + fu tr(DveDwy)dx .
S Q;t

Again, by the divergence theorem, the first term vanishes, and the second term can be rewritten
as

/—vaiA;%r(Dvtii)dS =
5

/ —fVu,ve - Ne+wiVify, -vedS — /szyi(vi, w)dx. (3.19)

o o
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Thus, using the decomposition V f3;, = VT f 4+ (Nif)N+ and letting f = —N"!g, we have

/gp;z’vdSzf—wi‘vi‘(./\Q+./\/7)N_lgdS+ / D*(H+: N 'g) (v, w)dx. (3.20)
S, Sf R"\SI

Now, we compute S’ (u; Kz). By a variation of the mean curvature formula, see [34], for any
w € Te', we have

(S'(u; k%), W) 2R\ 5p. paty) :/KEeridS:/KE_wfds. (3.21)
St St

It follows from Lemma 3.1 in [36] that
L2
S’ k) =V ey =V + Vo, (322)

where pip = piep, lgr + pig_lg- and

h ]
Kg+ pKEi

1 1
= ——H NNl = ——H NN
P FKE + PR FKE +

From the above calculations, we have p(py,, + p«) = p. Therefore, we have obtained the equiv-
alence between equation (3.15) for critical paths of / and the Euler equation (1.1) with the free
boundary condition (1.2). In particular, the Euler equations can also be written as

Div+Vpy v+ Vpe =0. (3.23)

3.2.1. Linearization
Now we start with the linearization of the problem. From (3.15), the linearized equation takes
the form

D0+ R (uy, W)uy + P*Sw; k() =0,  w(t,-) € Tyu.)T, (3.24)

where Z is the curvature tensor of the infinite-dimensional manifold I'.
Next, we compute the leading-order terms of % (u;, w)u, and 2*S(u; k?)(w). The leading-
order term of % (u;, w)u; had been obtained by Shatah and Zeng [36]. Let

Ho@)(w) =V frlgs +V /1o

fo= s HANTINGY, 1 NTID - (wi] —o])),

they proved that

W) (0, W)0 = Zo(V) + at most first-order differential operators . (3.25)

We now compute the leading-order term of DS (u; k2 (W). Differentiating (3.21) yields
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- - d
@zS(u; Kz)(w, w) = o /KEiwi -N4dS.
N

Substituting the expressions of D; N, D;d S and D,k gives

D*S(u; k) (0, W) =/KE¢wi(Kiwi +D-wl)+xpLDwys - Ny

S

+kp+w4 - Dy N4 + wi‘DZKEidS

L L T +
Z/KE:I:wi(K:I:wi +D-wy) —KkE£VNEDy 4

S

— KEinIwi -N + wi‘(A%t wi +r+ D,ngi)dS,

where r is given in (3.8). Noting that Kéi = —%Ki(l‘, x) +2k4(t,x)o (¢, x), hence ngi have the
same regularity with «. Therefore, by using the divergence theorem, we have

@%w,m-/ms,wﬂ?ds < /KH(vMp;w+vw1w+-N++vawi)dS
S; St

2
+ C|w|H1(S,) )

where the constant C > 0 depends on the geometry of S;. Recalling (3.18), (3.19), and upon
noting

VN, P =NE (P Wls, + Ve AT APY L)

1 _
=—NypS , — Yy, AL tr(Dw)?,
P+
we have

-y 1
_@2(w,W)—/|ASrwi‘|2dS < /pg,‘wa./\/;KEerS +C(|w|§11(5[)+|w|iz(Rn\S[)),
N S

where the constant C > 0 depends on the geometry of S;. Thus, by (3.20)

92@’@)_/|A&wi_|2‘is 5C(|w|311(5,)+|w|iz(Rn\S,)>'
Si

Let
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A W) w) =V filgr +Vf 1o, (3.26)
where
1 _
f:l:: /H:tN ]./V’:F(Agt)wi,
P+0—
Clearly 7 (1) satisfies
(0, W) =/|As,wi|2ds. (3.27)
St
Then, it follows that
9*S (u; K2) =g (u) + at most third-order differential operators. (3.28)

Finally, from (3.25) and (3.28), we have that (3.24) can be written as
720 + o (u) + o (il,)W = the lower-order terms . (3.29)
3.3. Local energy estimates

In this section, we derive the local estimates. We will show that the solutions of (1.1) with the
boundary condition (1.2) are locally bounded in

v(t,) € H*(R"\'S,) and S, € H3**2,
where k is an integer satisfying %k > 5 + 1 (equivalently, %k > 5+ %).

3.3.1. Definition of energies
We start with the choice of energy. It is well known that the basic energy is given by

2
1
Ey= / ,OI;)I dx+/§/<2dS.

Rm\S; St

Equation (3.29) motivates us to define the following high-order energies.

Definition 3.1. Given domains Q;" and Q; separated by the interface S;, where ;" is compact

and Q;t €eH %k(R” \ S;). The velocity fields v+ in respective domain satisfy v}r +vtls, =0and
V - vy = 0. We define the energy E(S;, v), often written as E for short, by

1 k 1 k1
E= |20+ <A 272V p . |2d 2 ,
/2| v Pe| x+|w|H%k*‘(R"\s,)
R\S,

where w = Dv — (Dv)* is the vorticity of the vector v.
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It is remarked that V Pk behaves like D;v due to Equation (3.23), and the vorticity term in
E is to control the tangential component of the velocity field. Next, we fix 0 < § < 1 and let
Ag2 A (SO, %k - %, 8). Then, it is easy to obtain

15 1
< Clelmses,) - se[ k——i|,

|VP,<Z| E, E 3

Bl R™M\S)

and

55
| s\ s), 5 ®M ) SCo 8 € [6 — 3k 5k- 1} ’

where C is uniform in S; € Ag.

Theorem 3.2. For fixed § > 0 sufficiently small, there exists L > 0 such that, if a solution
of the system (1.1) with the boundary condition (1.2) is given by S; € H%k+2 and v(t,-) €
C,O(H%k(R” \ S7)), then there exists t* > 0, depending only on |v(0, -)]| . L, and the set
Ay such that, for all t € [0, t*],

2k
H2X®Rm\S,

S eAo and |kt

9

5 <
HI2 00,

! (3.30)
E(S;,v(t, ) <2E(So, v(0,-) + Cy +/P(Eo, E(Sy,v(',))dt’,

0

where P (-) is a polynomial of positive coefficients determined only by the set Ao, and Cy is a

constant determined only by |v(0, -) |H%k’% &M 5) and the set Ao.

To prove Theorem 3.2, we first establish the following proposition.

Proposition 3.3. For S; € Ag with S; € H $K42 e have

h 2
<Co(1+E),
|KE|H%I"2(S,) o1+ E)

vl 5, <Co(E + Eo)"
H2"(R™\S)

where the integer m > 0 depends only on k and n, and the constant Cy > 0 depends only on the
set No.

It follows from the identity ;cg (t,x) = —Agk (1, x) that |« |, + IKgIsz(St) is equivalent
to |k |gs(s,) for any s > 2 when S§; is smooth. Hence we have the following lemmas, which are
needed for proving Proposition 3.3, the detailed proofs of these lemmas can be found in [36].
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Lemma 3.4. For S; € Ao, if «k € H(S;) and s € [%k — %, %k - 1], then we have

M5 + N oo sy < CQU+ Iklmsgs) < C (14 kbl ooags,) )
for some C > 0 uniform in S; € Ay.

Lemma 3.5. Assuming k. € H3*"1(S,), g € H*1(QF) N (H} (5)*, and g = —AZL'g, the
following inequality holds

h
< .
|VNHi61|Hgk(Qti) <C (1 + IKEIHgk;(St) (|8|Hgk1(9ti) + |g|<H(}<sz,i>)*)

for some C > 0 uniform in S; € Ao. ]
Here (HO1 (Q,i))”< is the dual of Hé (Q,i), and Hé (Qf) is the completion of CSO(Q,i) under
the metric | - |H1(Q;t).

Lemma 3.6. If <. € H3=3(S,) with S, € Ag, then for any s' € [% — 3k Sk — %],

As)? — N <C(1+4Kh
(As)2 = Nl s,y S el 3eg, ) -
By using these lemmas, we can prove Proposition 3.3.

Proof of Proposition 3.3. First, it is easy to get that

k —
|%2v|iz(Rn\St):/vi‘(A%{N)k A vidS (3.31)
5
and
k_1 v - f—
| 2 zvpKZ@Q(Rn\St):/KI’;JFN(A@N)" H=Ag)Kp,dS, (3.32)
5
where

o= (o) ()=o) < Goe) e

By Lemma 3.6, N1 behaves like (—AS,)%, hence we have the estimates of |KZ~|H 3 2 and
t

J_ . . . .
v . Finally, considering the equation
| + |H %k—% ) Yy g q

AV = ajwlj ,
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we can obtain the estimate of |v| Sk . The details can be found in Proposition 4.3 of [36],

and the main difference is that Lemma 4.5 in [36] should be replaced by our Lemma 3.4. O

3.3.2. Proof of Theorem 3.2
As in [36], we divide the proof of Theorem 3.2 into three steps.
Step 1. To estimate ng, and make sure S; € Ag. First of all, due to the assumption, the equation

us(t,y) =v(t,u(t, y)) is well-posed. Since %k >3+ 1,forse [0, %k] and f € HS(Q,Jr),
| fou(t, )|Hv(Q+) C|f|Hv(Q+)|u(t )| Sk(Q*)

where C > 0 depends on n and k, and hence there is a constant C; > 0 depending on n and k
such that

t
/ / /
wa,)—lbﬁﬂgpszcl/szan%“vgua,a| ar' (3.34)
0

Set

to = sup{z||v(r’, N3 <u, Vi el0,1]},

2@

where p > 0 is a positive large number to be specified later. Then for all 7 € [0, 9],

5

. —_ 7 /
jucz, ) mﬂ\u/ma ar'.

% Q+)
Thus there exist #{ > 0 and C, > 0 depending only on p such that, for all 0 < ¢ < min{z, #1},

t,)—1
() =11 3

e

< Cyt.
This implies that for all 0 < ¢ < min{r, 1},

h
K z,- 9
| E’+( )lek,,

h
Y S g+ 0 g o) FET

2(So)

where C3 > 0 is determined only by p and the set Ag. Finally, there exists #; > 0 determined by
w and the set Ag such that S; € Ag for 0 < ¢t < min{z, £2}.
Step2. To obtain the estimate of vorticity. Firstly,
D,;w =DD,v — (DD;v)* + ((Dv)*)*> — (Dv)*
=((Dv)")* = (Dv)?
=—(Dv)*w —wDv.

Thus we can obtain
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d .
= / |D3* 1 |2dx = / D, | D3 w|?dx
RM\S, RM\S,

<Clv| s ]? ,
ST HR RS 3 RS,

where the constant C > 0 is determined by the set Ag.
Step 3. To establish the energy estimate. As [35], the following two estimates hold, for any
function f defined on S;, there is a constant C > 0 depending on A such that

1D, As I Lcasi s, 101-2(5,)) S Clv'H%"(R"\S,)’ 51 € (% - %k, %k - %i| , (3.35)
and
|[DtaNi]|L(H°'2(S,),H‘2’1(S,)) < C|U|H%k , 2 € |:l, ék - li| . (3.36)
(R™\S) 22 2
Hence,
|[Dt,N_l]|L(H¢'1 (S, H5171(S))) < Clv'H%k(R"\S,) ,» S1€ [—%, %k - %i| ) (3.37)
and
D0 Ml s 2150 < CloL g . SmE [l,ék—l] (3.38)
R™\S) 2°2 2

In the following, we let Q = Q <|v| denote a generic positive

h
9 K [y -
HI RN S) WEl, 5 Z(R”\Sr)>

and |K§|H% ien with coefficients depending only on
13

polynomial function of |v|
H R™\S)

the set Ag.
The main difficulty is to close the energy estimate. To this end, we first define the following
two ‘Energies’:

5
2KRm\S))

1 _ _ _
Eux =5 / kg N (AN 2 A N (g, TIPS,
St

and

_ P+ A2 Nk-1
Eex _72(p++p_)!VUIK+ (AS;N) VUIK+dS
P— 2 k=1
+—————— [ Vorks - (A N) 'V 1k4dS.
2(p++p_)s/ e (AR Ve
t

In the subsequent analyses, we will prove the following estimates.
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d (1 «_1 _ o
dr <5W2 ZV”KZ@Z(R"\S,)_EAM> —/KZ+N(A§,N)" A} vkds| < Q
St
and
d(L 4 LoA2 ik h
E E|M2U|L2(Rn\sl)_Eex + U+(AStN) KE+dS < Q
St

Proof of Estimate (I). From (3.32), (3.35) and (3.38), we can obtain that

k_1 2 h a2 Ak—1 h
_—|g£2f2 ZVPKZ-|L2(]R”\St)_/KE+N(ASTN) D[+KE+dS < Q
Y

and

d , L
—Eau —/KngN(A?SIN)" A NDych IT1H)dS| < 0.
5

Recall (3.8),
Dicfy =A% v} + A5 WETLP) — Ag (k2 ) +2D%s - (DT Irs)v)
+ VTKi - As,v4 — K:I:VVTKiU:l: B\
Note that
- AS, (VUIK:‘:) + VTKi . AS, Vit

— _Ag (vlei) +V ks - Ag vl +VTks - As, (vENL)

=[V ks, As vl +V ks - As,(VEN) — As,(vEV ks - Ny)

=[V "kt Agvi + [V ki, AgJ(vNs).

6071

@

ey

(3.39)

(3.40)

Hence, from the definition of Q, we have the leading-order terms of Dt/ciﬂ 4 are Aé vi- +
A, (vE|T14|?). From this fact, substituting D, into (3.39) and (3.40), and using (3.35) and

(3.38), we can get

S

k 1 — - _
——WrzvpKZ@z(Rn\st)—/KZ+N(A§TN)’< ](Aérvi+|l'[|2Ag,vi)dS <0
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and

d - —
o Enus - / Kl N2 AT As vbds| < 0.
St

The above two equations give the estimate (I).

Proof of Estimate (II). By (3.35) and (3.38), we have

1d k o
EE'JZ{ZU@Z(Rn\SI) - /Ui(A%tN)k lAétDtJrUidS < Q,
Si

where
DtJerlr = —i/\@pf‘v — VN+A;1tr(Dv)2 —Nkgq — VUI vi + H+(v1, vJTr)
due to (3.23). It follows from Lemma 3.5 that
VL AT tr(DV?] gy <O

Therefore, one can obtain

1d L") L, A2 Kk—1 42
Ealﬂzl)'Lz(R"\S;) —/U+(ASrN) AS;
St
1 _
x (—EJ\/'.,.pf’v — Nt =V, 7oy + 4 (v, vI)) dS‘ <Q.
On the other hand,

1 1 -
_EN+IJ5’U :ENJF./\/' 1[2VUI—UIU4J: — HJ”(UI’ UI)

— 1T 0]) = Vi, AT (Do) = Vv AZ'r(Dv)?].

From Lemma 3.6, we get

1 P+P—
’N—‘:—N - 0 + 5.3 S5_1 < Q
+ T P—IL(H2*2(8),H2 " 2(8))
Hence,
1 s o— il T . T T T
_ = — —TII_ < 0.
p+N+pv,v ot (ZVUI—UIU+ My (vy,vy) = -(v_,v0)) H%k*%(sl) <@
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It follows that

1d ko2 LoA2 f k=1 A2
2ai Ve _/”+(ASIN) A,
St
P+ T .T Po— T.T
x[7H+(v ,Uu ) — — I (v_,v))
pr+p- T pytpe

- P—— P+ T 2p- 1
—J\/KE++VUJ'-( v, — v_)}dsng.
T \p—Hor T oty

Commuting Vvi yields

_— p——p 2p—
/vi(A?g[N)k 'A% Vi < o] UI> ds|< 0.

! [ A p—+ P+
Therefore,
ld & 5 LA2 k=142
‘Ealﬂzvle(Rn\Sl)_/v+(AStN) ASt
St
x {'07+H+(v1,v1) — 2 noah) —/\‘/x,’}+}ds‘ <0.
P+ + p— P+ + p—

By noticing

|As, (Ml vD) = Des ol v

<0

Sp_3 X
2728

and
2 T 2Ty T
Dy (vy,vp) =V, 1V 1kt = DyTvy - Vi,

we can obtain that

ld, & o LoA2 Ak—1
§E|%2U|L2(Rn\st)_/v+(AS[N) ASt

S

x {—p—+v TV, Ty + —P— VTV T + Ast/\_//cZJr}dS‘ <0

pt+p- U p++p-

Commuting Vul gives

6073
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ld « P+ .
gwﬂf”'izmn\s,) - m/vvlm&ui).mgmk 'V, rx1dS
P—

/VUI(AS,vi)-(Ag/\'/)k”vvjx+ds+/vi(A@lj\'f)ngds <0.
St S

P+ + p—
Finally, from
1
| — As, vy —Dt+K+|H%k_2(St) <0,

we have

P+

l1d 3
__|szév|2 _
2dt P+ +po—

L2R™M\S) /VUIDt+K+ : (A_zgl-/\_/)k_lvaK+dS

13
p—

- T/VUTD,+K+.(Agtj\'/)k—lvvm+ds+/vi(AS,/\'/)ng+ds <0.
P+ T Pp— - -

St Sy

Thus, using (3.35) and (3.36), we can obtain the estimate (II).
Combining the estimates (I) and (II) gives

t
E(t) — E(0) — (Eux (1) — Epux(0)) = (Eex (1) — Ex (0)) < / Ol sk rms, - K rse-2s, )t
0

It is easy to obtain

h2
$k-3 kgl

|Eex| < Clof? 5.1 -
H 8 (R"\Sy) H2" 2(5)

Next, a calculation similar to (3.34) gives

1
|Eex| < —-E+ Cl (1 + |U|m
4 H

t
1
5,3 )S—E+C1+/th’,
I RS 4 /

where Cj is determined by |v(0, -)|H% 3 ®RMS) and the set Ag. On the other hand, it is easy to

obtain

1 . . . 1
|E Aux| = IE/KEN(A%,N)" 2A5 N (kg |TIPdS| < JE+Cr
St

Therefore

t
E(S;,v(t,-)) <2E(So,v(0, ) + Cq +/th/.
0
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Finally, using Proposition 3.3 and choosing u large enough in comparison with the initial data,
we finish the proof of Theorem 3.2.

4. Local well-posedness

After obtaining the estimates for the system (1.1) with the boundary condition (1.2), the proof
of the local well-posedness is relatively standard. We will adopt the argument similar to [37], and
focus on the main different points.

4.1. Preliminary results

Let k be an integer such that %k > 5+ 1 and S, C R" be a compact reference hypersurface

5 . . .
of the Sobolev class H2*¥*! that separates R” into domains Q; and Q with S, = dQ} = 0Q; .
Denote by N,+ the outward unit normal vector, 1,4 the second fundamental form, and k.4 the
mean curvature of S,. In addition, we denote ICZ . £ _A S Kok«

. . 5 _ .
Fix a unit vector field v € H2k+2(S*, N 1) such that its normal component vi £ ). Nig 2 g.
From the implicit function theorem, there exists a §yo determined by S, and v such that

¢ : S x[=d0, 0] > R" as ¢(p,d)=p+dv(p)
is an H 3+ diffeomorphism from its domain to a neighborhood of S..

This coordinate system associates each hypersurface S close to S, in the C! topology with a
unique function dg : S, — R such that

ds(p) £ p+ds(p)v(p).

For§ >0ands e (%, %k + 2], we let A(Sy, s, &) be the collection of all hypersurfaces S such

that its associated ds : S, — R satisfies |ds|gs(s,) < 6.

Given a surface S € A(S,, s, 8) separating two regions Q%, we construct harmonic coordi-
nates on Q7 in the following manner. Consider the map ®s(p) = p + ds(p)v(p) from S, — S
and let

XE =Hur (Bs —ids,) +id: Q2 — QF,
where .4 is a harmonic extension operator on the domains Qf It is clear that

|De%sﬂE — 1] < Clds|as(s,)

1
H (@)

with C > 0 uniform in S € A(Sy, s,8) and thus %Si is a diffeomorphism from ij — QFif
8 <« 1. The maps 2" Si are used as coordinates on Q?, and we write

%S: %—S+19+ +‘%—S_197 RH\S%RH

For any S € A(Sx, s, 8), let
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K(ds)(p) =k} ,(p) 2k} (Ps(p)) +a*ds(p),
where p € S, and a is a large constant depending on S, and we also set
5 1
A2 A (s*, Sk §’8> .
Then, by the implicit function theorem, we can obtain the following lemma (see also Lemma 2.2
of [37]):

Lemma 4.1. There exist C, 8, 81, ag > 0 determined only by S, such that, for any a > ao, K is a
diffeomorphism from A, an open subset in H%k_% (Sy), to H%k_% (Sx). Let

s ) o h h
Bs, = {KE,a HIKE 4 _KE,*|H%1<7%(S )< 51} ;
*

where Ki’-’* = —Ayq,Kst, and it follows that

1K1

5.1 <
C3(Bs, . H2*™ b

2(8%)

Moreover, if/cg 7 €Bs; N HS=4(Sy) for s € [%k - % %k +2], then ds, ®s € H*(S,), and for

any max{s’ — 4, —s} <s" <5’ <,
_l /_ //_4 h
DK 5.0 5y < €0 (14 I alisy)
4.2. Reduction of the problem

In this section, we decompose the problem into a coupled system of the evolutions of the
interface represented by KZ ., and the rotational part of the velocity field.

4.2.1. Velocity fields and boundary motion
Letv = v+th+ +v_ lQ; :R"\ §; — R" be a velocity field of Q;t Define the operator L as
follows: for g : 2 — R and f:9Q2 — R, let L(g, f) = Vh with

Vnhlsgg=f and Ah=g+ /de—/gdx Y,
Q Q

where y = (fsz dx)~1 if Q is bounded; supp(y) CC Q and fRZ ydx =1 if @ ¢ R? is un-
bounded; y =0 if 2 C R” is unbounded and n > 2. For the vector field v, by means of the
Hodge decomposition we can decompose v as the rotational part v, and the irrotational part vj,.
From Appendix A in [37], the irrotational part v;, takes the form of

vire =L (0, (3yds,) 0 05" Ni) . C8)
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Thus, the rotational part can be expressed as
Vrt =V4+ — Uit =04 — L (0, (0¢ds,v) o <I>§,1 . N:I:) = P(S,v4).

We will use the harmonic coordinates 2 ij to pull v, back to Q% , i.e.

vy = (D%Sti(v,*i))_l (P v 0 23).

Here, we have v,++(x) € Ty Sk.
Now, given /cg @ 8,/(2 o and vpx4 (x) € T Sy, from the above analysis, we can decompose the
velocity field as

Ve = i v = L (0, (Ouds,v) 0 D5+ N ) + (D2 (v ) 0 (5{;)_1 )

where ds, = K1 (K]é) and L4 are defined on Qti respectively. In addition, we have the following
estimate

h h
v < K : v : + |0;k .
0], 3t s,y S Q(I E,a|H;k_;(S*)> <| el 3t sy 1 E,angk_g(S*))

4.2.2. Velocity fields on the interface
Given Kil—ya (t,): Sy > Rand v : R*\ Sy = R” with vy ]s, € TS, let

Uy + p—_v_ _
=Y D=9 4V =— D+ —— D,

o+t p- P+ + o P+ + o

The velocity field vy, defines a flow map U(z, -) : So — S; by
U, )=ids,, oU(t, - )=vy U,-))),
and
Uslt, ) =5 o U(t,) 0 Dg, .
The velocity field induced by this family of transformations U,(t, -) on S, is given by
vps =0 Uy o U™ = DO (vy 0 s, — (3yds,)v) = DD (vyy 0 s, — (ds)v’) . (4.3)
The material differentiation associated with vy, is defined by
D =0 + Vy,,,
and moreover,

(D7f) o @5, =Dy (f 0 Bg,)
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for any function f (¢, -) defined on S;.
Now, we assume that g , and v, depend on some parameter 8. Then from (3.10) and Lemma
3.1 of [37], we also have

P+08Vrst + P08 Urs—
P+ + o

dpvmx = Bi(kp )k o + + Ry} 40 0K )

where the linear operators By (K]’;i,a) and R (Kﬁ",m 3,/(2’“) satisfy the following lemma:

Lemma 4.2. Assume a > ag, where ay is given in Lemma 4. 1. For Kg 4 € Bsy, max{—%, s'—4} <

s”és’é%k—%and—% 5k 2,wehave

’ 4

 —s" —4
|Bl(Ka)|L(HS”(S*,R),Hs/(S*,TS*)) < Cas s s

DB
| I(Ku)|L(

k=3 )

5 <
H?2 (S#), L(H*(Sx), HS4(5,)))

where C depends only on Sy and §. Iflcg a € Bs, ﬂH%k_z(S*) and 8,/(2- w Bﬂlcga € H%k_% (S4),
then for any max{—2,s’ —4} <s” <s' < 5k

h —s"—4
|Bl(KE,a)|L(HS”(s*,R),HS’(s*,TS*)) <C"S 3 Q<|KE al %72)’

$5-9 5.3 \Q(|KEa|H5k 2,|3tKEa|H%k,g)'

Ri(k? ., 3k
|R1(KE 4 0K o) (S, H33(5,))

L(H

5 9 5
Moreover, for s € [jk -3, Ek — 2],

1 S—i s—§ H—l
L(H*(Sx)xH™ 2 (8x),L(H" 2 (Sx)xH™ " 2(S4)))

h h
s Q<| “E.al ygias,y 10E.al 50y )) '
* %

4.2.3. Evolution Ong a
Let (S;, v) be a solution to (1.1)-(1.2) for r € [0, T] with S; € A, 2 A(S,, %k — %,8) and
S; € H%]‘Jr2 and v(t,-) € H%k(R” \ S;). The interface S; is determined by K,ﬁi’a whose leading

order term is Kg - We first consider the evolution of Kg + in the direction of weighted mean
velocity. Set

P+ P—
= Uy + v—
P+ p- P+ + p—
D; 29, +V,, = —+ P~ D on .

Dy +
P+ + - P+ + p—
Forany S; e H 342 gnd any tangential vector field X on S;, define the operators .7 and %, by

A (S) = AN, Ro(S;, X) =VaN~'D(XN()),
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where N = i/\@_ + p%./\/_ and

. 1 1 1 ! 1 -1
e N O N I
P+ o— P+ o—
From the procedure of the proof of Theorem 3.2, we can obtain the following lemma (the inter-
ested reader is referred to the proof of Lemma 3.2 in [37] for details).

Lemma 4.3. There exists § > 0, which depends only on Sy, such that for any solution (S, v) of
(1.1)-(1.2) for t € [0, T] with S; € Ay, S; € H3**2, and v(r, ) € H3*(R" \ S)), K}, satisfies

D7 o+ (SO o+ Ho(Sr, (ve — vk 4
+ (4P = Ve VINTY A Nif | = Ro(Si.v),

where Ry(Sy, v) : Sy — R satisfies

h
[Ro(St, )| 5e ) <0=0 <IKE,,1|

[v]

3, H3k (s, H%”(Rﬂ\&)) :

Remark 4.1. Comparing with the case of pure capillary waves (see [37]), we have extra terms
(T2 =V Ty - VINTH AN .

Now, given a surface S € A, and X, € T Sy, let

Dkl ) f =1 (S)(f o D] o s,
Rt (K} 40 Xe) =[Z0(S, X)(f o @50 @5, X =DPs(X,),

Gutet) f = [ (047 = Ve - VINTDASA ) (f 0 05 0 s

be operators acting on the function f defined on S,. Therefore, similar to Lemma 3.3 of [37], we
have

Lemma 4.4. There exist C,81 > 0 determined only by S such that for Kg,a € By, Xy €
H3-1 (Sy), the following inequalities hold

h
lm (g ) L5 (5,).15-5(5.)) < C s
2

|Zm (ka, X*)|L(H-f(s*),1{x—2(s*)) < C|X*|H%

_1 ’
280

| Doty <C,
L(H

5.0 B
2572(84), L(H*1(8y), HS17))

7 5.5 1 9 5, 3 1 o h 3k—3
where s € [Z — 5k, 5k — 5] and s € [5 — Ekv ik — 5]. Moreover, lf/cEﬂ € Bs, N H2"72(S,),
1
€ 2

k, 5k
then for s [4—%k, %k— ]
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|DZ | 5,3

k-2 ‘ s—3
L(H2* 2 (S)xH2 (8, L(H (5,),H' "2 (5,))

< .
\Q<| Ealy it |X*|H§"‘%<s*>)

By (4.3) and a similar procedure for deriving the evolution equation of k, in [37], we can
obtain the governing equation for E.q- We state the results as follows. If (S, v) is a solution to
(1.1)-(1.2), then

(810 + 2040, + Vous, Vi, + Fht + By kg, (DO5) ™ (04 = v2)) + G )k,
= By(kps ) By vrat|s,) + Rk 4 ik 4o vrs)
and if ks, € H*2(S,), dyicl € H%k—% (S,) and vy, € H3K(R" \ S,), then we have for & > 0

and3—§k<s 5k 3 withs > 2

h h
|B2(k g I L(Hs+e(50),H5(52) SO (lKE,alﬂgk_z(S*)) ,

lDBz'L(H%"*%(S*) LEI3 B3 (s,) sQ (lKE“| 32, ))
R DR
B2l 33 (5 1PR2 L 303 0355 w33 @ s, 1355,
< 4 h h
xa Q ('KE,angkz(S*)’ |afKE,a|H%k—%(S*) | r*|H2 (]R"\S ))

4.3. The linear problem along the interface

LetS. e H %k+2, %k > % + 1, be a reference hypersurface and 1 >> é > 0 be fixed such that

5 1
A*éA<S*,§k—§,8>.

Assume S; € A, is a family of hypersurfaces parameterized by ¢ € [0, T] and vy, Xy : Sx —
T S, are tangential vector fields on S, such that

b e (0, T1, H2*2($,)) N C' ([0, T, Bs, C HI*72(S,)) . (H1)
Vars. Xy € CO([0, T1, H*72(5,)) N C1 ([0, T1, B, € H*73(S,) . (H2)

We consider the linear initial value problem

4.4)

(811 + ZVUM*a[ + VUM*VUM* + %M +%M(Kas X*) + (gM) f =8
fQO,)=fo, 9f0O,)=rfi

for given functions fo, f1,g(t,-) : Sx = R. Then by similar proofs of Proposition 4.1 and
Lemma 4.3 in [37], we have
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Proposition 4.5. For s € [2 = k. 3k — 2] and g & CO(10, T), H*(S.)), Equation (4.4) is well-
posed in HS"3 (S,) x H*(S,).

Lemma 4.6. There exists Co determined by the set A, such that, for any integerl € [1 —k, k —2]
andt € [O Q] we have

2 2 Qo 0t 2 2
19 <Coe [ n
P i, H1IE gy <Coe@ QIR g, o +IAR gy

+ Qol fol? +1gP |
S H3T3(s,) gL2<[0 T1LHIHI(5,)

where Q is a polynomial of norms of KZ @ B,Kg o UM.» O, Xy and 0; Xy, given in assump-
tions (H1 — 2) with coefficients depending only on S, and §, and Qo is a polynomial of

| X% (0, ~)|H%u(s* and [ors 0.1 31 (80

4.4. Proof of the local well-posedness
We are ready to prove the local well-posedness. We first define a set X as follows.

Definition 4.7. For given constants T, L, Lo, L1, L,, L, define the set X as the collection of
(KZE 2> Urs), which satisfies

Kt a(0,) =Kl 3ig ) <81

EEUBI NN s 1O s o oS

o “'co([o,T],H%k’Q(s*» ko,

|8’Kg*”|c0([o,ﬂ, 135 U leoo 3t sy SET
107 vyl r

.71 HI RS,
04K : <
19 E’”'CO([o,r],H%k”(s*))

For 0 <& « § and A > 0, consider a collection of initial data

51 S5p_9 5
I(e, A) = }(x,’;,u,, @il )1, wire) € HIFT2(S,) x H*72(80) x HI(R"\ S,) -

h h
K —K 5 <&, |(0;k 519 , lw 5 <A}.
| E,al E’*+|H7k72(5) |( t Ea)ll 3 77(S*) | Ir*lek(]R”\S*)

The iteration map .7 . Fix the initial data (Kg’al, (aﬂcg’a),, er*) €Z(e, A). Given ("Z,a’ Vps)

€ X, let Eg , be a solution to the nonhomogeneous linear equation
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(011 +2Vup1, 01 + Vyy, Yoy, + 9 + R (ka, J) + )R,
= Rz(x,’z- o a,x,’; w vr*> + Ba(ic} ) Brvrls,) (4.5)
fh 0. )=kl i) (0,)= @Kk )1,

where vy is the weighted mean velocity on S;, vy, defined in (4.3), and
X, =(DPs) (g —v_).
Since (K[]f, Urx) € X, then
o091 g o O] 5 < QL)
and

|9 X | < O(Lo, Ly,a*Ly, Ly).

|0 v+

CO0.71,H3 3 (s,))’ CO([0.71.H 3 (5,)

Using estimates of (4.6), we have

k2 k2
licg | |0¢ic | 569

+
Ceoqorn a3 sy 0oL 3 (s)

2
< CpelLo-Lr L LOT (O (L) + a*Q(Lo, L, L,)T).

By choosing L¢ and L large in comparison with L and T sufficiently small, we have

5 ql <Q(L) < Lo

CO0.71. H32(5,))

|0, 4 SOQL)<L

@ 010,71, H3*2 (5,)

This implies

10k o s, <a*O(Lo, L1, L) <a’Ly,
TCO0,T1,H2T(S,)

where L, large compared to Lo, Ly and L,. Let Fopr =u o 3&”5 o (%Sf)_l. Using Fy we define
U4 and O, by

Uy =W — Wir,
- £i—lsa +
Upst Z(D%Sl ) {vro ‘%/Sz },

where wi = (DFy " (vj+ 0 Fy}') : @F — R" and wy, is defined in (4.1). Then it follows that

Lo) <L
|r*|H2 (]R”\S)\Q( 0)\ 1

for an appropriate choice of Ly, and
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a Lo, L) <L
|tvr*|H2 (]R”\S)\Q( 0 1)\ r

for an appropriate choice of L, (see [37] for details).
Thus, we have the following lemma

Lemma 4.8. Assume %k > % 4+ 1. For any 0 < ¢ < § and A > 0, there exist L, Lo, L1, Ly, Ly
such that for sufficiently small T > 0, we have

T aps Ok ap)s Wirs)s (K 42 V) = (R o Tre) € 2,
where (Kg,al, (3,/(2,‘11), w;r*) el(e, A) and (Kgya, Upg) € 2.
Contraction mapping. We define the norm | - |z, as

9,k
’%<S 19 E*”'C°<[0,T1,H%k’7<s*>>

&
s T M2 ’*|CO<0T]H2"’7<R"\S )

K , U K Sk
|( E.a r*)|E)L | Ea'CO([OT] 3

v
+| r*|c0([0 T1.H %,

[l

where X € [0, 1] to be determined later while estimating 0; v, .
. . 519
Assume %k > 5 so that we can take traces of functions in H 2%~z (R™\ S4). For a parameter ,

consider a family (i} , (). vy(7)) € X with initial data (¢} ./, v1 (7)), and let . Tr+(1)) =

g (Kg’a(‘f), v«(7)). Differentiating (4.5) with respect to t yields

(Ot +2Vy, 01 + Yoy, Vo, + @t + Rt (ka, J) + Co) Ok,
= — {2V, 0419 + Vv Vorre T Vo Voo,
+ D(y + Cn) ekt ) + DBt (9cka, dyau )} (4.6)
+ DRy (kg ek g Vi) Dek s 4y ek s D)

+ Ba(kp )0 Vs + DBa(k ) (DK )0V

andatt =0

Ik 0, )=kl 0:kEa(0,) = Ok} )1

From (4.2), we have

|0 s A < Q(Lo, L)@k} 4 0:04) 5.0 -

o0, 71,1343 (s,))’ 010,71, 343(s,))

Hence, by (4.6) and (4.4), we can obtain
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|0k Ea| =+ |0;0¢ KEa|

CO0.71.H35 2 (5,)) co0.71, 7357 (5,))

<TQ(Lo. L1, Ly)| ((amg,a, 0rvrs) |50 + 117 v @7

C"([o,T],H%k‘%(S*»)

5r-2
2 2

+ 0O(L) (|3TKE al + |3f((a"€g*“’)')|H§"7(&)) '

(Sx)

From [37], we have

Oetrve = (D2 ™ (=D 2 e + (00 + V)i 0 2F)

D2 Bi10rs) + DO L5 (D pa) + Dyr 25 (0r4) = (B + V) (0 + V2)D,) 0 2,

where X = 0, %ij o (QfS:—L)_1 and Z = 9, %ij o (%Sj[:)_l. By the similar procedure shown in
[37], we can obtain the estimates for 0; U+ and 0;; Uy s+

_3
0 Drat| 5,05 <(t+a 2)Q(Lo, L)@k} 4 3450
H2K 38, ’ (4.8)
Colo 5&”
+ Colde (250D, 3105 s
where Cp > 0 depends on S, and
retracl 310 o < Qs L) (10ekf g0 Bevrolzo + (25 0Dl s o) (49)

It is noted that our case is easier to obtain due to the higher regularity of dg,. Next, if choosing
T, a and A¢ such that

1 3 1 1
rMO(Lo, L)< —, (T+a 2)Q(Lo,L1) < ra TQO(Lo, L) < g)»o, (4.10)

o)}

then from the estimates (4.7)-(4.9) and the definition of X, we can obtain the following lemma.

Lemma 4.9. Assume 2k > max{5,5 + 1}. For any 0 <& < & and A > 0, there exist
L,Lo,L1,Ly, Ly, if T, a and Lo satlsfy (4.10), then

|9(KE a(f) Ur*(f))|2 ro S |(arKE ar arvr*)b: 2 T Q(Lo, Ll)[|arKE al|

1-17’“2(5 )

h
G IS A

Hz"*Z(R"\S )]

By virtue of this lemma, fixing the initial data (/ciiya,, (3,/(261)[, wlr*> € I(g, A), for any
k € N, we have
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k
1
| TR 0 (0, v (D) 5.20 <O §>|<afx,’;,a, e |0
i=1

k—1
1
+ (2 5900 Lo Ikt o]
i=0

2 3350
h
1@ DD 50 F 0wl s ]

and for any k1, kp € N and k; < kp, we have

k
1
| T8 (g (D), () = TR K 4 (O, 0ra (530 < | D 5
i=k;

h
|(arKE,a9 0z Ur*)|Z,AO .

Hence the iteration sequence .7 k (Kg’a (1), vr+(7)) is a Cauchy sequence in the complete metric
space X with the norm | - |5 5,. Let (€} ,(7), U,+(7)) be a limit of T*(k}; , (7). vr+(7)) in T,
and then it follows that (Ega (1), Ur4(1)) is the fixed point of the operator .7. Hence, we have

Proposition 4.10. Assume %k > max{5, % + 1}. For any 0 < e < 8 and A > 0, there exist
L,Lo,L1,Ly, Ly, if T, a and \g satisfying (4.10), then there exists F : L(e, A) — X satisfy-
ing

h h h h h h
T ((KE,aI’ (atKE,a])Iv Wirs), ‘F(KE,aI’ (8IKE’a[)Iﬂ er*)) =F (K’E’a]ﬂ (atKE,aI)L wlr*)

IDF| / 5, 9 Seg 5.3 <Q(Lo, Ly).
L<H2 2(Sx)xH2" "(Sx)xH?2 2(R”\S*),|-IZ,A0)

Let (Kg’al, (B,Kga)h w1r*) el(e, A) and (Kz-’a, vr4) be its fixed point. From Kg’a and v,

we can define a family of interfaces S; and velocity field v(¢, ) by (4.2) whose initial values
coincide with the interface Sy and velocity field v; defined by (KZ— @ (8,/(2’-’ DI W 1,*). Finally,

by the similar calculations of [37], we can check that (S;, v) is the solution to (1.1)-(1.2) with
initial data (S7, vy). Thus, we complete the proof of the local well-posedness.
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