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Three artificial neural network (ANN) models were developed to predict the fluid properties of China RP- 

3 kerosene under supercritical pressure in replacement of the time-consuming property calculations by 

the principle of Extended Corresponding State (ECS). The analysis shows that the properties predicted by 

the trained ANN models agree well with the calculations by the ECS method. The correlation coefficients 

(R) between the ANN predictions and the ECS calculations are higher than 0.99, and most of the relative 

errors are lower than 0.1%. The prediction by the ANN models is of several orders (10 4 ) faster than that 

by the ECS method, especially near the critical points. The trained ANN model was further coupled with 

the CFD modeling of a realistic kerosene jet, where high efficiency and satisfactory accuracy were shown 

compared with the direct ECS calculations. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

For hypersonic vehicles, passive cooling by using advanced ma-

erials is becoming insufficient at Mach number (Ma) of 10 + ,

here active cooling by using regenerative fuel becomes neces-

ary [1] . Convective heat transfer of hydrocarbon fuels under su-

ercritical pressure has been widely utilized in the regenerative

ooling technology [2 , 3] . The application of regenerative cooling

ot only effectively cools high-temperature parts but also improves

he energy utilization and combustion efficiency through preheat-

ng the fuel [4 , 5] . During the regenerative cooling, the fuel not only

bsorbs heat using its sensible heat sink but also absorbs heat

hrough endothermic chemical reactions using its chemical heat

ink [3] . However, abnormal heat transfer usually occurs around

he critical point [6 , 7] , as the thermophysical and transport proper-

ies of supercritical fluids will change sharply with the temperature

nd the pressure when approaching the critical point [8] . Super-

ritical fluid has gas-like transport properties (e.g., viscosity) but

arge density similar to the liquid [9] . Therefore, accurate predic-

ion of the supercritical properties is essential for thermal man-

gement [10 , 11] . 
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Compared to hydrogen fuels, kerosene is an ideal coolant for

ts high energy density, small storage volume, and economy [12] .

owever, most current heat transfer researches focus on pure hy-

rocarbons, while very few studies focus on the supercritical heat

ransfer of kerosene [13–15] . On the one hand, this is due to the

omplex composition of kerosene, which typically contains thou-

ands of compositions, and the specific composition varies with

he origin, manufacturer, production year, and some other condi-

ions. On the other hand, this is due to the complex flow and heat

ransfer phenomena near the critical and vapor-liquid-coexist sta-

uses. For the former, surrogate fuels must be used to simulate the

hysical and chemical properties of kerosene, while for the latter

ccurate equation of state must be adopted to solve the thermody-

amic properties under supercritical conditions where the real-gas

ffect must be taken into account [16] . Calibrated by the compo-

ition and the heat transfer characteristics of China RP-3 kerosene,

everal physical surrogate models, such as Fan’s three-component

odel [17] , Cheng’s five-component model [18] and Zhong’s ten-

omponent model [19] , have been proposed to model the regener-

tive cooling of kerosene. Compared with the cubic equations of

tate (EoS), such as the Van der Waals equation, Peng-Robinson

quation [20] and Redlich-Kwong-Soave equation [21] , the prin-

iple of Extended Corresponding State (ECS) [6 , 9 , 22–25] can pro-

ide highly accurate properties across the liquid-vapor-supercritical

egimes for a large variety of hydrocarbons. However, the ECS cal-

ulation is time-costly for use in three-dimensional (3-D) Compu-

ational Fluid Dynamics (CFD) modelings, especially near the crit-
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Nomenclature 

ANN Artificial neural network 

ECS Extended Corresponding State 

T Temperature (K) 

P Pressure (MPa) 

ρ Density (kg/m 

3 ) 

a sound speed (m/s) 

γ specific heat ratio 

P r Prandtl number 

LES Large Eddy Simulation 

SGS subgrid-scale 

k thermal conductivity (W/m 

•K) 

μ Viscosity (Pa •s) 

C p the specific heat at constant pressure (J/kg •K) 

m the momentum 

W the weight in the ANN structure 

l r The learning rate 

ical point [26 , 27] . It is desirable to develop an efficient yet accu-

rate way to evaluate the fluid properties of kerosene, which would

avoid the time-consuming, iterative solution and make CFD model-

ing coupled with real-gas effects more computationally-affordable. 

The artificial neural network (ANN), originating from the bi-

ological neural network (BNN) [28] , is one of the most widely

used statistical learning algorithms in recent years and has

been successfully applied in function approximation, classification,

time series prediction, filtering, data association and optimization

[10 , 27 , 29 , 30] . The ANN structure functions like biological neurons

with the ability to learn from a set of input-output parameter

space it is subjected to, and then predicted the output for a new

sample set at much high speed and with a sufficient level of ac-

curacy [2] . Usually, the most important advantages of ANN are its

high flexibility to simulate nonlinear problems and the capabil-

ity to approximate any functions with high-dimensional data re-

quiring no detailed information about the system. ANN can han-

dle large and complex interrelated parameters by simply ignoring

excess data that are of minimal significance and instead concen-

trating on the more important inputs [31] . Among several types

of ANNs, the backpropagation artificial neural network (BP-ANN)

is the most widely applied [32–34] . The main features of BP-ANN

are that the weights are automatically adjusted by the information

transmitting forward and the errors transferring reversely. How-

ever, there is a disadvantage of ANN that it cannot be used to find

or explain physical laws involved in a phenomenon because the

mathematical information that contributes to the understanding of

physical and thermodynamic comportment can only be obtained

by solving equations [35] . Nevertheless, ANN is still beneficial in

many fields of knowledge. ANN is a feasible method to improve the

calculation efficiency of complex nonlinear problems and has been

successfully applied to predict the material properties [32 , 35–40] . 

Several attempts have been made to alleviate the

computationally-expensive situation in properties solving [41–

46] . Vigor et al. [46] implemented the tabulation-based and

correlated dynamic evaluation (CDE) methods to the numerical

simulation of supercritical mixing between liquid oxygen and

gaseous methane flow around a splitter-plate. Milan et al. [41] ex-

tended the above two methods to the simulation of supercritical

combustion in their later study. Though multi-dimensional ho-

mogeneous tabulation method is more straightforward, faster,

and effective compared with the solving of EOS equations, the

large table size and the growing memory requirement limit its

application in CFD. With the rapid development of deep learn-

ing techniques, some researches have successfully replaced the
ulti-dimensional and memory-intensive tabulation method by

fficient neural networks [42–44] . Owoyele et al. [43] investigated

he applicability of ANNs to replace the tabulated flamelets and

elated approaches, whose low memory requirement and low

omputational cost have been proved by modeling the methyl

ecanoate combustion in a compression ignition engine. Recently,

ilan et al. [42] used the Soave-Redlich-Kwong equation of state

nd a deep feedforward neural network to estimate the real-fluid

hermophysical properties, which is proved to be accurate yet

fficient in the LES modeling of supercritical turbulent mixing in a

iquid rocket engine. 

In this study, a BP-ANN model with three hidden layers will

e used to estimate the fluid properties of supercritical kerosene,

hich includes the equation of state, the thermodynamic and

ransport properties, and the fluid fraction, in replacement of the

omputationally-expansive ECS method. A mapping between the

hermochemical states and the fluid properties of kerosene will be

onstructed by ANN to improve the calculation efficiency. The de-

eloped ANN structure includes two inputs and seven output pa-

ameters. In this study, the pressure ( p ) and temperature ( T ) are

hosen as the two input quantities, and the output parameters are

ensity ( ρ , g/cm 

3 ), sound speed ( a , m/s), viscosity ( μ, Pa ∗s ), ther-

al conductivity (k, W/m 

∗K), specific heat at constant pressure ( C p ,

/g ∗K), specific heat ratio ( γ ) and Prandtl number ( P r ). According to

he working conditions of the cooling channels of hypersonic ve-

icles, the training databases were generated by the ECS method

ith the temperature range from 300 K to 10 0 0 K, and the pres-

ure range from 2.5 MPa to 6.0 MPa. Three ANN training databases

re built respectively for the aforementioned three kerosene surro-

ate models, i.e., Fan’s three-component model [17] , Cheng’s five-

omponent model [18] and Zhong’s ten-component model [19] .

he accuracy and efficiency of the developed ANN model will be

alidated against the exact ECS results. The performance of the de-

eloped ANN model will be further analyzed through coupling into

he CFD modelings. 

. ANN model and its training process in OpenFOAM 

.1. Algorithm of BP-ANN 

As shown in Fig. 1 , a typical multilayer BP-ANN architecture

sually consists of three main parts: an input layer, some hid-

en layers, and an output layer. Each layer is composed of single

eurons operating in parallel. The input layer is used to load the

nown parameters X, which directly determine the output results,

uch as pressure p and temperature T in this study. The hidden

ayer is set to accommodate all the known information and build a

onlinear relationship between the input parameters and the out-

ut results. The output layer is utilized to resolve the unknown

esults Y from the hidden layer. Once the number of hidden layers

nd the number of neurons in each hidden layer were determined,

he connection weights between the neurons were adjusted by in-

ormation transmitting forward and errors transferring reversely

uring the process of training. Any errors made by the network

uring training get sent backward through it in an attempt to cor-

ect it and teach the network what is right and wrong, as schemat-

cally illustrated in Figs. 1 and 2 . During the learning process, the

rror is estimated by the mean squared error (MSE) defined as, 

SE = 

1 

n 

n ∑ 

i =1 

( y i − t i ) 
2 (1)

here y i , n is the network output value and the total number re-

pectively, t i is the target value. Smaller MSE values indicate better

NN performance. When the MSE reaches a minimum, or the steps

f training reach the predefined maximum, the network training is

onsidered complete, and the weights are stored. 
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Fig. 1. Schematic diagram of three-layer BP-ANN. 

Fig. 2. Information processing in a single neural-network neuron. 
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Fig. 2 illustrates how signals are processed through a single

euron. First, the neuron receives weighted activations of other

eurons through its incoming connections and added up. The sum-

ation is then passed through an activation function f , the out-

ome α being the new activation, which is multiplied by the spe-

ific weight and transferred to the next layer’s neurons. The ac-

ivation function calculates the output of a deep learning model

hrough a nonlinear transformation on the input. The activation

unction determines the accuracy and computational efficiency of

 trained model. During the process of backpropagation, the gra-

ients are supplied along with the error to update the weights

nd biases, so the activation functions should be differentiable and

onotonic. The logistic sigmoid, hyperbolic tangent (tanh), and

ectified linear unit (ReLU) are the standard nonlinear activation

unctions in deep learning, with the sigmoid function most fre-

uently used. Both the sigmoid and tanh functions have S-Shaped

urves. The only difference is that the outputs of the sigmoid func-

ion lie between 0 and 1, while the outputs of the tanh function

ie between 1 and −1. The learning rate using the tanh function

ill be lower because of the wide-spanning range of 2 compared

ith 1 in the sigmoid function. The output of the tanh function

s zero centered, which makes the optimization easier since the

eurons in the later layers of the network receive inputs that are

ero-centered. The ReLU function can significantly accelerate the

onvergence of stochastic gradient descent compared with the sig-

oid and tanh activation functions. However, the ReLU function

as a vital drawback called “dying neuron”, which will stop re-

ponding if it is not activated initially. The sigmoid function is dif-

erentiable across its entire domain and is easy to compute with

 faster convergence rate. Previous studies have shown that when

 network has been successfully trained, different activation func-
 i  
ion has approximately the same effect. In addition to the selection

f an activation function, the training algorithms, network sizing,

nd learning parameters are more vital for the proper training of

he network. In this study, a logistic sigmoid activation function is

sed: 

f ( z ) = 

1 

1 + e −z n 
(2) 

here z n = 

∑ n 
j=1 x j W i j is the weighted sum of the input activa-

ions for each neuron. The comparison of the training rate using

ifferent activation functions merits future study. 

During the backpropagation, the weights were updated accord-

ng to the gradient descent algorithm, which has been detailedly

ntroduced in the literature [47–49] . The change of weight W ij in

he connection neuron from i to j can be written as 

W i j = −l r 
∂MSE 

∂ W i j 

(3) 

ere an appropriate learning rate l r plays an important role in the

raining, since the abrupt change caused by a large l r may miss the

inimum while the low learning rate caused by a small l r slows

own the training. In order to minimize the error function MSE,

 ij needs to be decreased when 

∂MSE 
∂ W i j 

> 0 , and increased when

∂MSE 
∂ W i j 

< 0 . In order to avoid oscillation inside the network such as

lternating connection weights, and to improve the convergence

ate, an adaptive learning rate was adopted [50] . Similar to a ball

olling down a mountain, the current rolling speed is determined

ot only by the local slope of the mountain but also by its own

nertia (momentum). Similarly, the change of weight W ij at time
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Fig. 3. Invocation process in the BP-ANN library. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Training database for each surrogate model of kerosene. 

Kerosene P (MPa) T (K) �T (K) Volume 

3,5,10-component 2.5–6 300–600 5 49,086 

600–700 0.1 

700–1000 1 
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( t + 1) is �W i j ( t + 1 ) , written as 

�W i j ( t + 1 ) = ( m − 1 ) l r 
∂MSE 

∂ W i j 

+ m �W i j ( t ) (4)

where m is the momentum varying in the range of[0, 1]. Momen-

tum is not only a technique to keep the weight changing in the

direction of the previous step to speed up the convergence but

also has the benefit of avoiding the abrupt changing in the oppo-

site direction once the direction reverses. Because the influence of

the momentum in the weight update can become too large, a mo-

mentum adaptation technique was also developed to use in com-

bination with the learning rate adaptation [51] . 

2.2. Coupled BP-ANN into OpenFOAM 

To implement the BP-ANN in the open-source platforms Open-

FOAM [3] , an ANN library was established, which could be directly

invoked in CFD applications. The ANN library has two main func-

tionalities. The first functionality of the library is the training of

the weight matrices W , which is usually finished before the calcu-

lations. The training may be invoked during the calculations only

when there is an update on the thermophysical properties. The

adaptive learning rate and multiple hidden layers are implemented

in the library to accelerate the training. The second functionality

is outputting the required results by invoking the trained artificial

neural network with trained weight matrices. Such a mechanism

works like a “black box”, where no direct or explicit relations have

ever been established between the input parameters and the out-

put results. The basic process of this procedure is shown in Fig. 3 . 

2.3. Databases preparation and training process 

Usually, the state curves of different fluids are quite close when

the state variables are dimensionalized by critical parameters [17] .

Based on that fact, the Corresponding State (CS) principle [17] pre-

dicts unknown properties from the known properties by trans-

formed relations. However, only a small number of fluids strictly

follow the ECS principle. The variation of molecule shapes and the

resulting dipole moment are the main sources of errors. To remedy

this, an acentric factor “ω” and some other correlation parameters

are included in the Extended Corresponding State (ECS) principle.

The acentric factor can be written as: 

ω = − log 

(
P s 

P c 

)
− 1 . 0 (5)

where P s is the saturated pressure at T / T c = 0 . 7 . The correlation

coefficient can be written as: 

h x = ( ρc 
r / ρ

c ) ϕ ( T / T c , ρ/ ρc , ω ) 

f x = ( T c /T c r ) θ ( T / T c , ρ/ ρc , ω ) (6)
here the subscript r represents the parameters of the reference

uid, the script c represents the critical state. The shape factors

and θ can be solved by the relationship between the saturated

ensity and the saturated pressure of the two fluids. For multicom-

onent mixtures, a hypothetical pure fluid can be approximated,

nd its properties can be obtained from the ECS laws of the corre-

ponding components by certain mixing rules [52 , 53] . 

It is well known that a reliable data source is a necessary pre-

equisite to the successful development of ANN models. This work

ims to train three accurate yet efficient ANN models to predict

he properties of China RP-3 kerosene under supercritical pres-

ures. Considering the difficulty of obtaining sufficient and reli-

ble experimental data for the supercritical kerosene, all the train-

ng data are established from the ECS calculations in this study,

ith the parameters confined between 2.5 MPa ≤P ≤ 6 MPa and

00K ≤T ≤ 1000 K. Insufficient training data source will reduce the

ccuracy of the prediction by the BP-ANN, while excessive training

ata source will also slow down the training process of the BP-

NN. Through trial and error, the most suitable training database

or each surrogate model is determined and listed in Table 1 . The

ncrement for pressure �P is 0.1 MPa, while the increment for

emperature �T varies from 0.1 K to 5 K for different temperature

anges. The total number of data points for each training database

s 49,086. 

Theoretically, ANN has no restriction on its training data de-

pite the fact that the order of magnitude of the original sample

ay vary greatly. However, to achieve a higher training accuracy,

t’s better to put the training data source at the same order before

ach training process. Therefore, all the input and output variables

re normalized to the range of[0, 1] by 

 ′ = 

X − X min 

X max − X min 

(7)

here X is the original value, X 

′ is the normalized value, and X max 

nd X min are the maximum and minimum of X, respectively. The

atabase is divided by the K Fold cross-validation method, which

an provide sufficient data for the model training as well as valida-

ion. In the cross-validation, each training database was equally di-

ided into ten subsets after randomly disrupting the order, and one

f the ten subsets was used as the validation set while the other

ine subsets were put together to form a training set. Both train-

ng and validation errors are monitored. In addition to the training

atabase, an additional data set is generated by the ECS method to
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Table 2 

The influence of neurons in each hidden layer and maximum training epochs. 

Kerosene Neurons Epochs TrainingSetMSE ValidationSetMSE 

3-component (30,30,30) 

(30,30,30) 

(30,30,30) 

(30,30,30) 

(30,30,30) 

5,000 1.255e −06 1.260e-03 

10,000 3.661e −07 1.043e-03 

50,000 1.249e −07 5.747e-04 

100,000 7.359e −08 4.109e-04 

300,000 3.752e −08 2.834e-04 

3-component (50,50,50) 300,000 3.683e −08 2.601e-04 

5-component = (30,30,30) 

(30,30,30) 

(30,30,30) 

(30,30,30) 

(50,50,50) 

(50,50,50) 

5,000 1.586e −05 2.158e-03 

50,000 1.851e −07 6.784e-04 

100,000 1.201e −07 5.886e-04 

300,000 1.163e −07 5.683e-04 

100,000 1.086e −07 5.735e-04 

300,000 6.523e −08 4.984e-04 

10-component (50,50,50) 

(50,50,50) 

100,000 6.416e −08 5.060e-04 

300,000 3.669e −08 3.813e-04 

Table 3 

The best ANN structures for each surrogate model of China RP-3 kerosene. 

Kerosene Neurons Epochs TrainingSetMSE ValidationSetMSE 

3-component (30,30,30) 300,000 3.752e −08 2.834e-04 

5-component (50,50,50) 300,000 6.523e −08 4.984e-04 

10-component (50,50,50) 300,000 3.669e −08 3.813e-04 
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ssess the overall accuracy of the trained ANN models as well as

o compare their performance. 

Another important aspect of the development of ANN models is

he network structure, including the numbers of neurons of the in-

ut and output layers, the number of hidden layers, and the num-

er of neurons in each layer. The numbers of neurons in the input

nd output layers are fixed values, usually determined by the ex-

mined problem. However, the number of hidden layers and the

umber of neurons in each layer is still an open question for dif-

dent problems. Usually, the more hidden layers and neurons in

he ANN model, the better the ANN model can capture the non-

inear relationship between the input and the output, whereas the

ore difficult and slower to train it. By trial and error, it is found

hat an ANN model with three hidden layers and 30–50 neurons in

ach layer can accurately predict the thermophysical properties of

erosene under supercritical pressures without introducing exces-

ive computational burden. After fixing the structure of the ANN

odel, the results also change obviously with the total training

pochs. It is usually observed that training error decreases steadily

ver time, but the validation set error may begin to rise again,

hich is called overfitting. To avoid overfitting and make sure that

he final trained model performs well not just on the training data

ut also on new inputs, a regularization strategy of early stopping

as adopted in this study. Early stopping is an unobtrusive form of

egularization because it requires nearly no change in the underly-

ng training procedure, the objective function, and the set of allow-

ble parameter values. It is also the reason why the MSE equation

 Eq. (1) ) doesn’t contain an explicit regularization term. The early

topping strategy works by monitoring the validation set error to

erminate the trajectory at a point with the lowest validation set

rror. In this view, the number of training steps is just another hy-
Table 4 

The randomly chosen five set samples for each surro

Kerosene P (MPa) 

3-component 2.55, 3.17, 3.76, 4.84, 5.91 

5-component 2.62, 3.26, 3.89, 4.31, 5.87 

10-component 2.53, 3.38, 3.68, 4.72, 5.79 
erparameter. Usually, when the training epochs reach a certain

umber, the validation set error (ValidationSetMSE) will reach a

mall value and drops negligibly later. In order to choose the most

ppropriate number of neurons in each hidden layer and the suit-

ble total training epochs considering both the training efficiency

nd accuracy, comparisons for each surrogate model of China RP-3

erosene were shown in Table 2 . 

Usually, the smaller the mean squared errors (MSEs) of training

nd validation are, the better result the ANN model can predict. By

nalyzing the result of the test subset, it is found that the orders

f magnitude for the MSE of the training subset (abbreviated as

rainingSetMSE) and the validation subset (abbreviated as valida-

ionSetMSE) should be as small as 10 −8 and 10 −4 respectively. As

een from Table 2 , both the training and validation MSEs of the (50

0 50) case for the 3-component kerosene are only slightly smaller

han the (30 30 30) ones, while the training cost of the (50,50,50)

ase is almost three times that of the (30,30,30) one. Since a more

omplex ANN structure would result in lower prediction efficiency,

he (30 30 30) case is determined to be the best ANN structure for

he 3-component kerosene. However, note that the accuracy of the

NN predictions will always increase with the increasing of neuron

umbers in each hidden layer, assuming enough training. As seen

rom the training results for the 3- and 5-component surrogate

odels, the ANN model with neurons of (50 50 50) in each hid-

en layer produces smaller traing and validation errors compared

ith the (30, 30, 30) cases, after 30 0,0 0 0-epoch training. Usually,

he more complex surrogate model requires a more complex ANN

tructure. For the 10-component kerosene surrogate, only the ANN

tructure with (50, 50, 50) neurons can produce a satisfatory pre-

iction. The best ANN structures and training epochs for each sur-

ogate model of China RP-3 kerosene are listed in Table 3 . 
gate model of kerosene. 

T (K) Volume 

300–1000, �T = 1 701 
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Fig. 4. The comparison between ANN prediction and ECS calculation for the three-component surrogate model of China RP-3 kerosene. 
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3. Results and discussion of the ANN model to predict 

kerosene’ properties 

In the above sections, three well trained ANN models have been

successfully trained for the prediction of the properties of China

RP-3 kerosene under supercritical pressures. The accuracy and ef-

ficiency of the models will be evaluated by comparing the ANN

predictions with the direct ECS calculations. 

3.1. Accuracy validation 

To evaluate the errors between the predicted results by the

trained ANN models and the directly calculated results by the ECS
ethod, five test subsets for each surrogate model of China RP-

 kerosene were randomly selected. The to be compared proper-

ies are calculated by ANN and ECS respectively for density, sound

peed, viscosity, thermal conductivity, specific heat at constant

ressure, and Prandtl number. As mentioned before, the five ran-

omly chosen samples have not been used in the previous training.

able 4 summarizes the five test subsets for each surrogate model

f kerosene. 

The ANN predictions for all the properties were compared with

CS calculations in Figs. 4–6 . It can be seen that the ANN pre-

ictions match well with the ECS calculations for the three surro-

ate models of China RP-3 kerosene, even near the critical point at

.4 MPa. Under supercritical pressures ( ≥ 2.4 MPa), when the fuel
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Fig. 5. The comparison between ANN prediction and ECS calculation for the five-component surrogate model of China RP-3 kerosene. 
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1  

t

emperature exceeds the pseudo-critical temperature, which varies

lightly for different surrogate models, the kerosene in the liq-

id state will directly transform into the supercritical status with-

ut boiling. Near the pseudo-critical temperature region (approxi-

ately 660–680 K), the properties change dramatically with tem-

erature, especially for Cp and Pr. The ANN models well reproduce

he drastic property changes and peak values. 

Fig. 7 shows the correlation coefficient (R) between the ANN

redictions and the ECS calculations near the critical region, where

arger errors usually occur due to the drastic property changes. The

CS calculations and the ANN predictions match well with each

ther and are almost identical. It can be seen that all the values

f R are larger than 0.99 and approach unity for each surrogate
odel. The current accuracy of the trained ANN models is accept-

ble for further implementation into CFD modelings. 

.2. Global error analysis 

As shown in Table 5 , in addition to the training and validation

atabases that have been used to develop the ANN models, a new

est subset with the size of 497,071 for each surrogate model is

onstructed to conduct a comprehensive error analysis in the full

ressure range of 2.5–6.0 MPa and the temperature range of 300–

0 0 0 K, in order to validate further the reliability and accuracy of

he trained BP-ANN models. 
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Fig. 6. The comparison between ANN prediction and ECS calculation for the ten-component surrogate model of China RP-3 kerosene. 

Table 5 

The data used to conduct error analysis. 

Surrogate models P (MPa) T (K) The volume of each surrogate mode 

3-, 5-, 10-component 2.5–6.0, �P = 0.05 300–1000, �T = 0.01 497,071 

 

 

T  

t  

e  

c  

t  
The relative error of each property between the ANN prediction

and the ECS calculation is defined as, 

Er ror = 

∣∣∣∣ANN − Super T rapp 

Super T rapp 

∣∣∣∣ ∗ 100% (8)
he relative error of each property and its probability distribu-

ion in the ranges of 0 < error ≤ 0.1%, 0.1% < error ≤ 0.2%, 0.2% <

rror ≤ 0.5%, and error > 0.5% are shown in Figs. 6–8 . Moreover, it

an be seen that among the three surrogate models of kerosene,

he maximum relative error for all the properties is smaller than
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Fig. 7. The Correlation between the ECS and ANN predictions for density and Cp. a) 3-component, P = 2.55 MPa. b) 5-component, P = 2.62 MPa. c) 10-component, 

P = 2.53 MPa. 

3  

a  

o  

1  

n  

p  

(  

a

 

F  
% within the targeted pressure range of 2.5–6.0 MPa and temper-

ture range of 30 0–10 0 0 K. Especially within the pressure range

f 2.7–6.0 MPa, the maximum relative error is even lower than

% for most of the properties. The large errors mainly exist in a

arrow pressure range of 2.5–2.65 MPa, probably due to that the
roperties dramatically change when approaching the critical point

2.4 MPa). Most of the relative errors are smaller than 0.1%, and the

mount of relative errors exceeding 0.5% is far less than 1%. 

Comparing the results of the three trained ANN models from

igs. 7 to 9 , it can be found that the proportion with relative er-
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Fig. 8. The relative error and its distribution for the three-component surrogate model of kerosene, (a) -(b) in 2.5–6.0 MPa, (c)-(d) in 2.5–2.6 MPa, (e)-(f) in 2.7–6.0 MPa. 

 

 

 

 

3

 

E  

t  
rors larger than 0.5% increases with the complexity of the surro-

gate model. The same observation can be found from the MSE for

each surrogate model with the error analysis database. As shown

in Table 6 and Fig. 10 , the MSE increases with the component

number in the surrogate model. 
.3. Efficiency analysis 

The computational efficiency of the ANN predictions and the

CS calculations are analyzed in this section. As shown in Table 7 ,

hree subsets were selected for each surrogate model, including



B. Li, Y. Lee and W. Yao et al. / Computers and Fluids 209 (2020) 104665 11 

Fig. 9. The relative error and its distribution for the five-component surrogate model of kerosene, (a) -(b) in 2.5–6.0 MPa, (c)-(d) in 2.5–2.6 MPa, (e)-(f) in 2.7–6.0 MPa. 

Table 6 

The testing MSE for each surrogate model of China RP-3 

kerosene. 

Kerosene MSE 

3-component 1.98197e −006 

5-component 8.97799e −006 

10-component 1.57077e −005 

1  

2  

p  

t  

t  

m  

A  

F  
) the points in the full range of 2.5–6.0 MPa and 30 0–10 0 0 K,

) the points away from the pseudo-critical pressure but near the

seudo-critical temperature, i.e., 3–4 MPa and 640–680 K, and 3)

he points near the pseudo-critical pressure and the pseudo-critical

emperature, i.e., 2.5–2.6 MPa and 640–680 K. For each surrogate

odel of China RP-3 kerosene, the computational times for the

NN predictions and the ECS calculations are compared in Fig. 11 .

rom the comparisons in Fig. 11 , it can be seen that a trained ANN
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Fig. 10. The relative error and its distribution for the ten-component surrogate model of kerosene, (a) -(b) in 2.5–6.0 MPa, (c)-(d) in 2.5–2.6 MPa, (e)-(f) in 2.7–6.0 MPa. 

 

 

 

 

 

4

4

 

model can predict the fluid properties of China RP-3 kerosene at

a speed of several orders of magnitude higher than the ECS cal-

culation, especially near the critical point. As the surrogate model

becomes more complicated, the ECS calculation usually takes more

time; thus, a higher speedup ratio can be achieved by the ANN
model. w  
. Performance of the developed ANN model coupled with CFD 

.1. Case setup 

To verify the performance of the trained ANN models coupled

ith the CFD modeling, a jet flow with supercritical China RP-3
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Fig. 11. Efficiency comparison between ANN prediction and ECS calculation. 

Fig. 12. (a) schematic of the computational domain including the nozzle, (b) the computational grids. 

Table 7 

The data used to error analysis. 

Variable Zone1 Zone2 Zone3 

P (MPa) 2.5 ≤ P ≤ 6.0 3.0 ≤ P ≤ 4.0 2.5 ≤ P ≤ 2.6 

T (K) 300 ≤T ≤ 1000 640 ≤T ≤ 680 640 ≤T ≤ 680 

k  

c  

v  

o  

p  

d  

 

j  

h  

i  

s  

T  

t  
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a

 

t  

t  

g  

t  

T  

i  

c  
erosene injected into quiescent air is numerically studied. The

ase has been experimentally studied by Yang et al. [54] by in-

estigating the influence of injection parameters on the structure

f the Mach disk. In the CFD modeling, the thermal and transport

roperties of kerosene are estimated by the ECS method and the

eveloped ANN model is based on the 3-component surrogate [17] .

As experimentally studied by Yang et al. [54] , the supersonic

et is issued from a convergent-divergent nozzle with 28.8 mm in
eight and 3.16 mm in the exit diameter, as schematically shown

n Fig. 12 (a). The hexahedral computational domain has dimen-

ions of 258 ×86 ×86 mm in the x, y, and z directions, respectively.

o evaluate the grid sensitivity, four sets of unstructured mesh are

ested respectively with 6.19, 14.24, 21.42, and 35.17 million cells.

n all the mesh sets, cells along the main jet shear layer are refined

s shown in Fig. 12 (b). 

The kerosene is initially injected at supercritical status with a

emperature of 750 K and a pressure of 2.9 Mpa, which are larger

han the critical values. The quiescent air is the mixture of nitro-

en in 76.699 mass% and oxygen in 23.301 mass%, whose initial

emperature, pressure, density, and velocity are all uniform, i.e.,

 ∞ 

= 298 K, P ∞ 

= 101,325 Pa, ρ∞ 

= 1.17 kg �m 

3 , U ∞ 

= 0. The

nflow at the nozzle inlet is subsonic; accordingly, the stagnation

ondition is employed for the temperature and the pressure, while
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Fig. 13. Grid sensitivity of the time-averaged temperature and density for the jet flow, data obtained from the central axis for different mesh resolutions. 

Fig. 14. Comparison of the Mach disk structure between experiment and current LES’s simulations nearing the nozzle exit by ECS and ANN respectively. 

Fig. 15. The time-averaged contours of velocity and, which were simulated by ANN and ECS respectively: (a) ECS, (b) ANN. 
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a zero-gradient condition is used for velocity. For the outlet and

the lateral boundaries, the zero-gradient condition is applied for

the outflow flux, while the ambient conditions are specified should

backflow occur. No-slip and adiabatic conditions are used for all

the walls. 

Large Eddy Simulation (LES) in this study is conducted by an

in-house developed Finite Volume Method (FVM) based compress-

ible flow solver AstroFoam [55] , which is density-based and ex-

tended from the rhoCentralFOAM solver distributed with the open-

source CFD package OpenFOAM [56] . AstroFoam has been success-

fully applied in many previous studies [55 , 57–59] . The subgrid-

scale (SGS) turbulence effect is closed by the dynamic subgrid ki-
etic energy model (DKEM) [60] . The inviscid convection is solved

y the semidiscrete K-T scheme [61] . The scale-selective discretiza-

ion (SSD) scheme [62] is used to reconstruct the primitive values

t faces with a third-order spatial accuracy. Under the temperature

lose to the room temperature (298 K) and standard atmospheric

ressure, the real-gas behavior of nitrogen and oxygen is close to

he ideal gas. Therefore, the property of nitrogen and oxygen is

redicted by the ideal gas law to reduce the computational cost.

otably, the real-gas effect of kerosene is accounted for by the ECS

rinciple and the ANN method. The flow-through time (FTT) for

he jet washing out the computational domain is about 1 ms, and

he data-sampling duration is 10 FTT = 0.01 s. 
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Fig. 16. The magnitude of instantaneous vorticity field | �| = | ∇ × �
 V | at the plane of z = 0, which were simulated by ANN and ECS respectively: (a) ECS, (b) ANN. 

Fig. 17. The three-dimensional instantaneous isosurfaces of the Q-criterion (Qc = 1.6 × 10 6 s − 2 ) colored by time-averaged temperature, a) ECS, b) ANN. 
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Table 8 

The comparison of Mach disk structure (mm). 

Kerosene Experiment ECS ANN 

H m 8.10 9.76 9.82 

D m 4.59 4.67 4.74 
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p  

s  

(  

v  

a  
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T  

a  

a  

i

 

o  
.2. Accuracy analysis of ANN coupled with CFD 

A grid convergence study based on 6.19, 14.24, 21.42, and 35.17

illion cells is conducted to establish the fidelity of the LES re-

ults. The mean axial temperature and density profiles in Fig. 13 (a)

nd (b) are visually similar for the mesh sets with cells more than

4.24 million. Especially for the density profiles, the results with

1.42 and more million cells have indistinguishable discrepancies.

or the temperature profiles, the discrepancies between the results

ased on the mesh with 14.24 million cells and the finer meshes

all within 5.1%, while the maximum error between the results

ased on the 35.17 million cells and the 6.19 million cells is 10.01%.

n the following analysis, the results based on the 35.17 million

ells are used. 

Fig. 14 compares the structure of the Mach disk between the

chlieren image and the LES results near the nozzle exit. As sum-

arized in Table 8 , the predicted height H m 

and width D m 

of the

ach disk by the ANN model and the ECS principle are almost

dentical, with the relative errors of 0.61% and 1.4% respectively

or H m 

and D m 

. Compared with the experiment, the height of the

ach disk predicted by both the ANN model and the ECS principle

s slightly larger with a relative error of 20%, while the predicted

iameter of the Mach disk agrees well. (See Fig. 14 ). 
As compared in Fig. 15 , the time-averaged contours of velocity

redicted by ANN and ECS are visually similar. Both the maximum

enetration depth of the jet is around 2.5D for (a) and (b). The po-

itions of the contour lines at 600 (m/s), 450 (m/s), 260 (m/s), 200

m/s) are similar. Fig. 16 shows two instantaneous images of the

orticity magnitude for the jet flow, which were simulated by ECS

nd ANN, respectively. As can be seen, the flow remains laminar,

nd there is little difference in the region of x < 13.5D predicted

y ECS and ANN. Further downstream, these coherent vortex rings

tructures rollup because of the instability of the jet shear layer.

he initial position where instability occurs is 15D and 14D for ECS

nd ANN. Though the predicted locations of large-scale vortexes

re slightly different, the development process and the degree of

nstability of vortexes are very similar for ECS and ANN. 

Fig. 17 shows the three-dimensional instantaneous isosurfaces

f the Q-criterion, defined as Qc = − 1 
2 ( 
ih 
i j − S i j S i j ) with S and
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Fig. 18. The comparison between the ANN prediction and the ECS calculation for time-averaged density and temperature on (a)-(b) the axis, and the radial at (c)-(d) x = 8 

D, (e)-(f) x = 10 D, (g)-(h) x = 15 D, and (i)-(j) x = 20 D Computational efficiency analysis. 
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Fig. 19. Speedup percentage of ANN model with the mesh size. 
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the strain rate tensor and rotation rate tensor, respectively. Ring

ortices are initially formed at the jet root due to the Kelvin-

elmholtz (K-H) instability and gradually transform into 
-shape

ortices with legs attached to the jet core when moving toward

he downstream direction. The vortex stretching term mainly oc-

urs along the outer and inner shear layers, where the sizeable co-

erent 
 vortices are finally broken into smaller vortex structures.

he heights of the jet potential core indicated by the initial broken

f the 
 vortices are both around x = 32D in the ANN and ECS

redictions. 

Fig. 18 compares the time-averaged axial and radial profiles of

ensity and temperature between the ANN predictions and the ECS

alculations. As can be seen, the ANN predictions agree well with

he ECS calculations. Slightly larger deviations occur for x = 20D,

robably because the larger jet instability in the downstream mag-

ifies the difference. The average errors are 1.98% and 1.79%, while

he maximum errors are 8.38% and 9.27% respectively for the den-

ity and the temperature. The accuracy of the ANN model is overall

cceptable for the small average discrepancies. 

To accurately compare the efficiency of the ANN model, all the

odeling of the supercritical jet flow was conducted on the same

arallel scale using 300 processors. The time spent in the paral-

el communicaiton has been included in the computation time. As

hown in Fig. 19 , the speedup ratios of the ANN model are 8%,

0.15%, 26.31%, and 35.52% for the mesh sizes of 6.19 million, 14.24

illion, 21.42 million, and 35.17 million. Generally, the computa-

ion efficiency is improved with the growth of the mesh size. For

he ECS case and the ANN case based on 35.17 million cells, the

PU time for a single time step is 45.60 s and 29.40 s, and a total

f 120,0 0 0 and 77,40 0 CPU hours are respectively required to fin-

sh the same flow-through times (FTTs). Though the training proce-

ure is time-consuming, the developed ANN model has exhibited

reat advantage in computational efficiency, especially for large-

cale modeling. 

Comparing Figs. 11 and 19 , it can be seen that the speedup ratio

f ANN is far smaller when it is coupled with CFD. This is because,

) the modeling of flow and turbulence takes additional cost; 2)

he application of the real-gas calculation is restricted to the fuel

tream, while ideal gas law is applied for the rest flow region. De-

pite that limitation, a considerable improvement in computational

fficiency has already been achieved by using the developed ANN

odel Fig. 10 . 

. Conclusion 

In this study, efficient yet accurate ANN models were developed

o predict the fluid properties of China RP-3 kerosene at supercrit-
cal pressure, making CFD modeling taken into account of real-gas

ffects computationally-affordable. Three ANN models for different

erosene surrogate models have been successfully trained by us-

ng the backpropagation (BP) algorithm, adaptive learning rate, and

daptive momentum method. The training database for real gas

roperties is calculated based on the principle of Extended Cor-

esponding State (ECS) for each kerosene surrogate model. For all

he surrogate models, the largest Training MSE (lowest root mean

quare error) and Validation MSE are as small as 6.52347e −08 and

.9839e-04. 

A comprehensive error analysis between ANN prediction and

CS calculation in the full range has been conducted. Comparisons

or five randomly-selected sample sets show that the ANN predic-

ions agree well with the ECS calculations even at the points ap-

roaching the critical pressure and the critical temperature, where

sually drastic property changes occur. The correlation coefficients

R) between the ANN prediction and ECS calculation at lower pres-

ure are all larger than 0.99 and approaching to the perfect fitting

tatus with R = 1. The largest relative error is lower than 3%, the

roportion of the relative errors below 0.1% is higher than 80%, and

he proportion of the relative errors above 0.5% is no more than 1%.

oth the number of hidden layers and the neuron number in each

idden layer increase with the complicity of the surrogate model. 

The computational efficiency of the ANN model and the ECS

ethod was compared. The trained ANN model predicts the fluid

roperties of kerosene at a speed of several orders (arriving at

0 4 ) higher than the ECS calculation, especially near the critical

oint. The trained ANN model was further coupled with the CFD

odeling of a kerosene jet to validate its performance. The ANN

odel shows high similarity compared with the ECS calculations.

he computational efficiency increases with the mesh size, and a

igh speedup ratio above 35.52% was achieved at a 35.17-million-

ell mesh. 

This study successfully developed and validated the accuracy

nd computational efficiency of the ANN method, which shows

he feasibility of the ANN model in replacing the computationally-

ostly real-gas property calculation. The training and CFD-coupling

ramework for kerosene in this study can be further extended for

he property evaluations of other materials. 
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