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ABSTRACT: At present, most researches on gas−liquid two-phase
flow use a power-law fluid model. However, with the development of
unconventional petroleum resources and the restarting of heavy oil, the
fluid showed strong yield characteristics. The power-law constitutive
will not be able to express the yield-pseudoplastic fluid rheological
properties. In order to make the study applicable to a larger range of
shear rates, this study used the Herschel−Bulkley fluid model to discuss
the gas−liquid flow characteristics. Based on the Herschel-Bulkley fluid
constitutive, a two-fluid model, combined with dimensionless and
iterative calculation methods, was used to theoretically derive the
prediction model of liquid holdup and pressure drop for gas−liquid
stratified flow. The effects of non-Newtonian fluid rheological
parameters, flow conditions, and pipeline geometry on Herschel−
Bulkley fluid and gas stratified flow were further analyzed. The results
show that the power-law index n and the yield stress τ0 (characterizing the rheological characteristics of the liquid phase) have
significant effects on the gas−liquid two-phase stratified flow. Specifically, the enhanced liquid yield and shear thinning
characteristics will lead to an increase in liquid holdup and a decrease in pressure drop. Comparing with the experimental data, the
calculation model proposed in this work has a good prediction effect and provides new insights into the flow behavior of gas and
waxy heavy oil with yield stress.

1. INTRODUCTION

In the flow process of multiphase flow pipelines, there are
many different flow patterns affected by factors such as phase
materials and flow conditions. Among them, stratified flow is
common in horizontal or inclined multiphase flow systems
under the gravity field. Moreover, the flow information of
stratified flows can be used as the initial conditions for flow
pattern transition in the flow process.1 Based on this, the flow
characteristics of different flow patterns can be further studied.
Stratified flow can be divided into gas−liquid stratified flow,

gas-mixture liquids stratified flow, and gas−liquid−solid
stratified flow according to the different phases. The research
of Lockhart and Martinelli2 was the first to study the gas−
liquid flow in a horizontal pipe, introduced the Lockhart−
Martinelli parameter (X2), and established a general equation
for predicting the liquid holdup and pressure drop at the
interface. A one-dimensional two-fluid model was established,
and it is still widely used in the research of the fully developed
steady state of multiphase flow.3 Gas-mixture liquid flow can
generally be considered as a special two-phase flow of gas and
non-Newtonian fluids. The study of Zhang and Xu4 indicates
that oil−water mixtures have shear thinning rheological
properties of non-Newtonian fluids through rheological test.
The flow parameters can be calculated by measuring the

apparent viscosity of the non-Newtonian fluid. Feng et al.5 and
others carried out indoor simulation experiments to study the
liquid properties of heavy oil−water and the stability of the
system, which promoted the study of liquid−liquid mixtures
flow. In addition, Cao et al.6 conducted a numerical study on
bubble movement and mass transfer characteristics in a gas-
yield fluid two-phase flow and discussed the influence of fluid
yield stress and other factors on the mass transfer rate.
In experimental research and practical applications, gas is

generally air or natural gas in stratified flow, which is a typical
Newtonian fluid, while the liquid phase, liquid−liquid mixed
phase, and liquid−solid mixed phase can be regarded as a non-
Newtonian fluid. The abovementioned multiphase stratified
flow can be summarized as Newtonian fluid and non-
Newtonian fluid two-phase flow. The constitutive relations
commonly used to characterize the rheological properties of
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such non-Newtonian fluids are as follows: power-law model,
Bingham model, and Herschel−Bulkley model. In the study of
gas−liquid stratified flow in the medium-low viscosity liquid
phase range, Newtonian and power-law fluid models are
mostly adopted. Yu and Han7 used power-law models to solve
the equation of motion in the two-phase flow process by
theoretical research and determined the velocity distribution
for the fully develop flow. In recent years, more progress has
been made in the study of Newtonian/power-law fluid two-
phase stratified flow. Some scholars used the power-law fluid
constitutive to conduct the gas−liquid stratified flow in
horizontal pipes and discussed the effect of rheology on the
stratified flow characteristics. Based on the theoretical
derivation of the two-fluid model, the dimensionless
parameters for calculating the liquid holdup, pressure drop,
drag reduction effect, and interface shear stress were obtained.
The results were extended to micro-inclined pipe conditions,
and a large number of experimental verifications were
performed.8−10 In order to research the universal applicability
of the gas/power-law fluid flow prediction model, Picchi et
al.11 extended the mechanical steady-state model of the above
study to other flow patterns and confirmed it with laboratory
simulation experiments. Picchi and Poesio12 derived equations
of a gas−liquid stratified flow and obtained the effect of liquid
phase rheology on flow through dimensionless treatment.
However, more attention needs to be paid to the complex

fluid problems brought about by technological progress. Shear
thinning fluid with yield stress plays an important role in
industrial applications. Research on such fluids is not yet
systematic, but there are some valuable studies to learn from
the work of Li et al.,13 which researched the yield stress of waxy
crude oil under different conditions. Moreover, Bingham fluid,
as a constitutive model with yield stress, has received
increasing attention since the middle of the last century.
Dean et al.14 provided a review of the Bingham fluid theory
and numerical calculation methods for the study of the
application of elastoplastic fluids in multiphase flows in recent
years. Firouzi and Hashemabadi15 used the Bingham fluid
constitutive to solve the kinematic equation of two-phase
stratified flow and found that the rheological characteristics
have a significant impact on the flow pressure drop and
velocity distribution. Recently, Picchi et al.16−18 have found the
limitations of the widely used power-law fluid model to
describe the stratified flow of gas/high-viscosity shear thinning
fluid. Therefore, an iterative algorithm based on the Carreau
model is proposed to calculate the exact solution of
Newtonian/non-Newtonian shear thinning fluid pipe flow to
correctly describe the behavior of the liquid phase at a high
shear rate and then obtained the effect of shear thinning fluid
rheology on the two-phase stratified flow.
In order to expand the research work of stratified flow of

gas/non-Newtonian fluid, this work presents theoretical

equations of the fully developed gas−liquid stratified pipe
flow in horizontal and inclined pipelines with low phase
velocities to predict liquid holdup and two-phase pressure
drop. Considering the limitations of the constitutive model,
power-law and Bingham fluid models cannot be used well for
heavy oils. Therefore, this work uses the Herschel−Bulkley
model constitutive to more accurately describe the above-
mentioned non-Newtonian fluid. The Herschel−Bulkley fluid
model can characterize the yield and pseudoplasticity of the
fluid and can describe the rheological characteristics of the
fluid under a large shear rate range. This work comprehensively
considers the effect of rheological properties on the flow
characteristics of two-phase stratified pipe flow, which can also
provide theoretical guidance in engineering applications.

2. THEORETICAL MODEL DESCRIPTION

2.1. Problem Formulation and Rheology Model for
Herschel−Bulkley Fluid. Taitel and Dukler3 derived a two-
phase horizontal stratified flow model of gas/Newtonian fluid,
which was extended by Heywood and Charles19 to non-
Newtonian liquid phase (Figure 1). It is assumed that two-
phase fluid flows in one dimension along the pipe length,
without considering the heat and mass transfer and phase
transformation and ignoring the effects of acceleration and
hydraulic gradient in the liquid phase. The momentum balance
of steady-state flow of each phase in the two-fluid model is as
follows:

A
P
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S S A g
d
d

sin 0L
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where A is the area, τ is the shear stress, S is the wetted
periphery, ρ is the density, g is the acceleration due to gravity,
and β is the angle of inclination from the horizontal. Subscripts
TP, L, G, and i refer to the two-phase, liquid phase, gas phase,
and interface, respectively. x is the axial coordinate, and P is
the static pressure. Eliminating the two-phase pressure
gradient, (dP/dx)TP, gives
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The wall shear stress and interface shear stress are defined,
respectively, as

f
u

2G G
G G

2

τ
ρ

= ·
(4)

Figure 1. Schematic diagram of stratified flow.
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where u is the average velocity and f is the friction factor in a
smooth pipe of each phase. f can be defined as

f C Re n
L L L= −

(7)

f C Re m
G G G= −

(8)

where CL = CG = 16, n = m = 1 for laminar flow, which also
appeared in the research of Xu10 and Bishop and Deshande.20

As for gas−liquid interface stress, in concurrent flow, the
volumetric flow rates of both phases are positive qL, G > 0. The
interface friction is usually approximately equal to the wall
friction of the layer with fast flow velocity |uG| > |uL|, f i = f G,
which meets the conditions of gas−liquid two-phase flow
velocity.
The Reynolds number for the gas phase as Newtonian fluid

is defined by
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For non-Newtonian materials, the rheological behavior
obeys the Herschel−Bulkley model, τ = τ0 + Kγ̇n, which can
be transformed into
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The appropriate Reynolds number is defined by eq 12
described from the work of Chhabra and Richardson:21

( )
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u

K

8
u

D

nL
L ann

2

0
8 ann

shear

ρ

τ
=

+
(12)

The Herschel−Bulkley fluid velocity distribution discussed
in this work is shown in Figure 2. There are additional flow

conditions in the Herschel−Bulkley fluid pipeline flow: plug
flow and laminar flow. This study does not discuss the above
two cases; the applicable conditions of the three cases are
derived in the Appendix section:

u
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2
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−
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D R R D2( ) (1 )shear 0 L ϕ= − = − (14)
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4
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=
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where DL and DG are the equivalent diameter for the liquid and
gas phases, respectively. τ0 and τ are the yield stress and wall
shear stress, respectively. γ̇ is the strain rate, K is the
consistency coefficient, and n is the power-law index. ΔP/L
is the liquid pressure gradient.
In the expression of Reynolds number, uann is the velocity of

liquid-velocity-gradient zone, and Dshear is the size of liquid-
velocity-gradient zone, which can be calculated by liquid
equivalent diameter. ϕ is the ratio of plug-flow zone radius, R0,
to the liquid equivalent radius, R. Q − Qplug is the liquid flow of
liquid-velocity-gradient zone, which can be calculated by
integrating the liquid phase constitutive equation:
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2.2. Problem Normalization. Stratified two-phase in-
compressible laminar flow in a pipe under steady and fully
developed conditions, when non-Newtonian fluid flows at the
bottom of a circular tube, the dimensionless momentum
equation for the stratified gas−liquid two-phase flow reads
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where X2 is the Lockhart−Martinelli parameter2 defined as

X
P x
P x

(d /d )
(d /d )

2 SL

SG
=

(18)

where dPF/dx refers to the frictional pressure gradient and
subscripts SG and SL refer to the superficial gas and liquid
phase for either phase flowing alone in the channel,
respectively.
The dimensionless parameters and variables used are

P
U K

D P x(d /d )

n

n n
SG

2 2/

(2/ ) 2
SG

2/
̃ = +

(19)

Figure 2. Shear stress and velocity distribution of Herschel−Bulkley
fluid.
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where the liquid height is assumed to be hL, whose
dimensionless number h̃L is normalized with respect to the
pipe diameter, D. The local phase velocity, ũG, L is normalized
with respect to the superficial velocity of each phase, USG, SL,
and q = USL/USG. All the dimensionless quantities with a tilde
(∼) in the above equations are functions of the dimensionless
liquid height. With the help of the mass conservation equation,
dimensionless velocity can be expressed as follows:
u u U A/G G SG 4 G

1̃ = = ̃π − and u u U A/L L SL 4 L
1̃ = = ̃π − .

2.3. Phase Holdup and Pressure Gradients.
2.3.1. Liquid Holdup. According to the definition of liquid
holdup

A L A
AAL

L Lα = =
(29)

where L is the length of the control body and A is the cross
sectional area of pipeline. The holdup can be simplified as
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2.3.2. Pressure Gradient. Eliminating the interfacial term
from the gas and liquid phase momentum equations gives
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Non-Newtonian liquid phase pressure gradient can be
calculated by the formulation proposed by Metzner and
Reed:22
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where V = USL and parameters K′ and n′ are the modified
consistency coefficient, K, and power-law index, n, respectively.
As for the Herschel−Bulkley model, K′ and n′ can be
expressed as
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Solving ϕ with the help of Bingham number, Bingham
number characterizes the ratio of yield effect to viscosity effect,
defining a function as follows:
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where parameters a, b, c, and d are only related to power-law
index, n:
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The gas frictional pressure gradient can be calculated by the
gas phase momentum equation:
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= =

(41)

The two-phase total pressure drop is composed of the
gravitational pressure drop and the frictional pressure gradient,
which can be determined by the liquid height. The
dimensionless pressure drop is given by
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(43)

2.4. Solution Algorithm. The solution of two-phase
momentum (eq 3) needs to be obtained by numerical
calculation. Its form is transformed into dimensionless (eq
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17) with only one unknown parameter (dimensionless liquid
height), which can be obtained by iterative calculation. First of
all, the given pipeline conditions, phase material properties,
and flow parameters are brought into the corresponding
equations (eqs 40 and 41) to obtain the friction pressure
gradient of each phase; then, the three redefined dimensionless
quantities are solved by eqs 19, 20, and 21 to characterize the
factors of two-phase stratified flow; subsequently, the
quantities are brought back to the momentum equation of
two-phase flow, and the dimensionless liquid level height can
be solved by iterative single variable function using eqs 30 and
42; the calculation results of liquid holdup and pressure
gradient can be obtained. The implemented iterative scheme is
shown in Figure 3.

3. RESULTS AND DISCUSSION

In order to validate the method of two-phase stratified flow,
the experimental data are compared with the results predicted
from eqs 17, 30, and 42, as shown in Figure 4. The results of
these comparisons indicate good agreement for the liquid
holdup data. The theoretical prediction model of gas−liquid
two-phase laminar liquid holdup derived in this work is
compared with the experimental results of some scholars,
including horizontal and inclined flows. Among the exper-
imental data published in the field of gas−liquid two-phase
flow, some original experimental results of Xu et al.9 and
Bishop and Deshande20 were selected.
In order to verify the theoretical model of the gas−liquid

stratified flow of Herschel−Berkeley fluid, the verification data
of the horizontal pipe flow adopted the research results of two
scholars. Among them, in the work of Xu et al.,9 the inner
diameter of the test pipeline was 25 mm, and the superficial
liquid velocity is fixed at 0.015 m/s. The experimental working
medium is a water-containing polymer, and the power-law fluid
has a fluidity index of 0.85. In the work of Bishop and
Deshande,20 the diameter of the tube is 50 mm, the superficial
velocity of the liquid phase is 0.1769 m/s, and the liquid phase
is a polymer solution with a power-law index of 0.952. The
figure shows that the prediction curve of the liquid retention
rate deduced in this work is in good agreement with the
experimental data of the two horizontal tubes. In the horizontal
stratified flow, the gas−liquid flow calculation model derived

from the Herschel−Bulkley fluid constitutive model has a good
prediction effect.
In the inclined gas/liquid two-phase pipe flow, the

experimental data of 5° and 15° downward in Xu et al.9

were selected for verification. The experimental working
condition was 50 mm inner diameter of the pipeline, the
superficial liquid velocity was 0.89 m/s, and the experimental
working fluid used a polymer aqueous solution with a

Figure 3. Block diagram of the algorithm to compute the laminar solutions.

Figure 4. Comparison of the theoretical predictions obtained for the
liquid holdup with experimental data from the works of Xu et al.
(2007) and Bishop and Deshande (1986) in (a) horizontal and (b)
inclined stratified flow regimes.
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consistency coefficient of 0.972 and a fluidity index of 0.615.
Its characteristics were similar to crude oil. The figure shows
that there is a gap between the prediction model and the
experimental data for two reasons: First, the flow pattern
formed by the higher superficial velocity of the liquid phase is
not a stable stratified flow but the middle of the transition from
the stratified flow to intermittent flow pattern. Second, in the
downward inclined pipe, the gravity effect increases with the
angle change, leading to the unstable development of the flow
pattern during the gas−liquid flow.
3.1. Liquid Holdup. As mentioned above, the dimension-

less liquid holdup can be iteratively calculated by eq 17 for
gas/non-Newtonian liquid stratified flow in an inclined pipe.
Our aim is to investigate the effect of the rheology of the non-
Newtonian liquid on the two-phase flow characteristics,
focusing mainly on the trends of integral variables (e.g., liquid
holdup and pressure gradient). The study is carried out for gas
and Herschel−Bulkley fluid two-phase stratified flow.
3.1.1. Effect of Liquid Rheological Properties. Using the

prediction model proposed in this work, four different fluid
constitutive relationships (Newtonian fluid, power-law fluid,
Bingham fluid, and Herschel−Bulkley fluid) are obtained by
changing the liquid phase characteristic parameters. It is now
assumed that the characteristic parameters of four different
constitutive fluids are shown in Table 1.

Figure 5 shows the effect of fluid type on gas−liquid two-
phase stratified flow. The Herschel−Bulkley fluid has a higher

liquid holdup than other fluid constitutive types in the theory
of gas/liquid two-phase stratified flow. The difference between
the Herschel−Bulkley fluid and the power-law fluid is that the
Herschel−Bulkley fluid has an initial yield stress, which makes
the fluid characteristics between the liquid phase and the solid
phase, and is more suitable for the characterization of ultrahigh
viscosity oil. The Herschel−Bulkley fluid is compared with the

Bingham fluid containing the original shear stress. Its
characteristic is that the Herschel−Bulkley fluid has a power-
law index that allows the fluid to exhibit more accurate fluid
properties when subjected to shear. The Herschel−Bulkley
fluid constitutive contains both power-law index and initial
dynamic shear force, which can better describe the rheological
characteristics of non-Newtonian fluids to a certain extent.
In the existing studies of gas−liquid stratified flow, the

specificity of the Herschel−Bulkley fluid constitutive is rarely
discussed. The fluid can be regarded as a power rate
constitutive with yield stress in essence. Power-law index and
yield stress are important rheological parameters describing the
characteristics of the fluid. Figure 6 presents the relationship

between the superficial gas velocity and liquid holdup for
different rheological properties of non-Newtonian liquid. As
known in the figure, when the superficial gas velocity is small,
the effect of power-law index, n, on holdup does not become a
law. The small superficial gas velocity results in the weak
interaction between the two phases, which means weak
momentum exchange and interference between gas and liquid
phases. When the gas velocity increases to a certain value, the
flow shows an obvious rule: there is an increase in liquid
holdup with the decrease in power-law index. Because the
viscosity of liquid increases with the decrease in n, the liquid
fluidity is weakened, which shows the accumulation of liquid
level height. As the superficial gas velocity increases, the liquid
with a smaller power-law index has stronger non-Newtonian
characteristics, and the liquid holdup decreases more slowly. In
addition, it can be observed in Figure 7 that when the pipeline
is horizontal, the liquid holdup suddenly drops. The reason is
that the gas/Herschel−Bulkley fluid stratified flow needs a
suitable range for the value of the gas−liquid ratio. When the
liquid−gas velocity ratio, q, is small, the stratified flow pattern
studied can be satisfied.
Comprehensively considering the influence of gas−liquid

viscosity ratio, power-law index, and yield stress on the two-
phase flow, the Lockhart−Martinelli parameter, X2, can be
introduced. Equation 44 can be obtained by deriving eqs 18,
32, and 41:

Table 1. Characteristic Parameters of Four Different
Constitutive Fluids

fluid type τ0 (Pa) K (Pa·sn) n (−)

Newtonian 0 0.5 1
power-law 0 0.5 0.5
Bingham 0.5 0.5 1
Herschel−Bulkley 0.5 0.5 0.5

Figure 5. Differences in liquid level of liquid constitutive relationships
for gas/liquid stratified flow.

Figure 6. Relationship between the superficial gas velocity and liquid
holdup for different rheological properties of non-Newtonian liquid.
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Figure 8 depicts the effect of power-law index, n, on the
dimensionless liquid height in downward inclined stratified
flows. It shows the liquid height for non-Newtonian liquid as a

function of the Lockhart−Martinelli parameter, X2, in stratified
flows for various power-law index values corresponding to the
shear-shinning fluid behavior as predicted from eq 11. As a
whole, the liquid level decreases with the increase in 1/X2.
Different power-law exponent n values form the difference in
the speed of decrease in liquid level height, which shows that
the larger the value of n is, the higher the decrease speed of
liquid level height. The power-law index, n, has a great
influence on the height of liquid surface when 1/X2 is small. In
the two-phase downward flow, when 1/X2 > 1/2000, the liquid
height increases obviously with decreasing n. In the horizontal
and upward flow, when 1/X2 < 1/2000, the liquid level height
is very high, but the liquid level height is almost unchanged.
Because a smaller 1/X2 corresponds to a larger gas−liquid ratio
q, under this condition, the two-phase flow has exceeded the
range of stratified flow, and this section will not be discussed.
Figure 9 shows that the dimensionless liquid holdup

increases with increasing τ0 and the speed of holdup increases
gradually. The viscosity of the liquid increases with increasing
yield stress, which shows the poor follow-up ability. In the
process of flow, the interface friction pressure between phases
is not enough to drive the high viscosity liquid, which results in
a big liquid phase height and the increase in liquid holdup. As
shown in Figure 10, with increasing τ0, the holdup becomes
larger gradually and the slope of this curve gradually decreases,
that is, the growth rate of the liquid holdup gradually slows
down. In this figure, the black line represents the function

Figure 7. Effect of power-law index, n, on the liquid holdup of the
gas/non-Newtonian liquid stratified flow.

Figure 8. Effect of power-law index, n, on the dimensionless liquid height in inclined stratified flows for a gas/non-Newtonian liquid flow: (a) β =
−15°, (b) β = −5°, (c) β = 0°, and (d) β = 1°.
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curve of the dimensionless liquid holding capacity and the
yield stress. The two sets of red lines describe the slope of the
above curve under high and low yield stress, respectively, and
the lines representing the slope approximately intersects at the
position of τ0 = 0.3. When τ0 increases to around 0.3, the slope
hardly changes. The above conclusion can also be confirmed
by the distance of each curve in Figure 9 being reduced first
and then unchanged.
Liquid holdup is related to the increase in superficial gas

velocity with different yield stress values. As shown in Figure
11, when the superficial gas velocity is not greater than 0.6 m/
s, the difference in yield stress value will cause a large
difference in liquid holdup. As the superficial gas velocity
increases, the effect of yield stress on the two-phase stratified
flow decreases and it is reasonable to predict that, when the
superficial velocity of the gas phase increases to a certain value,
this effect can be ignored.
In order to further explore the influence of liquid phase

rheological properties on gas−liquid two-phase flow, the
Bingham number (eq 34) is used for characterization. The
definition of Bingham number includes the power-law
characteristics and yield characteristics of the liquid medium.
Figure 12 shows the liquid holdup for Herschel−Bulkley
liquids as a function of the Lockhart−Martinelli parameter, X2,
in stratified horizontal flow for various Bingham number values

corresponding to the Herschel−Bulkley fluid behavior as
predicted from eq 17. When X2 is constant, as the Bingham
number increases, the liquid holdup decreases. In addition,
when the value of X2 is small, the gas−liquid ratio is relatively
large, and the influence of gas on the two-phase wave surface is
dominant. The effect of the Bingham number, Bn, on the liquid
holdup, α, is weaker. Over the range of X2 from 0 to 1500, α
increases for a given Bn from about 0.1 to 1.0, which is in
agreement with Xu et al.10 Moreover, Figure 12 also illustrates
that, in the range of relatively high X2 values, the effect of Bn
values on α is of main importance in a gas/liquid stratified
flow. When X2 exceeds 1200, because the gas−liquid ratio
reaches a high value, the two-phase flow pattern is no longer a
stratified flow, and the theoretical formula derived in this work
is no longer applicable, resulting in a sudden step of liquid
holding rate to a high value.
Figure 13 shows the effect of the Bingham number on the

two-phase stratified flow. It can be seen that, when the value of
ΦG

2 is less than 1000, an inflection point appears in the
dimensionless pressure drop curve, and the rate of pressure
drop decline slows down. Near the inflection point, the value
of the Bingham number has the most obvious influence on the
pressure drop.

3.1.2. Influence of Incoming Flow Conditions. In down-
ward flow, the liquid holdup, α, increases obviously with the
increase in the superficial velocity of liquid phase, USL, as be
shown in Figure 14. When the superficial liquid velocity, USL, is

Figure 9. Dimensionless liquid holdup, α, as a function of the velocity
ratio q for stratified flow of gas/non-Newtonian liquids in downward
pipeline.

Figure 10. Effect of yield stress, τ0, on the dimensionless liquid
holdup, α, for stratified flow of gas/non-Newtonian liquids in
downward co-current pipe flow.

Figure 11. Variation of liquid holdup with gas velocity at different
yield stress values.

Figure 12. Liquid holdup for Herschel−Bulkley liquids as a function
of the Lockhart−Martinelli parameter, X2, in stratified horizontal flow.
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fixed, the effect of q on holdup can be negligible in the
condition of a high value of q (a low value of USG). When q <
0.2, which means that the superficial velocity of the gas phase,
USG, increases to nearly five times of that of liquid phase, USL,
the holdup decreases significantly.
Figure 15 shows the effect of the velocity ratio, q on the

liquid height in inclined pipe for downward stratified flows. As
it can be seen, the liquid height increases gradually with

increasing superficial liquid velocity when the superficial gas
velocity is a constant. However, the liquid height, hL, still
shows a gradually increasing trend with the increase in USG and
a constant value of q. The reason is that the liquid phase
velocity plays a decisive role in the change of liquid holdup
during two-phase stratified flow while increasing the superficial
gas and liquid velocities by the same multiple at the same time.

3.1.3. Role of Pipeline Inclination in Two-Phase Flow. The
pipe geometry directly affects the gas−liquid two-phase flow
behavior. Different inclination angles of pipes will form
different flow patterns and flow characteristics. Figure 16
shows the effect of two-phase velocity ratio and pipe
inclination on the liquid holdup. It can be seen that, with
the increase in the ratio of the superficial gas and liquid
velocities, 1/q, the liquid holdup decreases gradually. The
difference in Figure 16a,b is as follows: the inclination angle of
the pipeline is negative, that is to say, the gas/liquid two-phase
flow is stratified downward. With the increase in 1/q, the liquid
holdup decreases in the form of power exponent and remains
as a small constant at last. When the gas/liquid two-phase flow
is horizontal or upward, the liquid holdup is very high but
decreases sharply. The reason is that, in the horizontal and
oblique upward flow, when the gas−liquid ratio exceeds the
appropriate range, it is easy to form a non-stratified flow, and
the liquid holding rate step appears in the figure. The stepped
part with the higher liquid level and liquid holding rate does
not meet the research conditions of this study, which can be
seen in Figures 16b and 17b.

3.2. Dimensionless Two-Phase Pressure Gradient.
The factors and changes of pressure drop of gas−liquid two-
phase stratified flow in inclined pipe and horizontal pipe are
discussed.

3.2.1. Horizontal Pipe Flow. The dimensionless pressure
drop, ΦG

2, of the gas−liquid two-phase stratified flow in the
horizontal pipe flow is significantly affected by the parameters
of the liquid medium. As shown in Figure 18, when the
superficial velocity of the gas phase is large, the pressure drop
of the yield stress is more obvious. As the yield stress value
increases, the fluidity of the liquid phase is poor, which will
cause the flow pressure drop to decrease. When the apparent
velocity of the gas phase is small, the effect of yield stress on
the pressure drop of the two-phase flow is almost negligible.
The superficial gas velocity is positively correlated with the
dimensionless pressure drop. The gas phase plays a lubricating
role in the two-phase flow system. The increase in the gas
phase velocity enhances the fluidity and the pressure drop.
Figure 19 shows the effect of the power-law behavior index,

n, on the dimensionless pressure gradient in a stratified flow. In
the prediction model proposed in this study, when the power
index n = 1, the liquid phase behaves as Bingham fluid, and the
pressure drop changes drastically with the gas phase velocity.
When the power-law index gradually decreases, the character-
istics of the Herschel−Bulkley constitutive model are obvious,
and the viscosity of the liquid phase increases. As a result, the
pressure drop tends to be flat.
Considering the liquid phase power-law characteristics and

yield characteristics comprehensively, the influence of the
change of Bingham number on the pressure drop is discussed.
As shown in Figure 20, in the relationship curve of
dimensionless pressure drop, ΦG

2, and Lockhart−Martinelli
parameter, X2, the change of Bingham number has a significant
effect on the pressure drop of the two-phase flow. When X2 is

Figure 13. Liquid holdup versus the dimensionless pressure drop,
ΦG

2, in stratified horizontal flow with various Bingham number values.

Figure 14. Dimensionless liquid holdup, α, as a function of the
superficial liquid velocity, USL, of downward stratified flow.

Figure 15. Dimensionless liquid height, hL, as a function of the
velocity ratio, q, of gas/non-Newtonian liquid stratified flow in
different superficial gas velocity conditions.
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constant, the dimensionless pressure drop increases accord-
ingly as the Bingham number increases.
3.2.2. Inclined Pipe Flow. Figure 21 shows the effect of the

yield stress, τ0, the power-law behavior index, n, and inclination
angle, β, on the dimensionless pressure gradient in a stratified
flow as predicted from eq 26. A laminar gas and liquid flow
were assumed. It can be seen in Figure 21a that the
dimensionless pressure gradient decreases as τ0 increases, but

for a high value of q, the effects of liquid phase properties on
ΦG

2 may be negligible. Because the gravitational and frictional
terms in the total pressure gradient equation have opposite
signs for downward inclined flows, two-phase flows may
experience either pressure-gain or pressure-loss, depending
upon the physical properties, input fluxes of the two phases,
and the size and orientation of the pipe. Figure 21b illustrates
the effects of the power-law behavior index, n, on drag
reduction in a stratified downward flow as predicted from eq

Figure 16. Effect of pipe inclined angles, β, on the dimensionless liquid height, hL, for stratified flow: (a) downward flow and (b) horizontal and
upward flow.

Figure 17. Holdup curve for horizontal and inclined stratified flow: (a) downward flow and (b) horizontal and upward flow.

Figure 18. Relationship between the superficial gas velocity and
dimensionless pressure drop for different yield stress values of
Herschel−Bulkley liquid.

Figure 19. Variation of dimensionless pressure drop with superficial
gas velocity at different power-law index values.
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26. The dimensionless frictional pressure gradient, ΦG
2, as a

function of the ratio of superficial liquid and gas velocity, q, for
stratified flow of non-Newtonian liquids increases for a given q
as n is increased from 0.25 to 1 over the range of 0.01 < q <
0.1.
The effects of pipe inclination angles, β, on the

dimensionless frictional pressure gradient in inclined stratified
flow are shown in Figure 21c,d. For a downward inclined flow

(β < 0), ΦG
2 is generally much higher due to the increasing

superficial gas velocity, and ΦG
2 increases with the increasing

inclination angle due to the hydrostatic term being positive.
However, for an upward flow, there are still multiple solutions
as shown in Figure 17b, and the solution obtained, when the
gas−liquid ratio is relatively small, should be discarded to apply
to the gas/Herschel−Bulkley fluid stratified flow.

4. CONCLUSIONS

Laminar solutions of stratified flow for horizontal and inclined
pipes, in cases where one of the two-phase is a non-Newtonian
shear thinning fluid, are presented. The Herschel−Bulkley
constitutive model is considered to model the rheology of the
shear thinning fluid due to its capability to describe the power-
law and yield properties of liquids. An algorithm based on
iterative calculation is presented to obtain the laminar solution
for all the feasible flow conditions. The main purpose of this
work was to investigate the effect of the non-Newtonian liquid
constitutive relations on two-phase flow characteristics while
referring to cases relevant to gas−liquid applications.
The results are discussed in terms of holdup curves and

dimensionless pressure gradient to demonstrate the effect of
the constitutive relations of non-Newtonian liquids on the two-
phase flow characteristics. A mechanistic model for predicting
the liquid holdup and pressure gradient for gas−liquid flow in
horizontal and inclined pipes has been developed and verified

Figure 20. Dimensionless pressure drop for Herschel−Bulkley liquids
as a function of the Lockhart−Martinelli parameter, X2, in stratified
horizontal flow.

Figure 21. Dimensionless two-phase pressure gradient, ΦG
2, as a function of the ratio of superficial liquid and gas velocity, q, for different values of

(a) yield stress, τ0, (b) power-law index, n, and (c, d) inclination.
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with experimental measurements. The results show that fluid
physical properties, flow conditions, and pipe inclination angles
have significant effects on the liquid holdup and pressure
gradient of gas−liquid stratified flow. The influence of power-
law index, n, and yield stress, τ0, which characterize the
rheological properties of liquid phase, on the flow of gas−
liquid two-phase stratified pipe is noteworthy. The increase in
shear thinning and yield properties will lead to the increase in
liquid holdup and decrease in pressure drop.
There is a positive correlation between the superficial liquid

velocity and the liquid holdup of the two-phase stratified pipe
flow, and the effect is much greater than that of the superficial
gas velocity. In a downward inclined two-phase stratified pipe
flow, as the angle increases, the liquid holdup decreases but the
friction pressure drop increases. In a horizontal pipe and
upward inclined two-phase stratified flow, the effect of angle is
almost negligible as the superficial gas velocity increases. When
the gas−liquid ratio changes beyond the stratified flow range, a
non-stratified flow will occur. The stratified flow prediction
model derived in this work is not applicable, resulting in a
sudden breakthrough in liquid holdup and pressure drop
curves. The calculation model proposed in this work has a
good prediction effect and provides new insights into the flow
behavior of gas and waxy heavy oil with yield stress.

■ APPENDIX

Evolutionary Conditions of Herschel−Bulkley Fluid
There are three velocity distributions of Herschel−Bulkley
fluid flowing in the pipeline: plunger flow distribution, plug-
shaped + velocity ladder distribution, and laminar flow velocity
distribution (Figure A.1).

Appendix 1. The plunger flow is essentially a shear-free flow, so
the constitutive equation can be expressed as

f ( ) 0τ = (A.1)

The condition for satisfying this flow state is that the velocity
distribution vz should be constant:

v 0z′= (A.2)

R R0 = (A.3)

1ϕ = (A.4)

The speed distribution at this time is
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The pressure gradient is
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Substitute eq A.6 into eq A.5 to get
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R r r R( ) ( ) 0n n1/ 1/[ − + − ] = (A.9)

It can be concluded that the value of n is the main factor that
determines the occurrence of slug flow.
When n < 1, it is represented by shear thinning fluid. The

condition for a complete plug flow velocity distribution is that
1/n is not an even number.
When n > 1, it is represented by shear thickening fluid. The

condition for a complete plug flow velocity distribution is that
n is not an even number.

2. The flow state with the velocity distribution types in the
slug area and the speed ladder area is the part considered
in this study:

0 1ϕ< < (A.10)
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Parameters a, b, and c in the formula are calculated as
follows:
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Equation A.12 can be reduced to a functional relationship
like eq A.16:

f U( )SLϕ = (A.16)

Need to guarantee: if 0 < f(USL) < 1, then the range of liquid
phase velocity is obtained, which is the applicable condition for
this case.

3. Laminar flow velocity distribution means that the flow
core disappears (no plunger). The following conditions

must be met: R 0, 0R
R0

0ϕ= = = .

Figure A.1. Velocity distribution diagram of three stages of
Herschel−Bulkley fluid.
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The velocity distribution can be simplified as
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when r = 0, there is
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To ensure that the flow core disappears, the condition to be
met is that the Bingham number should approach 0, which
means
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The condition for simplifying to ensure that the flow core
disappears is
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■ NOMENCLATURE
A cross-sectional area, m2

D pipe diameter, m
S wetted parameter, m
U mean velocity, m/s
u phase velocity, m/s
hL liquid height, m
P pressure, Pa
Q flow rate
Re Reynolds number
Bn Bingham number
f friction factor
K consistency coefficient
n power-law index
R0 plug-flow radius, m
g acceleration of gravity, m/s2

x axial distance, m
X2 Lockhart−Martinelli parameter
Greek Letters
ρ density
μ viscosity
α liquid holdup
τ shear stress
β pipe inclination angle, rad
Subscripts
G gas
SG superficial gas
L liquid
SL superficial liquid
TP two phase
i interface
plug liquid plug-flow zone
ann liquid-velocity-gradient zone
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