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a b s t r a c t 

The hybridization of the fourth-order central scheme and a third-order WENO (weighted essentially non- 

oscillatory) scheme aims to obtain fourth-order accuracy in smooth regions and keep ENO property near 

shock waves. However, according to our numerical tests, such existing hybrid schemes may generate spu- 

rious waves near shocks. To overcome this problem, in this paper, a new two-step method is proposed for 

constructing a fourth-order hybrid central WENO scheme. The first step is using the traditional weighting 

method to get the third-order WENO scheme. The second step is to get a hybrid scheme by weight- 

ing the third-order upwind scheme and the fourth-order central scheme. Then, the final hybrid WENO 

scheme is obtained by combining the two weighted schemes through a discontinuity-detecting method 

for a four-point stencil. Various one- and two-dimensional numerical tests are presented to show that 

the new scheme can avoid the generation of spurious waves near shock waves, keep the ENO property, 

and get almost fourth-order accuracy in smooth regions including critical points. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Due to the high-order accuracy and the essentially non-

scillatory (ENO) property, the WENO schemes have been widely

pplied in many areas [1] . The WENO scheme was firstly pro-

osed by Liu et al. [2] , and then greatly simplified and improved by

iang and Shu [3] (WENO-JS). Within the general framework of the

moothness indicators and the nonlinear weights design of Jiang

nd Shu [3] , many effort s were made to further improve the WENO

cheme. Balsara and Shu [4] extended the WENO scheme up to 11th

rder accuracy, Gerolymos et al. [5] further developed very-high-

rder WENO schemes. Henrick et al. [6] derived the necessary and

ufficient conditions for the fifth-order convergence of a fifth-order

ENO scheme and pointed out that the weights of WENO-JS can-

ot meet the conditions at critical points, hence they proposed a

apping function to improve its accuracy. Later, Borges et al. [7]

ntroduced a fifth-order global smoothness indicator and designed

he WENO-Z scheme, which can improve the accuracy in smooth

egions and decrease the numerical dissipation near shock regions

ith less computational cost than the mapping function [6] . And,
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he works in Ha et al. [8] , Fan et al. [9] , Kim et al. [10] , Acker

t al. [11] , Liu et al. [12] showed that developing higher-order

lobal smoothness indicators and modifying the weighting func-

ion can further improve the fifth-order WENO-Z scheme. Castro

t al. [13] also developed higher-order WENO-Z schemes. Shen and

ha [14] noticed that the accuracy of the above mentioned WENO

chemes would decrease at transitional points, which connect a

mooth region and a discontinuity, and proposed a multi-step

eighting method to fix this problem. Lately, Ma et al. [15] , Zeng

t al. [16] simplified the multi-step weighting method and reduced

ts computational cost. Hejranfar et al. [17] developed high order

ENO formulation of the lattice Boltzmann method in general-

zed curvilinear coordinates. This method includes a linear equa-

ion which makes its programming much easier than N-S based

olvers [18,19] . More works about the accuracy, numerical dissipa-

ion, efficiency and implementation of the WENO schemes can be

ound in Shen and Zha [20] , Xu and Shu [21] , Huang and Chen

22] , Johnsen and Colonius [23] , He et al. [24] , Zhao et al. [25] ,

eng et al. [26] . 

In general, for a smooth solution, a central scheme is more ideal

han an upstream (or upwind) scheme. Hence, there are many ef-

orts to conjugate shock-capturing schemes, to be applied around

iscontinuities, with high-order central finite difference methods

https://doi.org/10.1016/j.compfluid.2020.104590
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2020.104590&domain=pdf
mailto:jun.zhang@buaa.edu.cn
https://doi.org/10.1016/j.compfluid.2020.104590
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for the smooth parts of the solution, such as, the hybrid central

WENO scheme developed in Kim and Kwon [27] , Costa and Don

[28] , Hu et al. [29] , Huang and Chen [30] , Yamaleev and Carpen-

ter [31] , Hu [32] , Martin et al. [33] . In early works, Adams and

Shariff[34] , Ren et al. [35] noticed that, for those hybrid schemes,

the abrupt switch from a shock-capturing scheme (e.g., the ENO

or WENO schemes) to a compact scheme at the interface be-

tween smooth regions and discontinuities may result in spurious

waves. Ren et al. [35] suggested using a weight function to avoid

the abrupt transition from one sub-scheme to another, the result-

ing weighted hybrid scheme with the weight function is essen-

tially oscillation free near discontinuities. Kim and Kwon [27] de-

veloped the weighted hybrid central WENO scheme with an al-

ternative weight function. By taking account of the contribution

of the downwind stencil, Martin et al. [33] developed the WENO-

SYMOO and WENO-SYMBO schemes. Hu et al. [29] constructed an

adaptive central-upwind WENO scheme. Costa et al. [28] pointed

out that, due to the non-dissipative nature of the central finite

difference scheme, the inherent dispersion error, although small,

generates undesirable oscillations polluting the solution of central

WENO schemes in time. 

Compared with higher-order WENO schemes, the third-order

one has several advantages. For example, it is more robust for

shock problems, it uses less grid points, and hence, it reduces the

difficulty of the boundary treatment and can be easily generalized

to unstructured meshes, and it provides a suitable compromise

of the computation cost and the accuracy in some cases [36,37] .

Recently, many works were proposed to improve its performance

[36–45] . However, the analysis and numerical results [12,37] show

that these third-order WENO schemes always fail to obtain ex-

pected order near critical points. And Liu et al. [37] pointed out that

one important reason for the accuracy losing of these third-order

WENO schemes is that their local smoothness indicators cannot

correctly treat the smooth three-point stencil containing a non-

nodal critical point, here, non-nodal means the critical point is

not a grid point. To improve the accuracy of a third-order WENO

scheme, a third-order hybrid WENO scheme was proposed in Liu

and Shen [37] by combining the third-order WENO scheme and a

third-order upwind scheme via a discontinuity-detecting method

for a four-point stencil. It is worthy to point out that, even a four-

point stencil is used in Liu and Shen [37] , the fourth-order cen-

tral scheme on this stencil cannot be directly applied to replace

the third-order upwind scheme, otherwise, some spurious numer-

ical phenomena may be generated, for example, oscillation, appar-

ent asymmetry, even less third-order accuracy in smooth regions.

This is why only the third-order upwind scheme is used in Liu and

Shen [37] . Wu et al. [39] constructed a hybrid scheme of a third-

order WENO-N3 scheme and a fourth-order central scheme with

a modified weight function of Ren et al. [35] . As our numerical re-

sults show, this hybrid central WENO scheme [39] generates spu-

rious structures near shocks. 

In order to take advantage of the fourth-order central scheme

and suppress the generation of spurious phenomena near shocks,

in this paper, we propose a new two-step method for constructing

a fourth-order hybrid central WENO scheme, in which the third-

order WENO-MN3 [36] or a weighted scheme of the third-order up-

wind and the fourth-order central schemes is chosen according to

the discontinuity-detecting method for a four-point stencil [37] . For

simplicity, the new scheme is called as HWENO-U3C4 in this pa-

per. 

This paper is organized as follows: several third-order WENO

schemes [3,36,39] and the hybrid WENO schemes [37,39] are

briefly introduced in Section 2 . The new HWENO-U3C4 scheme is

given in Section 3 . In Section 4 , various numerical examples are

presented to demonstrate the good performance of HWENO-U3C4.

Concluding remarks are given in Section 5 . 
. The third-order WENO and hybrid WENO schemes 

In this section, we briefly review the third-order WENO-JS3

3] , WENO-N3 [39] , WENO-MN3 [36] and two hybrid WENO

chemes(HWENO-N3 [39] and S-HWMN3 [37] ) by using the scalar

onservative law equation [3] , 

∂u 

∂t 
+ 

∂ f 

∂x 
= 0 , (1)

here u ( x, t ) is a conserved quantity, f ( u ( x, t )) describes its flux,

nd x and t denote space and time, respectively. By defining the

oints x i = i �x, ( i = 0 , . . . , N), where �x is the uniform grid spac-

ng, the Eq. (1) can be approximated by a conservative finite dif-

erence formula, 

du i 

dt 
= −

ˆ f i +1 / 2 − ˆ f i −1 / 2 

�x 
, (2)

here ˆ f i ±1 / 2 is the numerical flux. Generally, the flux can be split

nto positive part and negative part, 

ˆ f i +1 / 2 = 

ˆ f + 
i +1 / 2 

+ 

ˆ f −
i +1 / 2 

. (3)

Here, only the positive part ˆ f + 
i +1 / 2 

is described, and the super-

cript “+” is dropped for simplicity. The negative part ˆ f −
i +1 / 2 

is sym-

etric with respect to x i +1 / 2 and will not be shown. 

.1. The WENO-JS and WENO-N3 schemes 

The flux ˆ f i +1 / 2 of a third-order WENO scheme can be written

s, 

ˆ f i +1 / 2 = ω 0 q 0 + ω 1 q 1 , (4)

here, q k is the second-order flux on the sub-stencil S k = (i − 1 +
, i + k ) and is given by, 

 

 

 

q 0 = −1 

2 

f i −1 + 

3 

2 

f i , 

q 1 = 

1 

2 

f i + 

1 

2 

f i +1 , 

(5)

The weight ω k of the WENO-JS3 [3] is constructed as, 

 k = 

αk 

α0 + α1 

, αk = 

c k 
(IS k + ε) 2 

, (6)

here, c 0 = 1 / 3 and c 1 = 2 / 3 are called the ideal weights. ε =
0 −40 is a small parameter introduced to avoid the denominator

ecoming zero. 

The weight of the WENO-N3 [39] scheme is given as, 

 k = 

αk 

α0 + α1 

, αk = c k · (1 + 

τ N 

IS k + ε
) , (7)

here, 

N = | I S 0 + I S 1 
2 

− IS 3 | , (8)

IS 3 = 

13 
12 ( f i −1 − 2 f i + f i +1 ) 

2 + 

1 
4 ( f i −1 − f i +1 ) 

2 is the second

moothness indicator of the fifth-order WENO scheme [3] . 

IS k in Eqs. (6) –(8) is called as the local smoothness indicator

hat measures the smoothness of numerical solution on the sub-

tencil S k . The IS k of a third-order WENO scheme is usually calcu-

ated as follows [2,3,36,39] , 

IS 0 = ( f i − f i −1 ) 
2 , 
2 (9)
1 i +1 i 
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.2. The WENO-MN3 scheme 

Since the WENO scheme with the indicators (9) is too dissipa-

ive and can not even reach second order(the order of L ∞ 

error)

onvergence, Liu et al. [36] proposed the following indicators, 

IS 0 = 

1 
4 ( | f i +1 − f i −1 | − | 4 f i − 3 f i −1 − f i +1 | ) 2 , 

IS 1 = 

1 
4 ( | f i +1 − f i −1 | − | 3 f i +1 + f i −1 − 4 f i | ) 2 . (10) 

In monotonic smooth regions, there is I S 0 = I S 1 , hence, the

eights in Eq. (6) calculated by the new indicators are exactly

qual to the optimal weights, i.e., the fully third-order upwind

cheme is recovered. Due to this property, the new scheme can

reatly reduce the numerical dissipation and it is called as WENO-

N3 in Liu and Shen [37] . Please find more details in Liu et al.

36] , Liu and Shen [37] . 

.3. The HWENO-N3 scheme 

Considering the high resolution and low dissipation of the

entral scheme, it is a natural idea to conjugate the WNEO

cheme with the central scheme to obtain a low dissipation shock-

apturing scheme. In [39] , Wu et al. designed a weighted hybrid

cheme (HWENO-N3) of two sub-schemes: the third-order WENO-

3 scheme and the fourth-order central scheme, 

ˆ f i +1 / 2 = σi +1 / 2 ̂
 f C4 
i +1 / 2 + (1 − σi +1 / 2 ) ̂  f W EN O −N 3 

i +1 / 2 
, (11)

here, the weight function σi +1 / 2 is calculated as, 

i +1 / 2 = 

1 

2 

tanh 

(
3 

r i +1 / 2 −r d 
max (r d , | r i +1 / 2 −r d 

) 
)

tanh (3) 
+ 

1 

2 

, (12) 

nd 

 i +1 / 2 = min (r i , r i +1 ) , r i = 

| 2 δ+ 
i 
δ−

i 
| + ε

(δ+ 
i 
) 2 + (δ−

i 
) 2 + ε

(13)

here, 

+ 
i 

= f i +1 − f i , δ
−
i 

= f i − f i −1 , ε = 

0 . 9 r c 

1 − 0 . 9 r c 
ξ 2 (14)

The threshold values r d = 0 . 25 , ξ = 10 −10 and r c = 0 . 5 are sug-

ested in Wu and Zhao [39] . Please refer to [35,39] for more infor-

ation about the r i +1 / 2 and σi +1 / 2 . 

The flux of the fourth-order central scheme(C4) is, 

ˆ f C4 
i +1 / 2 = 

1 

12 

(− f i −1 + 7 f i + 7 f i +1 − f i +2 ) . (15)

Although the HWENO-N3 scheme can decrease the numerical

issipation [39] , as our results show, it generates spurious waves

nd asymmetric solutions near discontinuities. 

.4. The S-HWMN3 scheme 

Although the WENO-MN3 scheme has less numerical dissipa-

ion than the WENO-JS3 and WENO-N3 schemes, the improvement

f accuracy in L ∞ 

norm of a smooth solution with critical points

e.g., the non-monotonic smooth regions) is still not remarkable

36] . As the analysis in Liu and Shen [37] showed, the existed

hird-order WENO schemes with the local smoothness indicators

f Jiang and Shu [3] and Liu et al. [36] cannot achieve third-order

onvergence order at critical points, because these indicators can-

ot correctly treat the smooth three-point stencil containing a non-

odal critical point. Hence, Liu et al. [37] proposed a discontinuity-

etecting method for a four-point stencil to distinguish those sten-

ils containing a non-nodal critical point as follows, 

θ = | I C 1 − I C 2 | ≥ min (I C 1 , I C 2 ) , 
τ = | I S 0 − I S 1 | ≥ min (I S 0 , I S 1 ) 

(16) 
here, IS 0 , IS 1 are the indicators of Eq. (10) used in the WENO-

N3 scheme [36] and 

 

IC 1 = ( f i −1 − 2 f i + f i +1 ) 
2 , 

IC 2 = 

1 

4 

(| f i +2 − f i | − | 3 f i +2 + f i − 4 f i +1 | ) 2 . (17) 

The stencil S 3 = (i − 1 , i, i + 1) can be regarded as a discontin-

ous stencil, only if Eq. (16) is satisfied. Please find more details

bout the analysis of the discontinuity-detecting method in Liu and

hen [37] . Hence, a hybrid scheme of the WENO-MN3 scheme and

he third-order upwind (U3) scheme can be designed as follows, 

ˆ f i +1 / 2 = 

{
ˆ f W EN O −MN 3 
i +1 / 2 

, if Eq. (16) is satisfied 

ˆ f U3 
i +1 / 2 

, otherwise . 
(18) 

here, ˆ f U3 
i +1 / 2 

= c 0 q 0 + c 1 q 1 . Since the WENO-MN3 scheme can re-

overy to third-order upwind scheme in monotonic smooth re-

ions, a simplified hybrid scheme S-HWMN3 [37] (combination of

ENO-MN3 and U3) is suggested as follows, 

ˆ f i +1 / 2 = 

{
ˆ f W EN O −MN 3 
i +1 / 2 

, if θ ≥ min (I C 1 , I C 2 ) 

ˆ f U3 
i +1 / 2 

, otherwise . 
(19) 

The numerical results [37] showed that the S-HWMN3 scheme

an achieve third-order accuracy in smooth regions and keep the

NO property near discontinuities. 

. The new hybrid WENO scheme: HWENO-U3C4 

In this section, we propose a two-step method for constructing

 new hybrid central WENO scheme. 

As the results in Refs. [34,35,39] and our numerical tests show,

 direct switch from ENO or WENO schemes to compact or central

chemes may generate spurious waves. While, the results in Liu

nd Shen [37] , Li and Qiu [46] , 47 ] showed that, the switch from

ENO schemes to upwind schemes behaves quite well for all the

ested cases near shock regions. Hence, based on the S-HWMN3

cheme, a new hybrid scheme is proposed as following, 

ˆ f i +1 / 2 = 

{
ˆ f W EN O −MN 3 
i +1 / 2 

, if Eq. (16) is satisfied 

ˆ f W U3 C4 
i +1 / 2 

, otherwise . 
(20) 

here, the sub-scheme ˆ f W U3 C4 
i +1 / 2 

(denoted as WU3C4) is a weighted

cheme of the third-order upwind scheme(U3) and the fourth-

rder central scheme(C4). 

.1. The WU3C4 sub-scheme 

The numerical flux ˆ f W U3 C4 
i +1 / 2 

is calculated as, 

ˆ f W U3 C4 
i +1 / 2 = σ ˆ f U3 

i +1 / 2 + (1 − σ ) ̂  f C4 
i +1 / 2 , (21)

here, σ is a weight function introduced to avoid an abrupt switch

rom WENO-MN3 scheme to the central scheme and apply the

ourth-order central scheme (C4) in smooth regions as possible.

ence, the weight function σ should approach to 0 for a smooth

tencil S 4 = (i − 1 , i, i + 1 , i + 2) , and to 1 if there is a discontinuity

ocated in (i + 1 , i + 2) . 

Inspired by the work of Shen et al. [14] , Peng et al. [48] and Liu

t al. [12] , a simple weight function is designed as follows, 

= 

| β1 − β2 | 
max (β1 , β2 ) + ε

(22) 

here, ε = 10 −40 is introduced to avoid the denominator to be-

ome zero, and 

 

 

 

β1 = 

13 

12 

( f i −1 − 2 f i + f i +1 ) 
2 + 

1 

4 

( f i −1 − f i +1 ) 
2 , 

β2 = 

13 

( f i − 2 f i +1 + f i +2 ) 
2 + 

1 

(3 f i − 4 f i +1 + f i +2 ) 
2 , 

(23) 
12 4 
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Fig. 1. Solutions of a square wave computed by the WENO-MN3, HWENO-N3 and 

HWENO-C4 schemes with N = 80 at t = 8 . 

Fig. 2. Solutions of a square wave computed by the WENO-MN3 and HWENO-U3C4 

schemes with N = 80 at t = 8 . 

Fig. 3. Pointwise error of the WENO-MN3, HWENO-N3 and HWENO-C4 schemes in 

Fig. 1 . 
are the two local smoothness indicators of the fifth-order WENO

scheme [3] . 

For a smooth solution, as the Taylor expansion analysis in Liu

et al. [12] , Shen et al. [14] , Peng and Shen [48] showed, there is 

σ = 

f ′ 
i 

f ′′′ 
i 

�x 4 + A �x 5 

f ′′ 2 
i 

�x 2 + B k �x 4 
= 

{
O (�x 2 ) , if f ′ 

i 
� = 0 , 

O (�x ) , f ′ 
i 

= 0 . 
(24)

where, A and B k , k = 1 , 2 are non-zero constant. Eq. (24) means

that, for a smooth stencil S 4 , σ is a small magnitude. 

If the sub-stencil (i − 1 , i ) or (i, i + 1) contains a discontinuity,

then the WENO-MN3 scheme is used according to the detecting

method in Eq. (16) ; otherwise the stencil (i − 1 , i, i + 1) is smooth,

and if the sub-stencil (i + 1 , i + 2) contains a discontinuity, there

should be 

β2 � β1 . (25)

which means, σ approaches to 1, and hence the WU3C4 scheme is

dominated by the U3 scheme. 

3.2. The behavior near discontinuities 

This subsection compares the behavior of different schemes

near discontinuities. In order to show the deficiency of the

hybrid scheme, in which the fourth-order central scheme is

directly switched, in this subsection, a hybrid central WENO

scheme(denoted as HWENO-C4) is designed as follows, 

ˆ f i +1 / 2 = 

⎧ ⎨ 

⎩ 

ˆ f W EN O −MN 3 
i +1 / 2 

, if S 4 = (i − 1 , i, i + 1 , i + 2) 

is a discontinuous stencil, 
ˆ f C4 
i +1 / 2 

, otherwise . 

(26)

In this paper, a detecting-method is used to determine whether

S 4 contains a continuity or not, i.e., if { | I S 0 − I S 1 | (i −1 ,i,i +1) ≥ min (I S 0 , I S 1 ) (i −1 ,i,i +1) 

or 
| I S 0 − I S 1 | (i,i +1 ,i +2) ≥ min (I S 0 , I S 1 ) (i,i +1 ,i +2) 

(27)

is satisfied, then S 4 can be regarded as a discontinuous stencil.

Where, (I S 0 , I S 1 ) (i −1 ,i,i +1) are the smoothness indicators on the

stencil (i − 1 , i, i + 1) and calculated by Eq. (10) . The first condition

( Eq. (27) ) indicates that S 3 
1 

= (i − 1 , i, i + 1) may contain a discon-

tinuity, otherwise, we can apply the Taylor expansion, and there is

| I S 0 − I S 1 | < min (I S 0 − I S 1 ) (Please see Ref. [36,37,49] for more in-

formation). So does the second condition. 

The linear advection equation Eq. (29) with the initial condition,

u 0 (x ) = 

{
1 , −0 . 5 ≤ x ≤ 0 . 5 

0 , else 
(28)

is solved to demonstrate the behaviors of different schemes. 

This simple case represents the propagation of a square wave,

its solutions computed by the WENO-MN3, HWENO-N3, HWENO-

C4 and HWENO-U3C4 schemes at t = 8 with N = 80 are plotted

in Figs. 1–4 are the pointwise errors. It can be seen that, the

HWENO-N3 scheme behaves similar with the HWENO-C4 scheme,

although both of them can preserve the ENO property well, they

generate apparently asymmetric solutions near the discontinuities.

And the new scheme HWENO-U3C4 resolves the discontinuous

problem quite well. The numerical results show that, the direct

switch from the third-order WENO scheme to the fourth-order

central scheme may generate spurious waves near the disconti-

nuities. Since HWENO-N3 and HWENO-C4 have the similar defi-

ciency near discontinuities, in the rest of this paper, the results of

HWENO-C4 are no longer presented and discussed. 

Numerical stability of a method is a necessary property for

its applications in time integration problems. The stability analy-

sis of fifth-order WENO scheme can be found in Wang and Spi-

teri [50] , Motamed et al. [51] , Hermes et al. [52] . However, as
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Fig. 4. Pointwise error of the WENO-MN3 and HWENO-U3C4 schemes in Fig. 2 . 

Fig. 5. Solutions computed by the HWENO-N3 scheme with different CFL numbers 

at N = 80 and t = 8. 
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Fig. 6. Solutions computed by the HWENO-U3C4 scheme with different CFL num- 

bers at N = 80 and t = 8. 

Fig. 7. Solutions computed by the WENO-MN3 scheme with different CFL numbers 

at N = 80 and t = 8. 
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4
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w  
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ointed out by Wang and Spiteri [50] , the von Neumann stabil-

ty analysis needs to have a known stencil. Since the present

cheme (HWENO-U3C4) is a hybrid scheme, in which, one candi-

ate scheme uses a three-point stencil and the other one uses a

our-point stencil, it is difficult to do the linear stability analysis.

ere, we solve the advection equation Eq. (29) with the initial con-

ition of Eq. (28) and different CFL numbers to compare the stabil-

ty of different schemes. The time integration method is the third-

rder TVD Runge-Kutta method [53] . Figs. 5–7 show that, for a dis-

ontinuous solution, HWENO-U3C4 and HWENO-N3 may generate

nstable solutions(undershoot and overshoot) if CFL > 0.7, while

ENO-MN3 can obtain a good solution even CFL number takes 1.0.

ence, WENO-MN3 is more stable than the two hybrid schemes.

pplying hybrid scheme requires a relatively strict restriction on

ime step. 

. Numerical examples 

In this section, several linear advection problems, one- and two-

imensional Euler problems are calculated to test the performance

f the new scheme. The time derivative is approximated with the

hird-order TVD Runge-Kutta method [53] . 
.1. Linear advection problems 

In the following we test the schemes on the linear advection

quation, 
 

∂u 

∂t 
+ 

∂u 

∂x 
= 0 , x 0 � x � x 1 , 

u (x, t = 0) = u 0 (x ) , periodic boundary . 
(29) 

The exact solution of Eq. (29) is given by, 

 (x, t) = u 0 (x − t , t ) . (30)

.1.1. Case 1 

 0 (x ) = sin 

(
πx − sin πx 

π

)
, −1 ≤ x ≤ 1 . (31) 

This particular initial condition [6] has two critical points at

hich f ′ = 0 and f ′′ � = 0 and is often used to test the accuracy of

 scheme. The time step is chosen to be �t = 8�x 5 / 3 in order that
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Table 1 

Convergence rate in L 1 norm. 

N WENO-JS3 WENO-MN3 U3 S-HWMN3 C4 HWENO-U3C4 

error order error order error order error order error order error order 

50 8.160E −2 1.347E −2 4.590E −3 4.590E −3 1.336E −3 1.512E −3 

100 1.425E −2 2.518 4.647E −3 1.536 4.597E −4 3.32 4.597E −4 3.32 4.701E −5 4.83 5.511E −5 4.78 

200 3.480E −3 2.033 9.453E −4 2.298 5.354E −5 3.10 5.354E −5 3.10 1.895E −6 4.63 2.346E −6 4.55 

400 8.160E −4 2.092 1.768E −4 2.418 6.567E −6 3.03 6.567E −6 3.03 9.508E −8 4.32 1.253E −7 4.23 

800 1.860E −4 2.133 3.242E −5 2.448 8.170E −7 3.00 8.170E −7 3.00 5.515E −9 4.18 7.692E −9 4.03 

Table 2 

Convergence rate in L ∞ norm. 

N WENO-JS3 WENO-MN3 U3 S-HWMN3 C4 HWENO-U3C4 

error order error order error order error order error order error order 

50 9.742E −2 3.399E −2 5.674E −3 5.674E −3 1.661E −3 1.748E −3 

100 3.119E −2 1.643 1.494E −2 1.186 5.766E −4 3.30 5.766E −4 3.30 5.992E −5 4.79 9.528E −5 4.20 

200 1.207E −3 1.370 5.083E −3 1.556 6.732E −5 3.10 6.732E −5 3.10 2.562E −6 4.55 7.324E −6 3.70 

400 4.561E −3 1.404 1.684E −3 1.594 8.263E −6 3.03 8.263E −6 3.03 1.350E −7 4.25 6.369E −7 3.52 

800 1.710E −3 1.415 5.467E −4 1.623 1.028E −6 3.00 1.028E −6 3.00 7.992E −9 4.08 6.019E −8 3.40 

Fig. 8. Solutions of Case 2 computed by the U3, WENO-JS3, WENO-MN3 and S- 

HWMN3 schemes with N = 200 at t = 320 . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Solutions of Case 2 computed by the U3, C4, HWENO-N3 and HWENO-U3C4 

schemes with N = 200 at t = 320 . 
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a  
the error for the overall scheme is a measure of the spatial con-

vergence only [6] . The errors and the convergence order in L 1 and

L ∞ 

norm of the WENO-JS3, WENO-MN3, U3, S-HWMN3, C4 and

HWENO-U3C4 schemes at t = 2 are given in Tables 1 and 2 . As we

can see, the S-HWMN3 scheme recovers to the U3 scheme, while,

the order in L 1 of the HWENO-U3C4 scheme achieves fourth-order.

Although the order in L ∞ 

does not achieve the expected fourth or-

der, its errors are much less than those of U3. 

4.1.2. Case 2 

u 0 (x ) = e −(x −90) 2 / 400 
(

cos 

(
π

8 

(x − 90) 
)

+ cos 

(
π

4 

(x − 90) 
))

, 

50 ≤ x ≤ 130 . (32)

This case is used to test the performance of different schemes

for a smooth solution containing several critical points [54] . Figs. 8

and 9 show the numerical solutions with grid number N = 200 and

time step �t = �x/ 2 at t = 320 . As shown in these figures, the re-

sults of the C4 and HWENO-U3C4 schemes are almost the same. 
.1.3. Case 3 

 0 (x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

6 

(G (x, β, z − δ) + G (x, β, z + δ) + 4 G (x, β, z)) , 

−0 . 8 � x < −0 . 6 , 

1 , −0 . 4 � x < −0 . 2 , 

1 − | 10(x − 0 . 1) | , 0 � x < 0 . 2 , 
1 

6 

(F (x, α, a − δ) + F (x, α, a + δ) + 4 F (x, α, a )) , 

0 . 4 � x < 0 . 6 , 

0 , otherwise, 

 (x, β, z) = e −β(x −z) 2 , F (x, β, a ) = 

√ 

max (1 − α2 (x − a ) 2 , 0) . 
(33)

This is a classical testing case, which contains a Gaussian, a tri-

ngle, a square-wave and a semi-ellipse. It is often used to test the

issipation of high-order schemes. The constants are z = −0 . 7 , δ =
 . 005 , β = log (2) / (36 δ2 ) , a = 0 . 5 and α = 10 . It is solved with

 = 200 and time step �t = �x/ 2 . Figs. 10–13 display the re-

ults at t = 2 and t = 20 , respectively. It can be seen that, after

 long time period, the HWENO-U3C4 scheme still resolves all the
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Fig. 10. Solutions of Case 3 computed by the WENO-JS3, WENO-MN3 and S- 

HWMN3 schemes with N = 200 at t = 2 . 

Fig. 11. Solutions of Case 3 computed by the HWENO-N3 and HWENO-U3C4 

schemes with N = 200 at t = 2 . 
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Fig. 12. Solutions of Case 3 computed by the WENO-JS3, WENO-MN3 and S- 

HWMN3 schemes with N = 200 at t = 20 . 

Fig. 13. Solutions of Case 3 computed by the HWENO-N3 and HWENO-U3C4 

schemes with N = 200 at t = 20 . 
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g  
our waves quite well, but the HWENO-N3 scheme generates more

erious asymmetric solutions near discontinuities. The HWENO-

3C4 scheme shows less numerical dissipation than the HWENO-

3 scheme [39] . 

.1.4. Case 4 

 0 (x ) = 

{ −x sin ( 3 π
2 

x 2 ) , if − 1 ≤ x ≤ − 1 
3 
, 

| sin (2 πx ) | , if − 1 
3 

< x ≤ 1 
3 
, 

2 x − 1 − 1 
6 

sin (3 πx ) , if 1 
3 

≤ x ≤ 1 . 

(34) 

This initial solution [8] consists of contact discontinuities, cor-

er singularities and smooth areas. The solutions at t = 41 with

 = 400 and time step �t = �x/ 2 are plotted in Figs. 14 and 15 .

s shown in Fig. 15 , even in the smooth regions, the HWENO-

3 scheme also generates spurious waves. One possible reason is

hat, certain smooth regions may be treated as non-smooth regions
y the weight function in Eq. (12) . As we can see in Fig. 14 , the

WENO-U3C4 scheme works best. 

.2. One-dimensional Euler problems 

The governing equations are as follows, 

∂U 

∂t 
+ 

∂F 

∂x 
= 0 , (35) 

here U = (ρ, ρu, E) T , F (U) = 

(
ρu, ρu 2 + p, u (E + p) 

)
T , ρ , u,

 and p are density, velocity, total energy and pressure, respectively.

or the ideal gas, E = 

p 

γ − 1 
+ 

1 

2 
ρu 2 , where γ = 1 . 4 is the ratio of

pecific heat. Time step is taken as, 

t = 

σ�x 

max i ( | u i | + c i ) 
, (36) 

here, σ = 0 . 5 is CFL number. c is the speed of sound and given

y c = 

√ 

γ p/ρ . Three shock-tube problems [7,53] are tested. The

lobal LF splitting method [26,55] is used and all the reference
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Fig. 14. Solutions of Case 4 computed by the WENO-JS3, WENO-MN3, S-HWMN3, 

HWENO-N3 and HWENO-U3C4 schemes with N = 400 at t = 41 . 

Fig. 15. Solutions of Case 4 computed by the HWENO-N3 scheme with N = 400 at 

t = 41 . 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Solutions of Case 5 computed by the WENO-JS3, WENO-MN3, S-HWMN3, 

HWENO-N3 and HWENO-U3C4 schemes with N = 600 at t = 1 . 8 . 

Fig. 17. Enlarged plot of the S-HWMN3, HWENO-N3 and HWENO-U3C4 schemes in 

Fig. 16 . 
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solutions are obtained by the WENO-MN3 scheme with a grid of

50 0 0. 

4.2.1. Case 5 

The first 1-D case is the Shu-Osher problem [53] with the initial

condition, 

(ρ, u, p) = 

{
(3 . 857143 , 2 . 629369 , 31 / 3) −5 ≤ x < −4 , 

(1 + 0 . 2 sin (5 x ) , 0 , 1) −4 ≤ x ≤ 5 . 
(37)

Figs. 16 and 17 give the distributions of density at t = 1 . 8 by

using N = 600 . As these figures show, the HWENO-U3C4 scheme is

less dissipative than the S-HWMN3 and HWENO-N3 schemes. 

From Fig. 17 , the results for the Shu-Osher problem appear

some dispersion error. In order to investigate this phenomenon, we

apply the characteristic Roe-type flux [55] method combined with

different WENO reconstructions, and find the dispersion error can

be alleviated. For simplicity, only the results of HWENO-U3C4 are

given in Fig. 18 . 
.2.2. Case 6 

In order to compare various schemes and test their dispersion

rrors, the second case with following initial conditions is calcu-

ated, 

(ρ, u, p) = 

{
(1 , 0 , 10 0 0) 0 ≤ x < 0 . 5 , 

(1 , 0 , 0 . 01) 0 . 5 ≤ x ≤ 1 . 
(38)

Figs. 19 and 20 give the results with N = 200 and t = 0 . 012 .

imilar as the Shu-Osher problem, the dispersion errors are also

enerated, and they can be alleviated by using the characteristic

oe-type [55] flux method. 

Since the third-order upstream scheme has larger dissipation

nd dispersion errors than the fifth-order upstream scheme, the

ispersive phenomenon of the former is more apparent than that

f the latter. And hence, these schemes related to the third-order

pstream scheme may generate some dispersion errors. But with a



S. Liu, Y. Shen and J. Peng et al. / Computers and Fluids 207 (2020) 104590 9 

Fig. 18. Solutions of Case 5 computed by the HWENO-U3C4 scheme with GLF and 

Roe-type flux at N = 600. 

Fig. 19. Solutions of Case 6 computed by the WENO-JS3, WENO-MN3, S-HWMN3 

and HWENO-U3C4 schemes with LF flux, N = 200 , t = 0 . 012 . 
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Fig. 20. Solutions of Case 6 computed by the WENO-JS3, WENO-MN3, S-HWMN3, 

HWENO-N3 and HWENO-U3C4 schemes with Roe-type flux, N = 200 , t = 0 . 012 . 

Fig. 21. Solutions of Case 7 computed by the WENO-JS3, WENO-MN3, S-HWMN3 

and HWENO-U3C4 schemes with component-wise reconstruction method. 
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igh resolution Riemann solver, the dispersion errors can be alle-

iated. 

.2.3. Case 7 

The third case is the interactive blast waves problem [7] with

he initial condition, 

(ρ, u, p) = 

{ 

(1 , 0 , 10 0 0) 0 ≤ x < 0 . 1 , 

(1 , 0 , 0 . 001) 0 . 1 ≤ x < 0 . 9 , 

(1 , 0 , 100) 0 . 9 ≤ x ≤ 1 . 

(39) 

First, we test these schemes with component-wise reconstruc-

ion method, the numerical results at t = 0 . 038 with N = 600 are

resented in Fig. 21 . In this case, due to the small value (0.001)

f pressure, a small overshoot may generate negative pressure

nd make the computation breakdown, and hence no results can

e obtained by the HWENO-N3 scheme. In order to make sure

f its behavior, these schemes with the characteristic-wise recon-

truction method [26,55] are also tested, and the solutions are
iven in Fig. 22 . Numerical results show that, the HWENO-U3C4

cheme performs very well for both reconstruction methods. Even

he characteristic-wise reconstruction method is implemented, the

WENO-N3 scheme still generates spurious waves near shocks. 

.3. Two-dimensional Euler problems 

The governing equation is the two-dimensional Euler equations,

∂U 

∂t 
+ 

∂F 

∂x 
+ 

∂G 

∂y 
= 0 , (40)

here the conservative variables U , the inviscid flux vectors F and

 are, 

U = 

⎡ 

⎢ ⎣ 

ρ
ρu 

ρv 
E 

⎤ 

⎥ ⎦ 

, F = 

⎡ 

⎢ ⎣ 

ρu 

ρu 

2 + p 
ρu v 

Eu + pu 

⎤ 

⎥ ⎦ 

, G = 

⎡ 

⎢ ⎣ 

ρv 
ρu v 

ρv 2 + p 
Ev + pv 

⎤ 

⎥ ⎦ 

. (41) 
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Fig. 22. Solutions of Case 7 computed by the WENO-JS3, WENO-MN3, S-HWMN3, 

HWENO-N3 and HWENO-U3C4 schemes with characteristic-wise reconstruction 

method. 

Fig. 23. Solutions of Case 8 computed by the WENO-JS3, WENO-MN3, S-HWMN3, 

HWENO-N3 and HWENO-U3C4 schemes with 150 × 150 at t = 1 : pressure con- 

tours. 

Fig. 24. Density distribution at y = 0 of Case 8 computed by the WENO-JS3, WENO- 

MN3, S-HWMN3, HWENO-N3 and HWENO-U3C4 schemes with 150 × 150 at t = 1 . 

Fig. 25. Density distribution at y = 0 of Case 8 computed by the HWENO-N3 and 

HWENO-U3C4 schemes with 150 × 150 at t = 1 . 
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g  
here, 

 = 

p 

γ − 1 

+ 

ρ

2 

(u 

2 + v 2 ) . (42)

The time step is taken as follows, 

�t = σ �t x �t y 
�t x +�t y 

, 

�t x = 

�x 

max i, j 

(∣∣u i, j 

∣∣ + c i, j 

) , 

�t y = 

�y 

max i, j 

(∣∣v i, j 

∣∣ + c i, j 

) . 

(43)

here, σ = 0 . 5 is CFL number. In this section, the global LF flux

plitting method is used, and the Sedov blast wave problem [56] ,

iemann problem [8,57] , double Mach reflection problem [58] ,

ayleigh-Taylor instability problem [59,60] and the vortex propa-

ation problem [61] are simulated to validate the shock captur-
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Fig. 26. Solutions of Case 9 computed by the WENO-JS3, WENO-MN3, S-HWMN3, 

HWENO-N3 and HWENO-U3C4 schemes with 400 × 400 at t = 0 . 8 : density con- 

tours. 

i  

s

4

 

t  

g

 

c  

z  

s  

a  

l  

c  

s  

n  

t

4

 

[

Fig. 27. Solutions of Case 10 computed by the WENO-JS3, WENO-MN3, S-HWMN3, 

HWENO-N3 and HWENO-U3C4 schemes with 800 × 200 at t = 0 . 2 : density con- 

tours. 

Fig. 28. Comparison of the results of HWENO-N3 and Ref. in Fig. 27 , 50 density 

isolines from 1.4 to 23.8. 
ng ability and the low dissipation property of the HWENO-U3C4

cheme. 

.3.1. Case 8 

The Sedov blast wave problem [56] is a well known benchmark

est to study a strong explosion problem. The initial conditions is

iven as follows, 

(ρ, u, v , E) = 

{
(1 , 0 , 0 , 10 

−12 ) if x > �x, y > �y, 

(1 , 0 , 0 , 0 . 244816 
�x �y 

) else . 
(44) 

The computational domain is [0, 1.1] × [0, 1.1]. The numeri-

al boundary treatment is reflective for the left and bottom edges,

ero-order extrapolation for the right and top edges. The pres-

ure contours and the density distribution along x -axis at y = 0

t t = 1 with 150 × 150 is given in Figs. 23–25 , the reference so-

ution in Fig. 23 is obtained by WENO-MN3 with 600 × 600. It

an be seen that, the HWENO-U3C4 scheme resolved the strong

hock pretty well. The HWENO-N3 scheme generated oscillations

ear the strong shock regions, and hence obtained wrong propaga-

ion speed near discontinuity. 

.3.2. Case 9 

This is one of the two dimensional Riemann problems from

8,57] with the initial conditions, 

(ρ, u, v , p) = 
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Fig. 29. Comparison of the results of HWENO-U3C4 and Ref. in Fig. 27 , 50 density 

isolines from 1.4 to 23.8. 
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⎪ ⎨ 

⎪ ⎩ 

(1 . 5 , 0 , 0 , 1 . 5) 0 . 8 ≤ x ≤ 1 , 0 . 8 ≤ y ≤ 1 , 

(0 . 5323 , 1 . 206 , 0 , 0 . 3) 0 ≤ x < 0 . 8 , 0 . 8 ≤ y ≤ 1 , 

(0 . 138 , 1 . 206 , 1 . 206 , 0 . 029) 0 ≤ x < 0 . 8 , 0 ≤ y < 0 . 8 , 

(0 . 5323 , 0 , 1 . 206 , 0 . 3) 0 . 8 ≤ x ≤ 1 , 0 ≤ y < 0 . 8 . 

(45)

The density contours at t = 0 . 8 with 400 × 400 are shown in

Fig. 26 , the reference solution (Ref.) is calculated by the WENO-
Fig. 30. Solutions of Case 11 computed by the WENO-JS3, WENO-MN3, S-HWMN3, HWE
N3 scheme with 10 0 0 × 10 0 0. As we can see, the HWENO-

3C4 scheme resolved the roll-up of the Kelvin-Helmholtz insta-

ility with finer structures and the HWENO-N3 scheme generates

pparent asymmetric structures near discontinuities. 

.3.3. Case 10 

This is a double Mach reflection problem [58] used to test the

bility of shock capturing and the small scale structure resolution

f high-order schemes. The computational domain is [0, 4] × [0, 3].

t t = 0 , a right-moving Mach 10 shock with 60 degrees relative

o the x -axis is positioned at (1/6, 0). Reflecting wall (i.e., only the

ormal velocity takes reflecting value, the density, pressure and the

tream-wise velocity are extrapolated) starting from x = 1 / 6 for

ottom edge and zero-order extrapolation for right edge are im-

lemented. The top edge is set to describe the exact motion of the

ach 10 shock. The density contours at t = 0 . 2 with 800 × 200 is

lotted in Fig. 27 . Figs. 28 and 29 are the enlarged plot near Mach

tem regions, the reference solution is computed by WENO-MN3

cheme with 3200 × 800. As shown in these figures, the result of

WENO-N3 shows obvious numerical noises [26] and oscillations

ear the shock regions, while the flow structures obtained by the

WENO-U3C4 scheme are much closer to the reference. 

.3.4. Case 11 

The two-dimensional Rayleigh-Taylor instability problem

59,60] is often used to test the low dissipation of a high-order

cheme. It describes the interface instability between fluids with

ifferent densities when acceleration is directed from the heavy

uid to the light one. The gravitational effect is introduced by

dding ρ and ρv to the flux of the y -momentum and the energy

quations, respectively. The initial distribution is, 

(ρ, u, v , p) = 

{
(2 , 0 , −0 . 025 αcos (8 πx ) , 2 y + 1) , 0 ≤ y < 1 / 2 , 

(1 , 0 , −0 . 025 αcos (8 πx ) , y + 3 / 2) , 1 / 2 ≤ y < 1 , 

(46)
NO-N3 and HWENO-U3C4 schemes with 100 × 400 at t = 1 . 95 : density contours. 
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Fig. 31. Solutions of Case 12 computed by the U3, C4, WENO-JS3, WENO-MN3, S- 

HWMN3, HWENO-N3 and HWENO-U3C4 schemes with 100 × 100 at t = 20 : pres- 

sure contour lines from 0.991937 to 1.00102. 
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Fig. 32. Pressure distribution at y = 5 of Case 12 computed by the U3, C4, 

WENO-JS3, WENO-MN3, S-HWMN3, HWENO-N3 and HWENO-U3C4 schemes with 

100 × 100 at t = 20 . 

Fig. 33. Pressure distribution at y = 5 of Case 12 computed by the C4, HWENO-N3 

and HWENO-U3C4 schemes with 100 × 100 at t = 20 . 
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
nd α = 

√ 

γ p/ρ is the speed of sound with γ = 5 / 3 . The computa-

ional domain is [0, 0.25] × [0, 1]. The left and right boundaries are

eflective boundary conditions, and the top and bottom boundaries

re set as (ρ, u, v , p) = (1 , 0 , 0 , 2 . 5) and (ρ, u, v , p) = (2 , 0 , 0 , 1) ,

espectively. The solution at t = 1 . 95 is solved with 100 × 400. The

olution of WENO-MN3 with 400 × 1600 is given as a reference.

he density contours are plotted in Fig. 30 . As observed in previ-

us cases, due to less dissipation, the HWENO-U3C4 scheme gener-

tes more complex unstable structures than the others. Similar to

he Riemann problems, the HWENO-N3 scheme obtained apparent

symmetric structures. 

The computational times of each scheme for this case are given

n Table 3 . The tests are carried out with a 2.9 GHz Intel Core i7 in

ortran program. It reveals that the HWENO-U3C4 scheme needs
bout 7% more computational time than the S-HWMN3 scheme,

hile the HWENO-N3 scheme costs much more time than the oth-

rs since the time-consuming weight function Eq. (12) is used (Ref.

39] also mentioned this issue). 

.3.5. Case 12 

This is a two-dimensional periodic vortex propagation problem

61] used to assess the numerical dissipation of different schemes.

he vortex is described as a perturbation to the velocity ( u , v ),

emperature ( T = p/ρ) and entropy ( S = p/ρ) of the mean flow

(ρ, u, v , p) = (1 , 0 . 5 , 0 . 5 , 1) , 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ u = −εe (1 −r 2 ) / 2 

2 π
ȳ 

ˆ v = 

εe (1 −r 2 ) / 2 

2 π
x̄ 

ˆ T = − (γ − 1) ε2 e (1 −r 2 ) 

8 γπ2 

ˆ S = 0 

(47) 
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Table 3 

Computational time of each scheme for Case 11 in seconds. 

WENO-JS3 WENO-MN3 S-HWMN3 HWENO-N3 HWENO-U3C4 

CPU-TIME 472,794 512,761 495,039 1,317,351 529,477 

efficiency 1.00 1.08 1.05 2.79 1.12 
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where, ( ̄x , ȳ ) = (x − 5 , y − 5) , r 2 = x̄ 2 + ȳ 2 , and the vortex

strength ε = 0 . 5 . The computational domain is [0, 10] × [0, 10], and

periodic boundary condition is used in both directions. It can be

readily verified that the Euler equations with the above initial con-

ditions admit an exact solution that moves with the speed (0.5,0.5)

in the diagonal direction. The results are carried out until t = 20

with a grid of 100 × 100, to show the low dissipation of the

HWENO-U3C4 scheme. Figs. 31–33 show the pressure contours and

the pressure distribution along x -axis at y = 5 , respectively. Since

S-HWMN3 almost reaches the third order accuracy, the waves can

keep well. However, WENO-MN3 is only first order near critical

points and has large dissipation, hence, with the time evolution,

the waves are distorted. And it also can be seen that, the HWENO-

U3C4 scheme has the lowest dissipation and is very close to the

central scheme. The HWENO-N3 scheme generates spurious waves

and oscillations, even for the smooth flow field. 

5. Conclusion remarks 

This paper shows that the weighted hybrid scheme (HWENO-

N3) of the two sub-schemes, e.g., the third-order WENO-N3

scheme and the fourth-order central scheme, may generate spuri-

ous waves near shock regions. So may the hybrid WENO scheme

(HWENO-C4) combined with the WENO-MN3 and fourth-order

central schemes by using discontinuity-detecting method directly.

In order to overcome this problem, in this paper, a new two-step

method is proposed for constructing a fourth-order hybrid central

WENO scheme. 

Numerical results show that, the new hybrid scheme (HWENO-

U3C4) can achieve fourth-order accuracy in L 1 errors in smooth re-

gions including first critical point, keeps the property of essentially

non-oscillatory, and also has low numerical dissipation. 

It is worthy to note that, although only the hybrid scheme of

a third-order WENO scheme and a fourth-order central scheme is

studied in this paper, the two-step method can be easily imple-

mented for higher-order hybrid central WENO schemes, too. 
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