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ABSTRACT
In large-eddy simulations of particle-laden isotropic turbulent flows, the collision of inertial particles is strongly influenced by missing
small-scale turbulence. In this paper, we apply the Kinematic Simulation with Approximate Deconvolution (KSAD) model to determine
the contribution of small-scale turbulence to the motion of inertial particles and improve the prediction accuracy of the radial distribution
function (RDF) and radial relative velocity (RRV), which are closely related to particle collisions. Different values of Stokes numbers (St),
which are defined as the ratio of the particle response time to the Kolmogorov time scale, are considered. The KSAD model significantly
improves the prediction accuracy of the RRV for all considered St. For the prediction of RDF, good agreement between the KSAD model and
direct numerical simulations is only observed for large St, i.e., St ≥ 2.0. To explore the reason for the poor prediction of the KSAD model for
small St, we compare the Eulerian statistics of the flow fields and the Lagrangian properties of the particles from different simulations and find
the key reason is that the Gaussian turbulence generated in the kinematic simulation model is inadequate in recovering the vortex centrifugal
effect of small-scale turbulence on the inertial particle clustering at small St.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0018756., s

I. INTRODUCTION

Inertial particles exist in many industrial applications and
atmospheric processes.1–5 The clustering of inertial particles
(often referred to as preferential concentration6,7) can influence
a broad range of processes, e.g., particle settling,8,9 evapora-
tion/condensation,10,11 interparticle collisions and coagulation,12–14

and the transmission of viruses through a human sneeze.15,16 Com-
pared with experiments, numerical simulations can provide data
with high temporal and spatial resolutions, which are crucial for
studying the mechanism in the aforementioned processes. Compu-
tational models for particle-laden turbulence can be classified into
three types: direct numerical simulations (DNSs), large-eddy sim-
ulations (LESs), and the Reynolds averaged Navier–Stokes (RANS)

simulations. DNS, which can resolve all of the turbulent scales and
accurately predict the inertial particle statistics,17–19 is still not fea-
sible for simulating particle-laden turbulent flows at high Reynolds
numbers because of the extremely high computational cost.20,21 The
computational cost of RANS is low. However, RANS is not able
to predict turbulent fluctuations, which are essential in simulating
particle statistics. Moreover, LES, which directly simulates large,
energy-containing scales and models the effects of subgrid scales
(SGSs) on the large-scale processes, is emerging as an important
tool for investigating particle-laden turbulent flows.22,23 In LESs
of single-phase turbulent flows, the subgrid modeling can severely
affect the resultant turbulent statistics such as velocity decorrelation
time scales and two- or multi-particle relative dispersion of fluid par-
ticles. LESs can overpredict the velocity decorrelation time scales24,25
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while underpredicting the relative dispersion of fluid particles.26,27

An elliptic model was proposed to correctly characterize the space–
time correlation and dynamic coupling effects in turbulent flows
with the second-order approximation. The model can be used as
a criterion for evaluating the performance of LESs of turbulent
flows.28,29 In LESs of particle-laden turbulent flows, missing subgrid-
scale (SGS) turbulence has a strong influence on the collision-related
statistics of inertial particles at small and intermediate Stokes num-
bers.30,31 It is a challenging task to develop SGS models that can
accurately capture the effects of missing scales on inertial particles.
As a first step toward this goal, we test the capability of the Kine-
matic Simulation with Approximate Deconvolution (KSAD) model,
which was developed in our previous work and has been successfully
applied to the relative dispersion of fluid particles,32 in predicting
collision-related statistics.

Subgrid-scale turbulence has profound effects on the collision
of inertial particles. Sundaram and Collins17 investigated the colli-
sion statistics of heavy particles suspended in isotropic turbulence
and found that particles are depleted in regions of high vorticity at
low Stokes numbers (St) but are relatively unresponsive to small-
scale structures at high St. Following that, Ray and Collins19 sys-
tematically studied the effect of small-scale turbulence on the radial
distribution function (RDF) and radial relative velocity (RRV) of
inertial particles by applying a sharp spectral filter to the DNS veloc-
ity field; similar to the observations by Fede and Simonin,30 they
found that the filtering process decreases the RDF at low St and
the RRV at all St but increases the RDF at high St. Kuerten and
Vreman33 performed DNSs and LESs of particle-laden turbulent
channel flows and found that conventional LES methods cannot
accurately predict turbophoresis. Marchioli et al.34 investigated the
influence of subgrid turbulence on particle segregation and accu-
mulation by performing a priori and a posteriori LESs of inertial
particle dispersion in turbulent channel flows based on two types of
coarse grids; they observed that LES inaccurately predicts the local
preferential particle segregation for all grids and noted that subgrid
closure models for particles may need information on the high-order
moments of velocity fluctuations.

To accurately predict the inertial particle statistics in LESs, a
variety of models have been developed to identify the effects of
small-scale turbulence on particle motion. The approximate decon-
volution model (ADM) proposed by Stolz and Adams35 was applied
to model the subgrid effects in an LES of a particle-laden turbulent
flow.36,37 However, although the ADM improved the prediction of
the resolved scales near the filter width, it could not recognize the
velocity fluctuations of small-scale turbulence, which are important
for predicting particle clustering.31,38 To compensate for the contri-
bution of subgrid fluctuations on particle motion, stochastic models
were constructed,39–41 but these models cannot properly simulate
the interactions between particles and turbulent structures or the
relative motion between particles because the SGS velocity field is
treated as white noise.38 To remedy this issue, Ray and Collins42 used
a properly tuned kinematic simulation (KS) a priori to predict the
RDF and relative velocity in a filtered DNS (FDNS) of a particle-
laden isotropic turbulence; they showed that the FDNS+KS model
accurately predicts particle clustering when St ≥ 2.0. To improve
the capability of LESs in predicting preferential concentration in
particle-laden turbulent flows, Bassenne et al.43 recently proposed
a spectrally enriched differential filter (SDF) model based on the

dynamic differential filter model;44 they observed increased RDF
agreement between the SDF model and the DNS, except for inertial
particles at St ∼ 1. Moreover, the machine learning methods, uti-
lized for data-driven deconvolution,45,46 closure modeling,47,48 and
super-resolution reconstruction of low-resolution flow fields,49,50

can be used to account for the effects of SGS turbulence on particle
motion.

The KSAD model performs well and significantly improves the
prediction accuracy in the LES of the relative dispersion of fluid
particles.32 However, the interaction between inertial particles and
turbulence involves a wider range of scales of turbulent motions due
to the inertia. The relative dispersion of inertial particles is much
more complex than that of fluid particles, which poses a challenge
for LESs of particle-laden turbulence. It is of significance to evaluate
the performance of the KSAD model on LESs of relative dispersion
of inertial particles. The motivation of this study is to assess the per-
formance of the KSAD model in improving the prediction accuracy
in particle statistics and explore its advantages and disadvantages in
LESs of inertial particles. The objective is to apply the KSAD model
to predict the collision-related statistics of inertial particles specif-
ically in LESs of isotropic turbulent flows and to understand the
possible mechanics of inability to predict the preferential concen-
tration at small Stokes numbers. First, we assess the capability of the
KSAD model to predict the RDF and RRV at different St by com-
paring the results from LESs with the KSAD model (LES+KSAD)
with those from DNSs and LESs without the KSAD model. We then
compare the Eulerian statistics of the flow fields and the Lagrangian
flow properties sampled along the particle paths obtained from the
DNS, FDNS, FDNS+KS, LES, and LES+KSAD methods and discuss
the mechanisms of particle clustering at low St, for which the KSAD
model is generally ineffective in predicting the RDF.

The paper is organized as follows: the employed numerical
methods and governing equations are described in Sec. II; the KSAD
model is introduced in Sec. III; the ability of the KSAD model to
predict the collision-related statistics of inertial particles is evaluated
in Sec. IV, and a discussion of the mechanism related to the poor
performance of the KSAD model in predicting the RDF at low St is
presented; and finally, conclusions are drawn in Sec. V.

II. NUMERICAL METHODS
We first describe the governing equations and numerical meth-

ods employed in DNSs and LESs in Secs. II A and II B, respectively.
We then present the methods employed in the FDNS and the gov-
erning equation for the motion of inertial particles in Secs. II C and
II D.

A. Direct numerical simulation
The Navier–Stokes equation for incompressible flows is

∂u
∂t
= u × ω −∇(p

ρ
+

1
2
u2) + ν∇2u + f(x, t), (1)

∇ ⋅ u = 0, (2)

where u denotes the velocity field; ω = ∇ × u denotes the vorticity
field; and p, ρ, and ν are the pressure, density, and kinematic viscosity
of the fluid, respectively. f(x, t) is an artificial forcing term to input
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energy into the flow and maintain the level of turbulence. The setting
of f(x, t) will be implemented in Fourier space and explained in the
following context.

A DNS of homogeneous and isotropic turbulence was per-
formed using a standard pseudo-spectral method in a periodic cubic
flow domain with each edge length L = 2π. Additionally, the domain
was discretized uniformly into N3 grids. In Fourier space, Eqs. (1)
and (2) can be represented as (k ≤ kmax)

( ∂
∂t

+ νk2)û(k, t) = P(k)F(u × ω) + f̂(k, t), (3)

where û(k, t) denotes the Fourier coefficient or the fluid velocity in
Fourier space and F denotes the Fourier transformation. The pro-
jection tensor P(k) = δij − kikj/k2(i, j = 1, 2, 3) projects F(u × ω)
onto the plane normal to the wavenumber vector k and elimi-
nates the pressure gradient term in Eq. (1). The wavenumber com-
ponents in Fourier space were defined as kj = nj(2π/L), where
nj = −N/2, . . ., −1, 0, 1, . . ., N/2 − 1 for j = 1, 2, 3. The maximum
wavenumber was approximately N/3, and N = 512 was set in the
DNS. The spatial resolution was monitored by the value of kmaxη,
where η is the Kolmogorov length scale. The value of kmaxη should
be larger than 1.0 for the Kolmogorov scale of the flow to be well
resolved, and it was always larger than 1.3 in our simulations. The
fluid velocity in Fourier space was advanced in time using a second-
order Adams–Bashforth method for the nonlinear term and an exact
integration for the linear viscous term. The time step was chosen
to ensure that the Courant–Friedrichs–Lewy (CFL) number was 0.5
or less for numerical stability and accuracy. f̂(k, t) is the large-scale
forcing term in the Fourier space. There are usually two types of
large-scale forcing methods, that is, the deterministic method and
stochastic forcing method. Generally, the type of large-scale forc-
ing may affect the statistics of particle motions. This effect can be
attributed to the changing Taylor microscale Reynolds number and
turbulent structures in the flow under different forcing methods.51,52

The parameters in different methods should be properly set to avoid
undesirable effects. For the stochastic forcing method, the forcing
time scale tf is an important input parameter, and it is suggested
to set Δt < tf < τK , where Δt is the time step used to discretize
the Navier–Stokes equations and τK is the Kolmogorov timescale.
Under such a setting, statistics of both the flow and particle motion
are not sensitive to the forcing time scale.51 While for the determin-
istic forcing method used in the present paper, the energy levels in
the first two shells (0.5 < |k| < 1.5 and 1.5 < |k| < 2.5) are set to be E(1)
= 0.555 44 and E(2) = 0.159 843. The given values meet the k−5/3

energy spectrum scaling in the inertial subrange.53 Chen et al.54

found that the type of large-scale forcing schemes with proper set-
tings has little effect on the Lagrangian statistics of fluid particles in
isotropic turbulence.

B. Large-eddy simulation
An LES of homogeneous and isotropic turbulence was per-

formed at a much coarser grid resolution than the above DNS using
the same pseudo-spectral method and large-scale forcing scheme.
The governing equation in Fourier space for the LES is given by

( ∂
∂t

+ [ν + νe(k∣kc )]k2) ˆ̄u(k, t) = P(k)F(ū × ω̄) + f̂(k, t), (4)

where ū and ω̄ are the resolved velocity and vorticity in physical
space, respectively. A spectral eddy-viscosity SGS model is used,55,56

νe(k∣kc ) = ν+
e (k∣kc )

√
E(kc)/kc, (5)

ν+
e (k∣kc ) = C−3/2

k [0.441 + 15.2 exp(−3.03 kc/k)]. (6)

Here, νe(k∣kc ) denotes the spectral eddy-viscosity and kc denotes the
cutoff wavenumber in the LES. The quantity E(kc) is the value of
the energy spectrum at the cutoff wavenumber, and Ck = 2.0 was
used in this work. The above SGS model is constructed based on the
turbulent energy budget equations, which, in general, can predict the
energy spectrum, especially at low wavenumbers. The hypothesis of
a k−5/3 energy spectrum up to kc was used to parameterize the SGS
model. This hypothesis is believed to be better fulfilled in turbulent
flows with increasing Reynolds numbers.

To evaluate the effects of different SGS models on the back-
ground turbulence and particle statistics, the classical Smagorinsky
model is also used,

τij = −2(CSΔ)2∣S∣Sij + (1/3)τkkδij, (7)

∣S∣ = (2SijSij)
1/2, (8)

where Sij = 1
2(

∂ui
∂xj

+ ∂uj
∂xi
) denotes the strain rate tensor and CS

= 1
π (

2
3Ck
)

3/4
≈ 0.14 denotes the Smagorinsky coefficient.57

The comparisons of energy spectra and statistics of fluid par-
ticle pairs and inertial particles obtained from the LES with spec-
tral eddy-viscosity model and Smagorinsky model are shown in
the Appendix, demonstrating that the type of different SGS mod-
els imposes marginal influences on the statistics of the background
turbulence and the statistics of fluid and inertial particles studied in
the present paper.

C. Filtered direct numerical simulation
The velocity field of the FDNS was obtained by applying a

sharp spectral filter to the DNS velocity field, which removed all the
Fourier modes of the velocity beyond the cutoff wavenumber kc. The
filtered velocity is given by

ˆ̃u(k, t) = {û(k, t), if ∣k∣ ≤ kc,
0, otherwise. (9)

The Eulerian statistics of flow fields from the DNS, FDNS, and
LES are listed in Table I. In isotropic turbulent flows with zero mean
velocity, the Taylor Reynolds number Reλ is defined as

Reλ = u′λ/ν, (10)

where u′ =
√
⟨uiui⟩/3 is the root mean square (rms) of the turbulent

fluctuating velocity and λ = (15νu′2/ε)
1/2

is the Taylor microscale.

Corresponding to the DNS 5123, the LES with 643 grid resolution is
performed with the closure of Eqs. (5) and (6). The FDNS with kc
= 0.125kmax can be regarded as an ideal LES without any SGS model
error.
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TABLE I. Eulerian statistics of flow fields from different cases.

Case DNS FDNS LES

Grid number N3 5123 . . . 643

Maximum wavenumber kmax (kc) 170 21 21
Grid length dx 0.012 . . . 0.098
Kinematic viscosity ν 0.001 0 0.0010 0.0010
Taylor Reynolds number Reλ 205.51 . . . . . .
rms fluctuating velocity u′ 0.870 0.861 0.854
Dissipation rate ε 0.204 . . . 0.199
Spatial resolution kmaxη 1.432 . . . . . .
Kolmogorov length scale η 0.008 35 . . . . . .
Kolmogorov time scale τη 0.069 76 . . . . . .

D. Inertial particle motion
The dispersed phase is assumed to be a dilute suspension of

inertial particles, which allows us to neglect the feedback effects of
particle loading on the fluid flow. The diameter of particles dp is set
to be smaller than the Kolmogorov length scale η, so we can simulate
these particles as point particles. Then, the ratio of the particle den-
sity to the fluid density is assumed to be much larger than 1 (ρp/ρf
≫ 1); here, we only consider the drag force; thus, the equations of
motion for the particles can be written as

dX(t)
dt

= V(t), (11)

dV(t)
dt

= [u(X(t), t) −V(t)] f
τp

, (12)

where X(t) and V(t) are the particle position and velocity at time
t, respectively; u(X(t), t) is the fluid velocity seen by the parti-
cle, which can be calculated by a three-dimensional sixth-order
Lagrangian interpolation scheme; f (Rep) = 1 + 0.15Re0.687

p denotes
the nonlinear drag coefficient, Rep = ∣u −V∣dp/ν is the particle
Reynolds number, τp = ρpd2

p/18ρf ν is the particle response time,
and dp = 0.4η. To characterize the inertia of particles, we define the
Stokes number

St = τp
τη

. (13)

Equations (11) and (12) are integrated in time using the fourth-
order Adams–Moulton method and the fourth-order Adams–
Bashforth method, respectively.

We treat the particles as ghost particles and let the particle can
overlap and then move independently.58 When the distance between
two approaching particles becomes less than or equal to the diame-
ter of the particle from a larger distance than the diameter, we can
count the occurrence of a collision. In this work, we consider 20 dif-
ferent Stokes numbers, namely, St = 0.05, 0.1, 0.3, 0.5, 0.7, 1.0, 1.25,
1.5, 1.75, 2.0, 2.25, 2.5, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 15.0, and 20.0, and
use 800 000 particles for each St. These particles are introduced into
the statistically stationary flow field at random positions and with
the fluid velocity at those locations. After a sufficient time (4–6 eddy
turnover times) to allow the particles to equilibrate with the flow, we
calculate the statistics of particle clustering. To obtain statistically

accurate results, the particle statistics are averaged over several eddy
turnover times.

III. KSAD HYBRID MODEL
In this section, we present the KSAD model, which is employed

in this work to predict the clustering of inertial particles in the LES.
The KSAD model was proposed to simulate the contribution of
missing small-scale turbulence on particle motion;32 this approach
has been successfully applied to fluid particles to identify significant
differences between LESs and DNSs in the literature.27

A. Approximate deconvolution model
Based on the velocity field in the LES, the unfiltered solution of

the flow field at resolved scales can be approximated by applying an
ADM,

û∗ = Ĝ−1 ˆ̄u, (14)

where ˆ̄u is the filtered velocity in the LES, û∗ is an approximation of
the unfiltered velocity, and Ĝ−1(k) is the inverse of Ĝ, which can be
approximated as35,59

Ĝ−1(k) ≈
N

∑
n=0
(1 − Ĝ(k))n. (15)

Here, we choose N = 559 and a three-dimensional transfer
function of Gaussian from

Ĝ(k) = exp
⎛
⎝
−
∣k2∣Δ2

24
⎞
⎠

, Δ = π/kc. (16)

The velocity û∗ can be calculated by the repeated filtering of ˆ̄u,

û∗ ≈ 6ˆ̄u − 15ˆ̄̄u + 20ˆ̄̄̄u − 15
ˆ̄̄̄
ū + 6

ˆ̄̄̄
¯̄u −

ˆ̄̄̄
¯̄̄u. (17)

The ADM is used to improve the energy spectrum, especially
the dissipation spectrum, of the resolved part of the LES. The
improved dissipation spectrum is further used to construct the KS
based on Eq. (26) in Subsection III B.

B. Kinematic simulation
According to the velocity field of the LES+ADM approach, a KS

model is used to compensate for the velocity fluctuations at subgrid
scales. The standard form of the KS velocity field is42,60,61

uKS(x, t) =
Nk

∑
n=1

M

∑
m=1
{anm cos (knm ⋅ x) + bnm sin (knm ⋅ x)}, (18)

where anm and bnm are the vector coefficients of the Fourier cosine
and sine modes of the velocity, respectively; knm is the wavevec-
tor; and x is the coordinate vector. The indices “nm” are used in a
spherical coordinate system, where “n” denotes the magnitude of the
wavenumber kn = ∣knm∣ and “m” is an index of randomly oriented
wavevectors of magnitude kn. To achieve the fastest possible conver-
gence for fluid particle statistics, we used the geometric distribution
of wavenumbers beyond the cutoff wavenumber,62

kn = kc(
kmax

kc
)

n−1
Nk−1

, (19)
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knm = kn(sin θnm cosϕnm, sin θnm sinϕnm, cos θnm), (20)

where n = 1, 2, . . ., Nk and kmax is the largest wavenumber consid-
ered. The orientation angles θnm and ϕnm for the M wavevectors
associated with each wavenumber were chosen randomly from a
uniform distribution over a spherical shell of radius kn:

cos θnm ∈ [−1, 1], ϕnm ∈ [0, 2π]. (21)

To ensure the incompressibility of the subgrid velocity
uKS(x, t), we define the coefficients anm and bnm as

anm = Anm × k̂nm, bnm = Bnm × k̂nm, (22)

where k̂nm = knm/kn is a unit vector aligned with the wavevector knm.
Anm and Bnm are random vectors with independent and normally
distributed components, each with a mean of zero and a variance
of σ2

n ,

σ2
n =

1
M

E(kn)Δkn, (23)

where Δkn = (kn+1 − kn−1)/2 for n ∈ [2,Nk − 1], Δk1 = (k2 − k1)/2,
and ΔkNk = (kNk − kNk−1)/2. E(kn) denotes the subgrid energy spec-
trum at kn, which can be approximated by the DNS spectrum or a
known model spectrum,57

E(k) = Ckε
2/3 k−5/3 fη(kη), (24)

fη(kη) = exp{−β{[(kη)4 + c4
η]

1/4 − cη}}, (25)

where the dissipation rate is calculated from the LES+ADM
approach and coupling between the ADM and KS is achieved,

ε =
kmax

∫
0

2(ν + νe)k2E(k)dk, (26)

where the Kolmogorov length scale η = (ν3/ε)1/4
. Additionally,

Ck = 2.0, β = 5.2, and cη ≈ 0.15.
After obtaining the incompressible subgrid velocity uKS(x, t),

the modeled velocity field can be written as

uMODEL(x, t) = uLES/FDNS(x, t) + uKS(x, t), (27)

where uLES/FDNS(x, t) is the velocity field from the LES+ADM
approach or FDNS.

IV. RESULTS AND DISCUSSION
A. The KSAD model predictions of the RDF and RRV

The RDF and RRV are the two key statistical inputs to the col-
lision kernel for simulating finite-inertia particles suspended in tur-
bulent flows;17,19 this topic will be systematically investigated using
the KSAD model in this work. The RDF, which measures the level
of particle clustering, can be computed from a field of M particles
by binning the particles according to their separation distance as
follows:

g(r) = Qp,r/ΔVr

Qp/V
, (28)

where Qp ,r is the average number of particles found in an elemental
shell volume ΔVr at a distance r = ∣r∣ from a reference particle, V
is the total volume, and Qp = Np(Np − 1)/2 is the total number of
particle pairs in the flow. The RRV is defined as

wr(r) = [V2(x + r) −V1(x)] ⋅
r
∣r∣ , (29)

where V1(x) and V2(x + r) are the velocities of two particles located
at x and x + r, respectively.

For a monodispersed particulate system, the average collision
frequency is given by18

Nc =
n2

0

2
K(dp), (30)

K(dp) = 2πd2
pg(dp)⟨∣wr ∣⟩, (31)

where n0 ≡ Np/V denotes the particle number density, dp is the
particle diameter, and K(dp) is the collision kernel.

To assess the predictive ability of the KSAD model based on the
statistics of inertial particle clustering in the LES, the RDF and RRV
at different St from the LES+KSAD are compared with those from
the DNS and LES.

Figures 1 and 2 show the RDF variations with r/η from the
DNS, LES, and LES+KSAD for St ≤ 3.0 and St > 3.0, respectively.
Compared with that in the DNS, the lack of small-scale turbulence
in the LES causes an underestimation of RDF at low St and an over-
estimation of RDF at high St, with a crossover at approximately St
= 1.5. At low St, the RDF in the LES is underestimated because par-
ticle clustering is primarily driven by the centrifugal forcing of par-
ticles out of the vortical regions and into the straining regions of the
flow, and this centrifugal effect is strong at the small scales of turbu-
lence. The absence of small-scale coherent turbulence for particles at
low St leads to the underestimation of the RDF. For high St, the par-
ticle response times are larger than the Kolmogorov time scale, and
the small-scale turbulence acts as a random force and contributes
to a comparatively low level of clustering. The lack of random small-
scale turbulence leads to the overestimation of the RDF of particles at
high St. The crossover of the RDF at approximately St = 1.5 is caused
by the competition between the centrifugal effect and random effect
of small-scale turbulence on the particles.

In Figs. 1 and 2, we can observe the effect of the KSAD model
on the variations in RDF for different St. The KSAD model only par-
tially reduces the error between the LES and DNS for St < 2.0. For St
≥ 2.0, the results of the LES with KSAD model coincide well with the
DNS results because the KSAD model recovers the turbulent kinetic
energy at both the resolved and subgird scales in the LES (refer to
Figs. 2 and 3 in our previous work32), thus enhancing the random
motion of particles.

To intuitively show the effect of the KSAD model on particle
clustering at different St, we compare the particle distribution in a
2π × 2π × 10η slice of the flow domain based on the DNS, LES, and
LES+KSAD, as shown in Fig. 3. When St = 0.5, the lack of small-
scale turbulence decreases the RDF, primarily at small separation
levels, as shown in Fig. 1(c), and the particle distribution at large
separation levels in the LES [Fig. 3(c)] is similar to that for the DNS
[Fig. 3(a)]. When St = 6.0, the lack of small-scale turbulence reduces
the random motion of all particles and increases the RDF at different
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FIG. 1. Comparison of RDF variations with r /η from the DNS, LES, and LES+KSAD for (a) St = 0.05, (b) St = 0.1, (c) St = 0.5, (d) St = 0.7, (e) St = 1.0, (f) St = 1.5, (g) St
= 2.0, and (h) St = 3.0.

separation levels, as shown in Fig. 2(b), resulting in enhanced clus-
tering in the LES [Fig. 3(d)]. It can be observed that the KSAD model
has a minor effect on the particle distribution at St = 0.5 but signif-
icantly reduces particle clustering at St = 6.0, as shown in Fig. 3(f),
and thus improves the prediction.

Let us now consider the performance of the KSAD model based
on the averaged RRV ⟨∣wr ∣⟩. Figures 4 and 5 show comparisons of
the RRVs from the DNS, LES, and LES+KSAD for different St. The
LES consistently underestimates the RRV for all St, as opposed to
the results for the RDF, compared with the DNS results due to the
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FIG. 2. Comparison of RDF variations with r /η from the DNS, LES, and LES+KSAD for (a) St = 4.0, (b) St = 6.0, (c) St = 10.0, and (d) St = 20.0.

increase in coherence or improved correlation of velocity in the flow
field obtained in the LES.23 The KSAD model quantitatively reduces
the RRV error between the LES and DNS for both low and high St.

B. The mechanisms of particle clustering
To illustrate why the KSAD model cannot accurately predict

the RDF at low St, we compare the statistical properties of the flow
fields from the DNS, FDNS, FDNS+KS, LES, and LES+KSAD and
study the mechanisms of particle clustering. The FDNS with kc
= 0.125kmax can be regarded as an a priori LES, and we choose the
DNS spectrum as the input subgrid energy spectrum into the KS.

Figure 6 shows the probability density function (PDF) of
dimensionless velocity gradient ∂u/∂x

σ∂u/∂x
and the value of Q in the flow

fields of the DNS, LES+KSAD, and FDNS+KS. σ∂u/∂ x is the stan-
dard deviation of ∂u/∂x, and Q denotes the second invariant of the
velocity gradient tensor∇u,63 defined as

Q = 1
2
(∥Ω2∥ − ∥S2∥) = −1

2
∂ui
∂xj

∂uj
∂xi

, (32)

where Ωij = 1
2(

∂ui
∂xj
− ∂uj

∂xi
) denotes the vorticity tensor and Sij

= 1
2(

∂ui
∂xj

+ ∂uj
∂xi
) denotes the strain rate tensor. When τp is small,

the particle velocity can be approximated as V ≈ u − τpa, and
this relation can be used to obtain the Eulerian particle velocity
field as a function of the fluid velocity u and fluid acceleration a
= du/dt. Then, the divergence of the particle velocity field can be
approximated as64,65

∇ ⋅V ≈ −τp∇ ⋅ a = 2τpQ. (33)

According to Eq. (32), Q is a measure of the balance between
the vorticity and shear strain. At low St, the particle velocity field will
contract (∇ ⋅V < 0) in flow regions of low vorticity and high strain
rate with negative Q values.7 Positive Q corresponds to vortex tube
structures with high vorticity where the centrifugal force of eddies
tends to drive the particles to the regions with negative Q.

In Fig. 6(a), the PDF of the dimensionless velocity gradient
from the DNS has a negative skewness, and it is obviously larger in
the middle and wider in the tails than the Gaussian distribution. Due
to the missing small-scale turbulence, the PDFs from the FDNS and
LES are much closer to the Gaussian distribution than that from the
DNS. After generating the Gaussian turbulent-like flow field based
on the KS, the PDFs from the FDNS+KS and LES+KSAD coincide
well with the Gaussian distribution. In Fig. 6(b), the PDF of Q from
the DNS has much wider tails than that from the FDNS, demonstrat-
ing that large values of strain or vorticity are more likely in the flow
field of the DNS. The PDFs ofQ from the FDNS+KS and LES+KSAD
are wider than those from the FDNS and LES, but it cannot be recov-
ered to the PDF of Q from the DNS. According to Eq. (33), particle
clustering at low St is closely related to Q, so that the difference in
the PDFs of Q between the FDNS+KS, LES+KSAD, and DNS will be
reflected in the RDF.

To further illustrate the effect of Q on inertial particle clustering
in different flow fields, we track the inertial particles and calculate
the value of Q sampled along different particle paths.66 Figure 7
shows the PDF of dimensionless Q/σQ sampled on the particle paths
for fluid particles and inertial particles at different St from the DNS,
FDNS, FDNS+KS, LES, and LES+KSAD, where σQ is the standard
deviation of Q. The PDF from the DNS first deflects to the left with
increasing St starting from the curve of the fluid particle, which
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FIG. 3. Particle distribution for St = 0.5 [(a), (c), and (e)] and St = 6.0 [(b), (d), and (f)] superimposed on top of a 2π × 2π × 10η slice (−5η ≤ z − L/2 ≤ 5η) of the flow domain
for [(a) and (b)] the DNS 5123, [(c) and (d)] the LES 643, and [(e) and (f)] the LES 643 + KSAD.
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FIG. 4. Comparison of RRV variations with r /η from the DNS, LES, and LES+KSAD for (a) St = 0.05, (b) St = 0.1, (c) St = 0.5, (d) St = 0.7, (e) St = 1.0, (f) St = 1.5, (g) St
= 2.0, and (h) St = 3.0.

means that the particles are most likely to appear in flow regions
with negative Q values. Then, the PDF deflects to the right after the
critical value of St = 0.3, as shown in Fig. 7(a). At high St, for exam-
ple, St = 30.0, the particles have response times much larger than
the Kolmogorov time scale and they are almost unaffected by the

small-scale turbulence, and the spatial distribution of inertial parti-
cles tends to become more and more uniform in the turbulent field.
The effects due to preferential concentration and the consequently
biased sampling of the velocity gradient tensor along particle trajec-
tories are weakened, resulting in the PDF of Q along particles at high
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FIG. 5. Comparison of RRV variations with r /η from the DNS, LES, and LES+KSAD for (a) St = 4.0, (b) St = 6.0, (c) St = 10.0, and (d) St = 20.0.

St tending to be consistent with the PDF curve of fluid particles. The
absence of small-scale turbulence weakens the non-Gaussian nature
of the system, which also reduces the differences in the PDFs at dif-
ferent St for the FDNS and LES. For the Gaussian turbulence in the
FDNS+KS or LES+KSAD, the PDFs of Q sampled on the inertial
particle paths for all St are consistent with the curves of the fluid
particles.

To quantitatively measure the asymmetry of the PDF of Q, we
introduce the skewness of the PDF for Q sampled on the particle

paths; this variable is defined as

SQ =
⟨(Q − ⟨Q⟩)3⟩

⟨(Q − ⟨Q⟩)2⟩3/2
. (34)

Figure 8 compares the variations in SQ and St ⋅ SQ with St from
different simulations. In Fig. 8(a), the value of SQ in the DNS is
mostly negative for St < 1.0, which suggests that the inertial particles
are attracted to regions of negative Q due to small-scale turbulence.

FIG. 6. PDFs of (a) ∂u/∂x
σ∂u/∂x

and (b) Q in the flow fields of the DNS, LES+KSAD, and FDNS+KS.
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FIG. 7. PDF of dimensionless Q/σQ sampled on the particle paths for fluid particles and inertial particles at different St from the (a) DNS, (b) FDNS, (c) FDNS+KS, (d) LES,
and (e) LES+KSAD.

The variations in SQ in the FDNS and LES are small compared to that
found for the DNS. In the FDNS+KS or LES+KSAD, the variation in
SQ almost plots as a horizontal line under Gaussian turbulence con-
ditions. At low St, Eq. (33) directly represents the relation between
particle clustering and the value of St ⋅ SQ, as shown in Fig. 8(b). The

differences in St ⋅ SQ among the DNS, LES, and LES+KSAD demon-
strate that the KSAD model only partially improves the RDF predic-
tion of the LES [see Figs. 1(b) and 1(c)] because KSAD is unable to
reconstruct the intermittency of subgrid turbulence. When St ∈ [1.0,
2.0], the KSAD model mainly compensates for the random effect of
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FIG. 8. (a) Skewness of the PDFs for Q (SQ) and (b) St ⋅ SQ sampled on inertial particle paths at different St from the DNS and FDNS+KS. The symbols mark the numerical
values, and the horizontal lines in (a) mark SQ for fluid particles from the DNS (upper, dashed-dotted line), FDNS and LES (middle, dotted lines), and FDNS+KS and
LES+KSAD (lower, dashed lines).

small-scale turbulence but considers only a portion of the contri-
bution of the centrifugal effect; therefore, the model cannot accu-
rately predict the RDF in the vicinity of crossover between the LES
and DNS. By further increasing St, the differences in the curves in
Fig. 8(b) do not reflect particle clustering because Eq. (33) becomes
invalid. In this stage, the LES+KSAD accurately predicts the DNS
energy spectrum at both the resolved and subgrid scales;32 thus, the
generated turbulence enhances the random motion of particles and
reduces the RDF error between the LES and DNS (see Fig. 2).

V. CONCLUSION
In this paper, we test the performance of the KSAD model in

predicting the RDF and RRV of inertial particles at different St in

LESs of isotropic turbulent flows by comparing the LES results with
the DNS results. The LES without the KSAD model underestimates
the RDF at low St and the RRV at all St but overestimates the RDF
at high St due to the lack of subgrid-scale velocity fluctuations and
the reductions in velocity fluctuations at resolved scales. However,
the KSAD model is able to quantitatively predict the RRV for all St
and the RDF for St ≥ 2.0, while the improvement in the predictions
of RDF for St ≤ 1.0 is minor.

To explain the reason for the poor RDF predictions of the
KSAD model at St < 2.0, we compare the Eulerian statistics and
Lagrangian flow properties sampled on the particle paths from the
DNS, FDNS, FDNS+KS, LES, and LES+KSAD and study the mech-
anisms of particle clustering. The PDFs of the velocity gradient and
Q from the DNS are obviously larger in the middle and wider in the

FIG. 9. Comparison of energy spectra for the DNS and LES with spectral eddy-viscosity model and Smagorinsky model.
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tails than those from the FDNS+KS. Furthermore, the comparisons
of the PDFs of Q sampled on the particle paths and the correspond-
ing skewness demonstrate that the Gaussian turbulence generated
by the KS model mainly compensates for the random effect and
minimally considers the centrifugal effect of small-scale turbulence
on particle clustering. Further efforts are needed to construct a more
advanced model to recover the intermittency of the small-scale flow
field missed in the LES of particle clustering in turbulent flows.
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APPENDIX: THE EFFECT OF SGS MODELS ON FLOW
AND PARTICLE STATISTICS

To evaluate the effect of SGS models in the LES, we compare
the energy spectra and statistics of fluid particle pairs and inertial
particles in this appendix.

For a fluid particle pair, the separation distance and its variance
are defined as

R(r, t0∣τ ) =
√
R(r, t0∣τ ) ⋅ R(r, t0∣τ ), (A1)

R(r, t0∣τ ) = X(x0, t0∣t0 + τ ) −X(x0 + r, t0∣t0 + τ ), (A2)

σ2
2(r, τ) = ⟨R(r, t0∣τ ) ⋅ R(r, t0∣τ )⟩ − ⟨R(r, t0∣τ )⟩2, (A3)

where R(r, t0∣τ ) denotes the separation vector of the particle pair,
r is the initial separation vector, r = ∣r∣ is the initially prescribed
separation distance, τ is the time lag, and ⟨ ⟩ denotes the aver-
age over the particle pairs. The relative dispersion is defined as
⟨δR(r, τ) ⋅ δR(r, τ)⟩, where δR(r, τ) = R(r, t0∣τ ) − r is the separa-
tion vector increment. The one-time two-point Lagrangian velocity
correlation function is defined as

ρr(r, τ) =
⟨V(x0, t0∣t0 + τ ) ⋅V(x0 + r, t0∣t0 + τ )⟩

⟨V(x0, t0) ⋅V(x0, t0)⟩
, (A4)

where V(x0, t0) denotes the Lagrangian velocity of a fluid particle
located at x0 at the initial time t0 and V(x0, t0∣t0 + τ ) denotes the
Lagrangian velocity of that fluid particle at time t0 + τ.

Figure 9 compares the energy spectra for the DNS and LES
with different SGS models. Compared to the spectral eddy-viscosity

FIG. 11. Comparison of RDF and RRV variations with r /η from the DNS 5123 and LES 643 with the spectral eddy-viscosity model and Smagorinsky model at [(a) and (b)] St
= 0.1, [(c) and (d)] St = 1.5, and [(e) and (f)] St = 2.0.
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model, the Smagorinsky model slightly underestimates the energy
spectrum near the cutoff wavenumber due to the excessive dissipa-
tion. The excessive dissipation also reduces the velocity fluctuations
at the resolved scales, which causes the slower separation of fluid
particle pairs and more correlated flow fields. Thus, the LES with
Smagorinsky model slightly underestimates the mean and variance
of the separation distance and the relative dispersion and over-
estimates the one-time two-point Lagrangian velocity correlation
function, shown in Fig. 10.

Figure 11 plots the comparison of RDF and RRV from the
DNS 5123 and LES 643 with the spectral eddy-viscosity model and
Smagorinsky model. The statistics of inertial particles at various
Stokes numbers from the LES with Smagorinsky model are basi-
cally consistent with those from the LES with spectral eddy-viscosity
model.

Overall, the type of SGS models imposes marginal influences on
the statistics of the background turbulence and the statistics of fluid
and inertial particles studied in the present paper.
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