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� Machine learning could be used to determine oil saturation pressure.

� The new method is simple and accurate for rapid calculation.

� The new method lays a foundation for fossil hydrogen energy development.
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Saturation pressure is a vital parameter of oil reservoir which can reflect the oilfield

characteristics and determine the oilfield development process, and it is determined by

experiments in the laboratory in general. However, there was only one well with saturation

pressure test in this target reservoir, and it is necessary to determine whether this

parameter is right or not.

In this work, we present a new method for quickly determining saturation pressure

using machine learning algorithms, including random forest regressor (RF), support vector

machine (SVM), decision trees (DT), and artificial neural network (ANN or NN). Using these

approaches, saturation pressure was obtained by using the initial solution gas-oil ratio

(GOR), temperature, API gravity and other reservoir-fluid data available in the oilfields.

Compared with the empirical formula for saturation pressure calculation, the calculated

result shows that the accuracy given from machine learning is higher than that from other

formulas at home and abroad, and has a good match with the lab test. On the basis of the

calculated saturation pressure, it can determine whether the reservoir enters into the stage

of dissolved gas drive or not, which also provides the basis for maintaining the reservoir

pressure by water injection in advance, rational development decision-making and work

over measures.

This approach above can provide technical guidance for predicting the saturation

pressure in the development of different kinds of reservoirs, including the sandstone

reservoirs and carbonate reservoirs.
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Introduction

The liquid hydrocarbon inside the earth is a type of significant

fossil energy, which can form various types of fuel after

different processes [1e4]. Liquid hydrocarbon exists in various

rocks, and its properties such as pressure, phase state and

content are all affected by pores, mineral types and contents.

A series of studies on the heterogeneities of oil-bearing res-

ervoirs by Du and his collaborators have provided the irre-

placeable theoretical and experimental basis for the

occurrence and exploitation of liquid hydrocarbons which is

worthy of our great attention [5e9].

Liquid hydrocarbon usually contains some natural gas in

solution in their original condition, and the saturation pres-

sure is the pressure at which this natural gas begins to come

out of the solution and form bubbles. For oils, it equals to the

bubble point. For condensates, it equals to the dew point.

Saturation pressure is one of the important reservoir param-

eters, which can reflect the reservoir characteristics and

determine the process of oilfield development. Generally,

there are three methods to determine it: (a) sample in the

downhole liquid hydrocarbon reservoir and measure it in the

laboratory; (b) sample on the ground and determine it at the

simulated formation conditions; (c) calculate it by fitting fluid

properties parameters and relevant data [10]. The first two

methods both increase the cost of oil companies and reduce

liquid hydrocarbon production because sampling would shut

down the producer. As a result, most wells do not have satu-

ration pressure data, which bring inconveniences to reservoir

performance analysis and development decision-making. In

addition, reservoir fluids properties vary with depth along the

wellbore, there are relatively large errors when using the

samples from subsurface and surface sampling to restore

them at the formation condition and measure the saturation

pressure. It is not possible to obtain crude oil saturation

pressure using (a) and (b) for wells that have been put into

production and will be produced. For this reason, reservoir

engineers are trying to use a large amount of laboratory data

to find an indirect method that could obtain the saturation

pressure of crude oil.

At present, there aremanymethods used in the literature,

but the experiencehas shown that thesemethods are still not

ideal. Traditionally, empirical correlations (Standing, Mah-

mound, Al-Marhoun et al., Glaso, Petrosky-Farshad, and

Vasquez-Beggs) are used for saturation pressure estimation

by inputting the initial solution gas-oil ratio (GOR), temper-

ature, API gravity and other reservoir-fluid data available

[11e14]. In the past few years,machine learning has achieved

great success in various application fields. With the emer-

genceof somenewapplicationmodes, it continues to openup

newopportunities in theoil andgas industry.Now it is used in

exploration, digital core reconstruction, stratum recognition,
drilling, reservoir engineering, production operations, pipe-

line transportation, maintenance and anything in between

[15e18]. Many researchers also consider using machine

learning to predict the saturation pressure, including linear

and non-linear models. Artificial neural network becomes

popular in predicting PVT properties, and has a long history

from the late 1990s. Tree-based ensemble regressors have

robustness and are capable to maintain good accuracy for

small datasets. So, we choose to utilize the popular and su-

pervised machine learning algorithms: random forest (RF),

support vector machine (SVM), decision tree (DT) and artifi-

cial neural network (ANNorNN) in this study.However, these

studies have some limitations, such as a limited range of

pressure and temperature, restricted in somegeological area.

So, we collect and use a large range of parameters in our

research [19e22].

What is more, our target oilfield is a thick sandstone

reservoir with medium-high porosity and medium-high

permeability in a west African basin. The oilfield has been

produced by natural energy for about 4 years, and it began to

produce gas because of low reservoir pressure in the struc-

tural high two years ago. To make reasonable reservoir

development technical policies and determine when the

reservoir enters the dissolved gas flooding stage, we need to

know the saturation pressure as accurately as possible.

However, there was only one well with saturation pressure

test in this reservoir, and the thick reservoir has a great het-

erogeneity. The measured saturation pressure may not

represent the character of the full reservoirs.

In this research, we utilized the popular and supervised

machine learning algorithms (random forest, support vector

machine, decision tree and artificial neural network) to get a

more accurate and stable prediction of saturation pressure. A

brief description of the random forest theories and other three

machine learning algorithms is first presented. Then, the

methodology of machine learning models for saturation

pressure calculation is illustrated. Finally, the result from

machine learning algorithms and the empirical formula are

analyzed, and its application is also evaluated in the target

reservoir for rational development decision-making.
Methodology

Random forest

RandomForest (RF) is a supervised learning algorithm and can

be used for both classification and regression problems. The

algorithm creates a forest and makes it random to some

extent. Forest is an ensemble of decision trees, mostly trained

with the “bagging” method, which is a combination of

learning models which increases the overall result. The larger

the number of trees, the more accurate the result [23e25].
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Fig. 1 e Flowchart of Decision Trees used in Random Forest.
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A tree-like graph is utilized to show the possible conse-

quences (Fig. 1). We input a training dataset with targets and

features into the decision tree, it will form some set of rules.

These rules can be used to perform predictions. To predict

saturation pressure, we collect the initial solution gasoil ratio,

temperature, API gravity and other reservoir-fluid data as the

input. Then, through the decision tree algorithm, the rules can

be generated. We can then input the new reservoir fluid data

available and get the calculated saturation pressure. Infor-

mation gain and Gini index calculations are used in the pro-

cess of calculating these nodes and forming the rules. The

whole process of random forest can be seen in the big data

website and data science books in detail.

The following are the main steps of the whole random

forest: At the beginning, load the collected data into a Pandas

dataframe. After the quality check of this input, we can split

the data set into training sets and test sets, about pseudo-

randomly 90%e10% split. We use the training set to train the
Fig. 2 e Sample artificial neu
model and do some optimization. Finally, use the test sets to

evaluate model performance.

Other machine learning methods

Besides RF algorithm, we considered another three learning

methods, which are Support Vector Machine (SVM) and De-

cision Tree (DT) and Artificial neural network (ANN). In each

model, we use regularization methods to limit overfitting

problems in this research.

SVM is also a type of supervised learning that is mostly

used in regression and pattern recognition purposes [26]. The

algorithm depends on soft margin hyper-plane and stands on

kernel neuron function which definitely allows the projection

to higher planes and is able to solve more complicated and

nonlinear problems. The projection feature in SVM means

how similar or the parameter is and it determines the degree

of over-lap between the different parameters. Also, it affects
ral network architecture.
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Table 1 e Data source used in the model.

Oilfield location Count Source

Global 385 Ref. [29]

Nigeria Delta 23 Ref. [30]

Global 195 Ref. [31]

UAE 51 Ref. [32]

Pakistan 185 Ref. [33]

Malaysia 93 Ref. [34]

Alaska 8 Ref. [35]

West Africa 37 Unpublished

Total 977 /

Table 2 e Data range of the fluid properties.

Fluid properties Mean STD Min Max Median

T (�F) 192.65 50.93 69.98 341.60 187.00

Rs (SCF/STB) 513.07 448.46 8.61 3298.70 384.00

GG 1.01 0.42 0.17 3.44 0.85

API (�) 34.74 10.26 1.90 56.80 37.4

Pb (psi) 1788.6 1244.5 79.0 8333.6 1496.9

Table 3 e Input data for validation.

PVT parameter Value

T (�C) 62.1

P (psi) 1420

Rs (SCF/STB) 17.0

API 31.4

gg 0.67

Pb(psi) 487.2
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the classifications and clustering process based on the degree

of overlap. SVM applications can also be found in many fields

like petroleum industry,medical, business, civil, and electrical

engineering.

Decision tree is one of the frequently and widely used su-

pervised machine learning methods that can perform both

classification and regression tasks [27]. For each attribute in

the dataset, the decision tree algorithm forms a node, where

the most important attribute is placed at the root node. To

evaluate results, we start at the root node andwork way down

the tree by following the corresponding node that meets our

condition. This process continues until a leaf node is reached,

which contains the prediction or the outcome of the decision

tree. The optimization process of training of decision trees is

based on the purity or accuracy of prediction on training data.

Artificial neural network (ANN) is a kind of machine

learning algorithms that mimic human being’s biological

neural system for regression or classification problem. The
Fig. 3 e Saturation pressure distribution with each p
exact ANN algorithm used in this research is multi-layer

perceptron (MLP) regressor [28]. To easily understand the

MLP regressor, a sample artificial neural network architecture

is shown in Fig. 2. There are three parts in the system: the

input layer, the middle layer (also called the hidden layer) and

the output layer. The input layer takes input from your data-

sets, and it is also the exposed part of the network. Often a

neural network is drawn with an input layer with one neuron

per input value or column in the dataset. It simply passes the

input value through to the middle layer. Hidden layers are not
arameter （a: Temperature; b: Rs; c: API; d : ggÞ.
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Fig. 4 e Correlation between true values and predicted value of saturation pressure by threemethods. (a: DT; b: SVM; c: RF; d:

NN).
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directly exposed to the input. In a deep neural network, it has

many hidden layers. Neurons or perceptron in the hidden

layer that uses activation function to output a value for the

next hidden layer or output layer. The output layer is

responsible for outputting a value or vector of values for the

exact problem. Usually the programmer could choose any
numbers of hidden layers and the number of neurons in each

layer. When there are many hidden layers and neurons in

each layer, it will bring the possibility of over-fitting. In MLP

regressor, L2 regularization is used to avoid overfitting in the

ANN model.
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Fig. 5 e Prediction error distribution plots of data set. (a: DT; b: SVM; c: RF; d: NN).
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Results and discussions

Datasets

Datasets used to implement the different algorithms were

collected from several published sources and our company.

These datasets consist of reservoir pressure, temperature,

liquid hydrocarbon gravity, solution gas-oil ratio, and average
Fig. 6 e Pb from RF model compared wit
gas gravity for calculating saturation pressure. A total of 940

datasets from about 7 different published papers were gath-

ered and checked for quality. There are total 977 data setswith

about 37 data sets from reservoirs in a west Africa basin un-

published in the literature. Data sources and the number of

data sets collected from each source was shown in Table 1.

Data quality control is the first step before machine

learning application. The data sets may contain typos, simple

unit errors or some missing data which need to be fixed. The
h 6 common empirical correlations.
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Fig. 7 e Well production curve.
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inaccurate data set will give the wrong trained model to pre-

dict the correct value. As a result, the literature data after

cleaning has 914 samples and the total number of training sets

is 951. The statistical information is shown in Table 2 and

Fig. 3. We split the data sets into two parts: training and test

sets, the percentage about 90%e10% randomly. We use the

training sets to train the random forest model andmake some

optimizations, and use the test sets to evaluate the model

performance. Next is fitting random forest and training the

model. We’ll remove what is considered noise within feature

space to reduce the inclusion of features, helping to improve
Table 4 e Results from empirical correlations.

Methods Pb（psi）

Standing 593.1

Mahmound 429.2

Marhoun 435.0

Glaso 723.6

Decision Tree 421.4

Vasquez-Beggs 601.8

Random Forest 451.0

SVM 854.0

PetroskyFarshad 313.2

Neural Network 548.3
the accuracy of the model. Cross-validation is used for esti-

mating the predictive power of the RF model, and it performs

better than the conventional training and test sets. In this

case, the cross-validation score is 0.927, showing that the RF

model has the power and effectiveness to do the prediction.

We also use one dataset as the input to calculate the

saturation pressure, and this set also has laboratory data. The

input is shown in Table 3. After calculation, we get the pre-

dicted saturation pressure 451.3 psi from the RF model.

Comparison of four prediction methods

The prediction results calculated by RF, SVM, DT and ANN are

shown in Fig. 4 left column. The correlations between the

predicted value and measured value are demonstrated in

Fig. 4 right column. It is clear that when RF algorithm is

implemented, the prediction is the best. The Quantile-

Quantile plot illustrates that the predicted saturation pres-

sure andmeasured saturation pressure had a great agreement

with each other. The decision tree is the second-best method

comparing to SVM. The SVM cannot accurately predict the

saturation pressure value. The scatter plot shows that the tail

points deviate from the line. Fig. 4 explains the prediction

error distribution by histogram. The error of RF gives the

Gaussian distribution with small standard deviation.
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However, the error of SVM has a big range of distribution

which indicates the same results as results in Fig. 5. It can be

seen that the RF model is a better method of predicting the

saturation pressure, because it reduces the dependency be-

tween various variables significantly (see Fig. 6).

Results from three methods

Comparative studies were conducted to compare the perfor-

mance of the RF model with SVM, DT and ANN methods and

the 6 common empirical correlations (Standing, Mahmound,

Al-Marhoun et al., Glaso, Petrosky-Farshad, and Vasquez-

Beggs). SVM method has the highest value which is 854.2psi,

and Petrosky-Farshad method has the lowest value 313.2psi.

The traditional empirical correlations method determines the

coefficients by correlation in the formula, and only suit for

specific area or reservoir, so it has a greater error. The details

are shown in the Table 4 and Fig. 3.

Compared with lab test results and some empirical corre-

lations, the performance of RF model for saturation pressure

is very close to lab test and Marhoun correlation, with an

average absolute error of about 10%. There was only one well

with saturation pressure test in this reservoir, and the data

may also have an experimental and human error. Therefore,

themodel is acceptable, and the improvement in performance

is expected with more datasets. When some wells have

reservoir pressure, temperature, liquid hydrocarbon gravity,

solution gas-oil ratio, and average gas gravity data, we do not

spend extra money doing laboratory test to get saturation and

can use the RF model to calculate it for the target reservoir.

Though the saturation pressure is too complicated, it’s

better to have more information from the reservoir. But when

the experimental value of saturation pressure is not available.

There is a need for the estimation of saturation pressure via

the algorithms, such as RF model and other machine learning

methods.

In this studyweusemanydata fromall over theworld, each

of themhas different geological background and property, and

we also split the data sets into two parts: training and test sets,

the percentage about 90%e10% randomly, and the models

havegoodscore.So it can lower theeffectofgeologicalproperty

on the saturation pressure prediction. It is reasonable to use

machine learning to predict the saturation pressure.
Application

According to the methods above, the calculated saturation

pressure is 507.5 psi. The measured flow pressure of the well

on June 15, 2015, was 473.2 psi, which was lower than the

predicted saturation pressure. There was degassed gas in the

near-wellbore area and the gas-oil ratio was significantly

higher (Fig. 5). For such thick reservoirs, which are easily

degassed, they should be accurately monitored when they

enter the dissolved gas stage and determine water injection

time to maintain reservoir energy. This well group imple-

mented water injection in April 2016, after that GOR had a

descending trend and oil production rate became stable

(Fig. 7).
If dissolved gas occurred in the reservoir, the reservoirmay

move to the secondary oil recovery stage, e.g., water injection

or gas injection. The role of water injection mainly has the

following functions: Firstly, it can supplement the reservoir

energy, increase the reservoir pressure, and inhibit the

degasification of crude oil in the formation; Secondly, the

dissolved GOR increases gradually as the reservoir pressure

increases, making natural gas from the formation re-dissolves

into crude oil. After we get the predicted saturation pressure,

we can use the following formula to calculate water injection

rate to make sure the reservoir pressure higher than satura-

tion pressure.

Wi ¼
�
N�Np

�
BoiCtDp

Conclusion

Based on the results of this study, the following conclusions

can be obtained:

Compared with traditional methods, machine learning

can lower the effect of geological property on the saturation

pressure prediction. It is reasonable to use machine learning

to predict the saturation pressure.

Compared with lab test results and some empirical

correlations, the performance of the RF model for satura-

tion pressure is very close to lab test, with an average ab-

solute error.

Thismethod is simple and accurate for crude oil saturation

pressure, which lays a foundation for the next step reservoir

research and development.

Water injection measures are proposed in this research. It

can make up for the loss of formation energy, promote the

recovery of reservoir pressure and inhibit the degassing of

crude oil in the formation. The determination of the theoret-

ical water injection rate provides a basis for the development

of reasonable water injection in the oil field and evades the

risk in the water injection process.
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Nomenclature

API Stock-tank oil gravity, API

Bo Oil Formation Volume Factor, bbl/stb

Pb saturation pressure, psi

PVT Pressure Volume Temperature

Rs Solution gas-oil-ratio, scf/stb

T Temperature, �C
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gg Gas specific gravity (air ¼ 1)

go Oil specific gravity (Water ¼ 1)

Wi Water injection rate, bbl；
N OOIP (original oil in place),bbl；
Np Cumulative oil, bbl；
Boi Bg at original oil pressure

Cot Total compressibility, 1/psi ；
Dp Total pressure drop, psi
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