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Abstract

Eigenfrequency loci veering, which indicates strong mode coupling and sometimes mode localization,
is a much sought-after property in the applications of mass sensing and opto/electromechanics. A
weak physical coupling is the mechanism responsible for the eigenfrequency loci veering and overhang
is a widely used structure to realize such mechanism. A continuum model, which is more accurate

and straightforward as compared with the discrete models, is presented for the structure of two
overhanged cantilevers. The eigenvalue problem formulation based on this continuum model leads to
adirect computation of the eigenfrequencies, which does not involve any numerical discretization
procedure. A comprehensive study on the eigenfrequency loci veerings and mode splittings of the
overhanged structure is presented. The influences of various parameters on the eigenfrequency loci
crossing and veerings are also systematically studied. An efficient optimum design tool for the
eigenfrequency loci veering of an overhanged structure is provided by the continuum model together
with a direct computation method.

1. Introduction

In 1958, Anderson proposed a model of electron transport predicating the phenomenon of ‘absence of diffusion’
[1], which now is known as Anderson localization in solid-state physics and variously called energy confinement
or mode localization in structural mechanics [2]. The theory of Anderson localization essentially says that the
conventional transport as predicated by the Boltzmann or diffusion equation breaks down in disordered
systems. In an ‘ordered’ solid, once the disorder is introduced by imperfections or impurities, the eigenmodes of
the Schrodinger equation governing the electron motions may become localized rather than keeping extended,
the metallic conduction would be impossible [3]. Therefore, the solid may abruptly change from a metallic
conductor to a semiconductor or an insulator. Anderson’s work on the localization theory is the corner stone for
his award of the Nobel Prize for physics in 1977 [4]. The phenomenon of mode localization is also frequently
encountered in various periodic structures, such as large space structures with cyclic symmetry (e.g.
communication antennas and solar energy collectors) [3], turbomachinery rotor (with mistuned blades) [5],
coupled pendula [6, 7], multi-spanned string [2] and beams [8, 9], etc. In a linear vibration, an eigenmode or
mode is an eigenvector and an eigenfrequency is an eigenvalue. The mode localization is closely related with
another phenomenon called the eigenvalue loci veering in many problems of solid state physics and structural
mechanics. According to Pierre [7], ‘strong mode localization and eigenvalue loci veering are two manifestations
of the same drastic phenomenon occurring in disordered systems’. When the mistuning/disorder parameters
vary, two of the eigenvalues, which physically can represent the resonance frequencies [2, 6—8] or the buckling
loads [9], may rapidly approach each other and then diverge abruptly without crossing. This rapid approaching-
diverging behavior is called veering in structural mechanics [ 10, 11], which is more straightforwardly called
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avoided crossing [12, 13] or anti-crossing [ 14] in solid-state physics. Both the mode localization and eigenvalue
loci veering are a catastrophic phenomenon [7], i.e., a small variation in the mistuning parameters results in the
large variations of eigenvalues and mode shapes. The mode localization or energy confinement as suggested by
their names indicates the motion/energy is confined in (small) geometric regions, which is harmful to the life
span and integrity of a structure [3, 5]. While, when its catastrophic nature is ingeniously exploited, the
eigenvalue loci veering can be very useful in the applications of mass sensing [15-22] and cavity opto/
electromechanics [23-32].

Coupling is the mechanism responsible for the veering behavior of a disordered system [10, 11]. A discrete
system consisting of N identical subsystems is a N-fold degeneracy system if the subsystems are uncoupled.
Coupling, however small, changes the system uncoupled state to collective oscillations [6]. Although coupling
does not necessarily prevent a crossing, coupling can provide a degeneracy-splitting mechanism that forbids any
two of the coupled system eigenfrequencies to be the same (i.e., crossing) and thus leads to the veering [6]. When
the degeneracy is splitted by a disorder, the strong mode localization occurs because the weak coupling between
the subsystems cannot produce the extended modes in which all subsystems contribute more or less the same
amplitude [6]. In mass resonator sensors, the coupling can be realized by an overhang connecting several
substructures [15, 16, 19, 20] or by applying an electrostatic force [21, 22] or by both overhang and electrostatic
force [17, 18]. In optomechanics, a mechanical resonator forms an end of the Fabry-Pérot (FP) optical cavity.
The radiation or bolometric pressure induced by the optical cavity is the driving force for the mechanical
resonator to vibrate, which in turn changes the optical path length and affects the photon density stored in the FP
cavity [30, 32, 33]. As aresult, the optical resonance frequency is shifted and therefore, the optomechanical
coupling is realized, which is also viewed as the entanglement between photon and phonon [13]. The
optomechanical coupling results in a velocity-dependent force acting on the mechanical resonator, which can be
either damping or anti-damping [32]. The damping effect is utilized to cool a macroscopic mechanical resonator
[33],1.e., to reduce its thermal motion, and the quantum ground state has been achieved [24]. On the other hand,
the anti-damping effect is used to amplify the resonator motion and realize the self-oscillation [30]. One
development of optomechanics is to replace the optical cavity by an electrical one [23, 28], which provides more
convenient and versatile manipulations in the nanoelectromechanical systems (NEMS) [28] and optomechanics
thus becomes electromechanics. Another drastic development is no optical/electrical cavity at all, which is
replaced by ahigher mode of the mechanical resonator [13, 25-27, 29]. Mahboob et al [25] and Okamoto et al
[26] realized the coupling by connecting two resonator beams via overhangs. Faust’s is to couple the in-plane
and out-of-plane modes of one resonator string by applying electrostatic force [27, 29]. Similarly, Mathew’s is to
couple the flexural modes of a circular membrane by applying electrostatic force [13].

Due to its catastrophic nature, a tiny introduction of disorder, such as adsorption of an analyte, can cause
rather significant variations of the eigenfrequencies and mode shapes of a coupled structure, which is the sensing
mechanism of many mass resonators [15, 16, 20, 34]. In an overhanged mass resonator based on the mode shape
sensing mechanism, the effect of mode localization needs to be enhanced to increase its sensitivity [15, 16, 35].
The enhancement mechanism is to reduce the coupling stiffness [ 15, 20]. For the resonator with two overhanged
cantilevers, the physical coupling stiffness k. and the cantilever effective stiffness k are with the following relation

[20]
k wi — w?
<=2 ey
k 2w;

where w, and wy are the two (measured) adjacent eigenfrequencies and w, > wj. The difference between two
eigenfrequencies (w, — wy) is termed the frequency splitting [14]. Clearly, according to the above equation,

the smallest frequency splitting results in the smallest k. for a given k. This smallest frequency splitting is also
called veering neck [21] or veering width [35]. The eigenvalue loci veering is related to the closely spaced
eigenfrequencies [36] and the closeness of the eigenfrequency spacing can be used to evaluate the degree of mode
coupling [37]. Veering signifies strong mode coupling [ 14], which becomes stronger as its veering neck becomes
smaller [37]. An essential information conveyed by equation (1) is that a weak physical coupling (k) results in an
eigenfrequency loci veering, which corresponds to a strong mode coupling. Clearly, in equation (1) the physical
coupling is also indicated by the frequency splitting. An effective strategy to seek the strong mode coupling, or
say, to achieve a weak physical coupling is to design or tune a structure with closely spaced eigenfrequencies. For
example, Shkarin et al [31] used two modes of a square membrane with the eigenfrequency difference 0f 0.07%
to achieve a nearly complete (99.5%) hybridization of optical and mechanical modes. Okamoto et al [26] used
the two modes of the overhanged beams with the closely spaced eigenfrequencies 0f 293.94 kHz and 294.37 kHz
to achieve a high efficient energy transfer between two modes. Compared with the quantized two-ion oscillators
which are strongly coupled by the Coulomb interaction potential [12], a known technical difficulty in the opto/
electromechanics is to achieve the performance of the long-lived collective motions of a macroscopically large
mechanical resonator due to the lack of strong opto/electromechanical mode coupling [23]. Therefore, in order
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Figure 1. The schematic diagrams of an overhanged cantilever structure with two beams and their dimensions.

to achieve the strongest mode coupling, a major effort in the opto/electromechanics and related researches is to
design or tune the control parameters to identify the veeringlocus/loci[12, 13, 23,25-29, 31, 32].

As shown in figure 1, an overhang, which is variously called a shared mechanical ledge [38] or shuttle mass
[17, 18], connects two cantilevers. Overhang provides a simple and direct coupling mechanism for (sub)
structures, which has been used in various applications [15-20, 25, 26, 38]. The discrete models with the lumped
parameters have been used to study the overhanged structure [15, 17, 19, 20, 25, 26, 38, 39]. In this study, we
provide a continuum mechanics model to study the two overhanged cantilevers. The discrete model suffers from
the following two major drawbacks, which are addressed one by one by our continuum model. One is how to
obtain those lumped parameters. For a discrete model to start, the lumped parameters must be given. For
example, the effective overhanged cantilever stiffness of k is found by a continuum mechanics approach [40]
and then the effective coupling stiffness of k. in equation (1) is actually obtained by measuring two adjacent
resonance frequencies of w; and w, [20]. Finding k and k. is not an easy task [40]. A further problem is that k.and
k are different for different modes [40]. A general approach is to use the experimentally measured resonance
frequencies to find those lumped parameters by solving an inverse problem [41], which is complex and difficult.
In comparison, there is no such need to specify those parameters in our continuum model. The other drawback
is that in those discrete models [15, 17, 19, 20, 25, 26, 38], only two adjacent modes are selected mainly due to the
difficulty of specifying the lumped parameters. This can cause three major problems. Firstly, there is only one
coupling/mixing/interaction between two modes in a discrete model. For a continuum structure, there are
infinite modes. The influence of the w, — w; mode coupling on the w, mode sometimes can even be larger than
that of thew, — w; mode coupling. Together with the error of specifying the lumped parameters, this one-
interaction only discrete model shows rather significantly different results from those of experiments [19]. In
our continuum model, all mode interactions are included and thus more accurate results are expected. Secondly,
as only two modes are included in a discrete model, the focus has to be on these two modes only. In the mode-
shape based mass sensing mechanism [15, 16, 35], weak physical coupling, or say, veering, is preferred. In
contrast, in the eigenfrequency-shift based mass sensing mechanism, strong physical coupling, which is
indicated by large separations between eigenfrequencies, is preferred [39].

Through the continuum model, we provide a comprehensive view on the mode interactions by presenting
the eigenfrequency spectra, in which veerings and mode splittings can be easily identified. A pattern is found in
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this study: a veering locus of two adjacent eigenfrequencies is also the locus of the largest separation of two
different adjacent eigenfrequencies. The finding of this pattern may help a mass resonator to switch easily from
the mode-shape based mechanism to the eigenfrequency-shift based mechanism and vice versa. Unlike the
electrostatic coupling mechanism [13, 21, 22, 27, 29], which can be easily optimized during an experiment by
tuning the DC gate voltage, once an overhang is fabricated, it is a fixed structure. There is a huge demand for
optimizing the overhanged structure [15], which brings up the third problem: As the discrete model only
handles two modes each time and the difficulty of specifying lumped parameters, it will be extremely difficult
and complex to use the discrete model as an optimization design tool. Very few attempts at optimizing the
coupled cantilevers by an overhang are tried. One example is the experimental approach on two identical
overhanged cantilevers, in which the only optimizing parameter is the separation distance between two
cantilevers [20]. Our continuum model presents a systematic and comprehensive study on the impacts of
various parameters on the eigenfrequencies. For example, the geometric parameters, such as the length, width
and thickness (which implicitly includes the separation distance) and material property (Young’s modulus) of an
overhang together with the various differences such as mass, stiffness and length between two cantilevers. The
previous discrete models [15, 17, 19, 20, 25, 26, 38, 39] in essence only offer some qualitative explanations on the
experimental findings rather than providing an optimization tool. With this continuum model, an efficient and
more accurate optimization tool is presented.

2.Model development

In the schematic diagram of an overhanged cantilever structure in figure 1, one end of the overhang sis
connected with two beams and the other is clamped. Here b, h and L, are the width, thickness and length of the
overhang, respectively. The corresponding parameters for beam 1 and 2 are by, h; L, and b,, h; L,. The system
kinetic energy (T), which consists of three parts: Overhang and two beams, is given as follows
L, 2 L 2 L, 2
T = f ﬂ(@_w) dx—l—f ﬂ(%) dx + f @(_awz) dx. (2
o 2\ 0t L, 2\ 0t L, 2\ 0Ot
Here m, m; and m, are the mass per unit length of the overhang, beam 1 and beam 2, respectively. For the

rectangular sections, m = pbt, m; = p,b1yand m, = p,b, 1, (p, p; and p, are the densities of the overhang and
the two beams, respectively). The three transverse displacements of w, w; and w, are defined as the following:

w, 0 < x <L, (Displacement of the overhang)

wi, L, < x < L; (Displacement of beam 1) 3)
W, L, < x < L, (Displacement of beam 2).

The system potential /bending energy (V') is given as follows

Lo EI( 0w )’ L E L (8w ) L E,L (0w, \
Vo [ B2 Y gy [BR(O Y B0 .
o 2 (8x2) L, 2 \ 0x? L, 2 \ ox? @
where E, E;, E; and [, I1, I are the Young’s moduli and the second moments of area of the overhang and two
beams, respectively. For rectangular cross sections, I = bh®/12, I, = bk’ /12and L, = b,h; /12, respectively.

By applying the Hamilton’s Principle, ie, o f & (T — V)dt = 0, the following governing equations are derived:

+ O_WZO) 0<X<L0

d 2L+ By

lf?t
mz";? + Ezlzawz =0, L,<x<L,

Tm—0, Li<x<L (5)

The corresponding twelve boundary conditions are also derived from the Hamilton’s Principle as follows:

w(o) = 0, a—w(m =0 Dy -0 DMap-—o D2ay-o 22, -o,
ox 6x
WL = will, DL = %(L,), WLy = w2 = %(Lo),
ol Sl - Ei 2 o Mty + Ep T O 1, Ela—wuo) — 2l e Y1) + Ezfz "2 (1), ©)

The first six equations are the cantilevered boundary conditions; the last six equations are to ensue the continuity
of displacement, slope, moment and shear force atx = L, [42]. Here the Euler-Bernoulli beam model, which is
indicated by the expressions of the kinetic and potential energies, is used. The two beams are coupled via the
governing equations and the boundary conditions. Physically, the overhang is the part shared by the two beams,
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in which the two beams are with the same transverse displacement of w and two beams are thus coupled. The
continuity conditions of the last six equations of equation (6) also enforce the coupling from the boundary
condition angle. There is an issue on the beam model here: when L, is small, the overhang part geometrically is a
plate rather than a beam. While, when a plate bends into a cylindrical surface, it is still essentially a one-
dimensional structure and therefore, the beam model applies [43, 44]. Our overhang (plate) here is in the same
geometric configuration as that of Whitney’s plate, in which the beam model is used [44]. Besides the issue of the
plate behavior, the overhang portion is rather chunky when L, is small. In such scenario, the Timoshenko model
of a thick beam instead of the Euler-Bernoulli model of a slender beam should be adopted. Due to the
consideration of the rotary inertia and the shear force, all the eigenfrequencies computed by the Timoshenko
beam model are smaller than those by the Euler-Bernoulli model [45]. This can more or less affects the accuracy
of the eigenfrequency computation of an overhanged structure.

The following dimensionless quantities are introduced [46]:

E L L
T = ;14% §:£: 50:_0, 52:_2: W:Ka V\/l:m, WZZﬂ (7)
1”’11L1 L] L1 Ll Ll L] Ll

The governing equations of equation (5) are now non-dimensionalized as the following:

*w o'w
O Vg =0 0<Es§
*W, o'Wy
h S8 =, £,<E<1 ®)
U+ 2 F8 + 1+ 205 =0, <E<E

The dimensionless quantities in equation (8) are defined as follows:

Q= m . pbh o EI o Ebh3 A . my 1 = pzl’lzhz
— - — T e 1 — - - - - .
nmy plblhl EIII E1b1h13 ny plblhl
3
A=Eh Ezb2h§ -1 ©)
Elll Elbll’ll

Physically, o and -y are the dimensionless mass per unit length and bending stiffness of the overhang; A; and A,
are the beam 2 dimensionless deviations of the mass per unit length and bending stiffness from those of beam 1,
respectively. By assuming W = U (£)e™™, W, = Uy (€)e™™, Ws = U, (€)™ (w: the dimensionless circular
frequency) and substituting them into equation (8), the following solution forms are obtained

U(§) = Arsin(kB8) + Ay cos(kB8) + Assinh(k88) + Agcosh(kB8), 0 < ELE,

Ui(§) = Bisin(B¢) + By cos(5¢) + Bssinh(3§) + Bycosh(88), £, <£<1 (10)

U2(8) = Gsin(k256) + Cycos(k288) + Cssinh(k20) + Cycosh(k258), &, < § < &

Where A;, Bjand C; (i = 1 to 4) are the twelve unknown constants to be determined. The dimensionless
quantities of 3, k and &, are defined as the following:

(8] 1+A1
:’J_> = 47> = 4 . 11
B w K /7 R2 “/1+A2 (11

The boundary conditions of equation (6) now become the dimensionless ones as follows:

oU 02U, 03U, 0%U2 U
U(0) =0, a—f(m =0, 85;(1) =0, af;(n =0, 852 —5 (&) =0, 3532(52) =0,
UE) = Ui, —(5 )= %(f ) UE) = Un(Ey), —(5 )= %(5 )
o€ o€ o€ o€
0%, 03U, 03U,
852@)— 65;<5>+<1+A2> %e), w8€3(§)— Ge@ T MERE. )

In conjunction with equations (10) and (12), an eigenvalue problem can formulated by setting the determinant
ofal2 x 12 matrix zero. However, significant computation effort can be saved by using the cantilevered
boundary conditions. By substituting equation (10) into the first six boundary conditions of equation (12), the
following solution forms are obtained

U = Ay[sin(538) — sinh(k88)] + Aj[cos(xB8) — cosh(kBE)], 0<E<E,
U, = Bi[sin(B) + b3y sinh(B8) + by cosh(BE)] + By[cos(BE) + bsy sinh(BE) + byy cosh(BE)], £, << 1
= C[sin(k25) + c315inh(k23) + ¢4y cosh(k,88)] + Cylcos(k,88) + c3p8inh(k288) + cg cosh(k58)], €, < € <&y
(13)
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where b3y, b3y, by1, by and c31, €35, €41, €40 are the eight constants defined in appendix. Now by substituting
equation (13) into the last six boundary conditions of equation (12), the following equation is found:

ki ko ks ks 0 0 ) A
ko ko ks ky 00 0 || A
ksi ks 0 0 k3s ks || B
kit kiz 0 0 kys kue || B2
ksy ksa kss ksa kss ksg G
ko1 ke ko3 kes kes kes G

Z
I
]

(14)

[=NeleielNeNo)

Here V is a vector definedas V' = (A;,AL, By, B, C, G); K = K(B)isa6 x 6 matrix and its elements are given
in appendix. By setting the determinant of K zero, an eigenvalue problem is formulated and the system
eigenfrequencies can thus be obtained numerically by the Newton-Raphson method [47]. When an
eigenfrequency is found and substituted into the above equation, the following equation is obtained by setting

C, =1
ki ko ks ks 0 )[4 0
ki ky ks ks 0] A 0
k31 k32 0 0 k35 B1 = _k36 (15)
koo kia 0 0 kys|| B2 —kas
ksi ksy kss kss kss )\ Ci —kss

Once an eigenfrequency is substituted into the above equation, the constants of A, A,, By, B, and C; can be
easily found by equation (15). With the substitution of these constants and C, = 1 into equation (13), the
corresponding eigenvector is obtained.

Here we need to emphasize that equation (14) is analytically derived and the eigenfrequency computation is
adirect one, which does not involve any numerical discretization procedure. As in the crossing or veering
regions, the two eigenfrequencies are very close. As a result, some numerical discretization methods can lead to a
wrong conclusion on whether the eigenvalues cross or veer even though their computational errors are
extremely small [10]. Mathematically, the reason is that those discretization methods cannot preserve the self-
adjointness property of a continuous system [11], which introduces wrongful and unphysical coupling [10]. A
vivid example is given by Leissa [ 10] that the analytical results show the eigenfrequencies of the 3-1 and 1-3
modes of a square membrane cross each other; while, a numerical discretization method shows the wrong
computational result of veering. The recent developments [48—51] in computational mechanics using the
artificial neural network (ANN) algorithm may overcome this discretization-induced problem. In the ANN
algorithm, solving a partial differential equation (PDE), such as the governing equation of equation (8), is
formulated as an optimization problem, in which the variational energy [48] or the user-defined loss function
[49-51]is minimized. The essence of an ANN algorithm is iteration [48, 49] and the PDE governing equations
serve as the guidance to tell how to search the next points of realizing the minimization [49]. As the ANN
algorithm is mesh-free [50], the aforementioned discretization-induced problem by the classical numerical
methods such as finite element and finite difference may thus be avoided.

3. Results and discussion

The above derivations are a general one, which assumes that the material properties of the overhang, beam 1 a
beam 2 are different. Here for the simplicity reason, we assume that these three different parts are made of a same
material, i.e., E = E; = E;and p = p; = p,, which is acommon scenario of many resonator applications
[15-18,38].

Firstly, we compute a special case by setting b = 2b; = 2by,h = hy = hy, A} = A, = 0and & = 1. The
above parameters indicate that beam 1 and beam 2 are identical. When the overhanglength is £, = 0, physically
there are two separate beams which vibrate independently. When the overhanglength is §, = 1, the two beams
merge into one. Because it is customary to present the square root of the (dimensionless) eigenfrequency [46],
the variations of the first ten 3,5 (8, = /w,,n = 1to 10) as the functions of £, are presented in figure 2. The
eigenfrequency square roots of a uniform beam ( f;s) are also presented for comparison. For the convenience of
statement, we call 3, and f; eigenfrequency hereafter. In figure 2, there are only five eigenfrequencies (f;s,i = 1to
5) whose value is less than 16 and the values of these first five eigenfrequencies ( f;s) [46] are presented in table 1.
In comparison, in the same range there are ten eigenfrequencies in the overhanged structure. Because the
overhang couples the two beams, there are newly emerging eigenfrequencies of 3,;s with even subscript
numbers and marked as dashed lines in figure 2. At £, = 0, there is no overhang and the two beams are thus
uncoupled. The beams are independent and they show the characteristics of a uniform beam, i.e.,
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Figure 2. The first ten eigenfrequencies (3,, # = 1 to 10) as the functions of the overhang length (&,) for two identical beams, i.e.,

L, = Ly,m; = myand E\I, = E,I,. The dimensions of the overhangaresetasb = 2b, = 2b,andh = h; = h,; the corresponding
dimensionless parametersarea = v = 2,k = K, = 1, Ay = A, = 0and &, = 1, respectively. Heref;s (i = 1to 5) are the first five
eigenfrequencies of a uniform cantilever beam. The crossing loci are marked by Arabic numbers.

Table 1. The first five eigenfrequencies ( f;s) of a uniform beam [46] and first ten eigenfrequencies (3,s) of the overhanged structure with
& = 0.1,0.57,0.601 and 0.63. Here £, = 0.601 is the 3,/ 35 crossing locus, at which 3, = 5 = f, = 4.694 and is marked as No. 1 in
figure 2.

Uniform fi f f fi fs

beam 1.875 4.694 7.855 10.996 14.137
Overhanged B B2 Bs Ba Bs Bs 87 Bs Bo Bio
&, =0.1 1.875 2.083 4.694 5.216 7.855 8.728 10.996 12.217 14.137 15.708
£, = 0.57 1.875 4.361 4.694 7.855 10.916 10.996 14.137 17.279 18.267 20.421
& = 0.601 1.875 4.694 4.694 7.855 10.996 11.884 14.137 17.279 19.886 20.42
&, = 0.63 1.875 4.694 5.068 7.855 10.996 12.686 14.137 17.279 20.422 21.229

Baic1 = Bai = fat§, = 0. At {, = 0, the eigenfrequencies of 3,;_; and (3,; arise as a pair. As {, increases, 35;_;
and 3,;begin to separate: 3,;_, stays unchanged as f;; while, 3,; increases rapidly to approach f; . As the result,
the mode associated with (3,; also experiences the same emerging and then separating process. The similar
scenario also occurs in a circular graphene membrane [13] and overhanged beams [26] tuned by an electrostatic
force, their resemblance of eigenfrequency emerging and separating is noticed. This new (3,;-mode generating
and separating phenomenon is called mode splitting [13, 26]. The emergence of new modes is due to the

mixing of modes and mode splitting is equivalent to the transparency [13]. In opto/electromechanics, an
electromagnectically induced transparency means that the system is switched from reflecting to transmitting the
optical/electromagnetic waves [24, 33, 52].

The variation patterns of the newly emerging eigenfrequencies of (3,;s are also examined. In figure 2, there
are ten crossing loci as marked with Arabic numbers. In each crossing locus, 3,; (dashed line) and 3,;; (solid
line) experience a rapid approaching-crossing-diverging process. With the increase of the overhang length of €,,,
B,;begins to increase rapidly until a crossing locus and then keep constant until a next crossing locus. For
example, 3, rapidly increases from £, = 0 until the crossinglocus No. 1 with £, = 0.601 and then keeps
unchanged as f, until £ = 1; while, 3, increases rapidly until crossinglocus No. 2 and keeps constant until
crossing locus No. 3, the rapid increase process starts again and stops at crossing locus No. 4, 3, finally stays as
the constant of f;. For 3; 1, except 3; staying constant, others experience the cycle(s) of staying constant-
increasing. For example, 3; keeps constant until the crossing locus No. 1 and then rapidly increases until the
crossing locus No. 3 and then stays as the constant of f3. In summary, the variation pattern of 3y; is the cycle(s) of
‘rapid increasing-staying constant’ and that of 3,;_ is the cycle(s) of ‘staying constant-rapid increasing’. Higher
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Figure 3. A closer look at the crossing of 3;//3, around £, = 0.601.

eigenfrequency experiences more cycles. In figure 2, the last crossing is No. 10, which is the crossing of 35/
até, = 0.87. At&, = 1, the two overhanged beams now physically become one uniform beam. It is noticed
thatat{, = 0and &, = 1, the system eigenfrequencies are the same as those of a uniform beam ( f;s). As the
eigenfrequency of a rectangular beam is proportional to \/ El/(mlY) = \/ EW?/(12pL*) [46], the beam width has
no impact on the eigenfrequency of a uniform beam. Therefore, the two separate beams with the half width at

&, = Oshare the same eigenfrequencies of the one beam at {, = 1. In figure 2, a clear pattern also arises: when
two adjacent eigenfrequencies cross, the other two adjacent eigenfrequencies are separated with the largest
distance. For example, at the crossinglocus No. 1, 3, and 35 are closest, while 3, and 3, are apart with the largest
distance. Physically, the closely-spaced 3, and 3; indicates a weak physical coupling as discussed in equation (1).
While, the well-separated 3, and (3; indicates a strong physical coupling [39] and thus a weak mode coupling
[37]. Therefore, both the weak and strong physical couplings with a given overhang length can be achieved by
simply exciting two different sets of modes.

Figure 3 presents a closer look at the crossing locus No. 1, which is the 3,/ 35 crossing at £, = 0.601. Ten (3,
values before, at and after the crossing with £, = 0.57,0.601 and 0.63 are also presented in table 1. The crossing
pattern is the combined patterns of the 3,; _; and (3,; variations as discussed above: Before £, = 0.601, 3, rapidly
increases and [3; keeps constant; after £, = 0.601, things are reversed: 3, keeps constant as f, and 35 rapidly
increases. Because it is noted that sometimes it is very hard to distinguish crossing and veering [7, 10, 11], it is
worth discussing why the two eigenfrequencies here cross rather than veer. In figures 2 and 3, the special case of
two identical beams is handled. As analyzed above, the eigenfrequencies of a uniform beam is independent on its
width. Therefore, with any given overhang length (&,), there must be an f; eigenfrequency present all the time in
the system. In figure 3, (35 initially stays constant as 33 = f, and 3, increases rapidly, they must cross to make
B> = f> though the two beams are coupled. Physically, the eigenfrequency crossing means the generation of
degenerate modes [6] and coupling may not necessarily prevent crossing from occurring. A similar scenario is
encountered in a braced beam: when the brace of a translational spring is placed at a beam center, the two
eigenvalues (buckling loads or eigenfrequencies) cross [8]. Because the center is a node for some modes, the
presence of a spring does not change the system stiffness for those corresponding modes. Furthermore, here the
behavior of 3, rapid increasing before crossing locus and then keeping constant afterwards, is similar to the
‘ideal stiffness’ case [8, 9], in which any further increase of the stiffness of a translational bracing spring does not
raise the critical buckling load/eigenfrequency and the structure is said to be ‘fully braced’ [8]. One reason to
closely examine this special case of two identical beams is due to the discovery of intrinsic localized mode (ILM)
by Sievers and Takeno in 1988 [53]. Unlike the aforementioned defect-induced localization [ 1], ILM exists in a
perfect crystal, which is due to the anharmonicity of lattice [53]. The ILM is also found both in the microscopic
system of overhanged microcantilever arrays [54] and in the macroscopic systems of a coupled pendulum array
[55] and an electrical transmission line [56]. The so-called mono-element [54] is such case that the two
cantilevers, which form a unit in the overhanged microcantilever arrays, are identical. Analogously speaking,
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Figure 4. The first ten eigenfrequencies as the functions of the overhang length (,) for two identical beams. The dimensions of the
overhangaresetasb = 4b; = 4b,and h = h; = h,. Consequently, the corresponding dimensionless parameters now become
a=v=4,k=kK, =1,A; = A, =0and§, = 1, respectively.

there is no ‘defect’ in this two-identical-beam case and it still demonstrates the rapid approaching-diverging
behavior of eigenfrequencies, which signals the localization [7].

Compared with the structure in figure 2, the overhang width in figure 4 is doubled as b = 4b;, = 4b, and the
other parameters are the same as those in figure 2. Again, the first ten eigenfrequencies (8,s,n = 1to 10) as the
functions of the overhang length £, are plotted. A significant difference between the eigenfrequency variations in
figures 2 and 4 is that the horizontal straight lines in figure 2 now become ‘wavy’ ones in figure 4. Again, , = 01is
the scenario of two separate beams vibrating independently and that £, = 1 is the scenario of one beam;both
scenarios share the same eigenfrequencies of a uniform beam because, as discussed before, the beam width has
no impact on the eigenfrequency of a uniform beam. However, the variation of ¢, causes the variations of the
effective mass and stiffness of the overhanged structure as a whole. Furthermore, £, has different impact on the
effective mass and stiffness of different mode shape, which is responsible for the different ‘waviness’ of different
mode. A similar scenario also occurs in a step-like cantilever beam [42]. The ten crossing loci are marked by
Arabic numbers and compared with the corresponding crossing locus in figure 2, there is a slight position shift of
the crossing locus. For example, the crossing locus No. 1 shifts from £, = 0.605 in figure 2 to , = 0.625in
figure 4. In figure 5, the width of the overhang keeps the same as b = 4b, = 4b, of that in figure 4, but the
thickness nowbecomesash = 1.6h; = 1.6h,. Now the variations of eigenfrequencies become more ‘wavy’. As
discussed above, the eigenfrequencies of a uniform beam are proportional to / Eh?/(12pL*) . Asaresult, 3,;_; at
&, = lislarger than f;because of the increase of thickness. Ten crossing loci are also marked with the Arabic
numbers and again, this thickness variation also causes the shifts of the crossingloci.

In figures 2, 4 and 5, the two beams are identical and the impact of the overhang variations on the
eigenfrequencies is studied. Now let us examine how a difference, or say, a disorder between the two beams
impacts the eigenfrequencies, which is the so-called di-element case [54]. In figures 6 to 12, the dimensions of
the overhangare fixedas: b = 4b; = 4b,and h = 1.6h; = 1.6h,.In figure 6, the impact of the difference
between the two beam lengths on the eigenfrequencies is studied. The parameters of §, = 0.271 and
A; = A, = Oaresetand fixed. Here &, = 0.271 is the crossinglocus No. 7 of 35/ (5 in figure 5 (with &, = 1).
The first ten eigenfrequencies as the functions of , are plotted in figure 6. As defined in equation (7), &, is the
dimensionless length of beam 2 and that of beam 1 is always fixed as 1. The general tendency of these ten
eigenfrequencies is to decrease with the increase of £, though some eigenfrequencies keep unchanged in certain
ranges. The explanation is simple: Shorter beam is stiffer. With a length difference between the two beams,
veerings now arise. In figure 6, there are three veering loci and one crossing locus. These three veering loci are at
& = 0.585,0.79 and 1.21, which are marked by Roman numbers of I, Il and IV, respectively. L is the veering
locus of G and (3,; I1 is the veering locus of 3, and [g; IV is the veering locus of By and (. At these three veering
loci, all these three pairs of the two adjacent eigenfrequencies rapidly approach and bounce off from the value of
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Figure 5. The first ten eigenfrequencies as the functions of the overhang length (&,) for two identical beams. The dimensions of the
overhangaresetasb = 4b; = 4b,and h = 1.6h; = 1.6h,. Consequently, the corresponding dimensionless parameters now become
a =64,y =16384,k = Kk, = 1,A; = A, = 0and &, = 1, respectively.

Eigenfrequencies

Figure 6. The first ten eigenfrequencies as the functions of the beam 2 length (&,). The overhang length is £, = 0.271.

15.083, which is reason why these four loci are aligned horizontally. Il is with £, = 1, i.e., the case of two
identical beams. Therefore, IIl in figure 6 is the Gg/ 35 crossing locus of No. 7 in figure 5.

In figure 7, the overhang length is slightly changed from £, = 0.271to £, = 0.3 to see how the crossing/
veeringlociof I, II, Il and IV evolve. There are two outstanding differences occurring. One is that [Il becomes a
veering locus. As seen in figure 5, there is only one g/ 3, crossinglocus at §, = 0.271. As the overhanglength is
shifted to £, = 0.3, the gap between (3 and 3, enlarges and therefore, there is no crossing locus any more. The
other is that the gap between two adjacent eigenfrequencies, i.e., the veering neck [21] or veering width [35],
enlarges significantly at each veering locus. Figure 8 presents a comparison and closer look at the veering locus I
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Figure 7. The first ten eigenfrequencies as the functions of the beam 2 length (&,). The overhanglength is £, = 0.3.
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Figure 8. A closer look at the veerings of 3/ 3; with (a) £, = 0.271 in figure 6 marked as I and (b) £, = 0.3 in figure 7 also marked as I.

in figures 6 and 7. In figure 8(a), &, = 0.271 and the veering occurs around &, = 0.583 with the veering neck of
087 — Bs = 0.036.In comparison, £, = 0.3 in figure 8(b) and the veering occurs around &, = 0.597 with a much
larger veering neck of 3, — B¢ = 0.509. The most outstanding characteristics of veering is that the two
eigenfrequencies rapidly approach each other and then bounce off, but they do not cross. Here for the
disordered system with two beams of different lengths, the veering mechanism is coupling [2, 6, 10, 11]. The
coupling induced by an overhang generates a new mode (), which approaches rapidly towards a higher mode
(67). At the same time, the coupling prevents two eigenfrequencies to cross. The eigenfrequency loci veering as
presented in figure 8 can be understood like this: the variation of overhang length brings the two
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Figure 9. The first ten eigenfrequencies as the functions of the beam 2 length (&,). The overhanglength is {, = 0.346.

eigenfrequencies closer; while, the coupling results in a mutual repulsion to push the two eigenfrequencies away
from each other [21].

As more veeringloci are revealed by varying &, for the fixed overhanglength of £, = 0.271, we may need to
check one more case with a different £, to see if the same pattern holds. In figure 9, £, is changed as £, = 0.346,
which corresponds to the crossing locus No. 4 (with &, = 1) in figure 5. The first ten eigenfrequencies are plotted
as the functions of &,. Similar to figure 7, there are three veering loci marked by Roman numbers of I, [Tand IV,
whichareat{, = 0.5,0.735 and 1.26, respectively. Clearly, IIl with &, = 1in figure 9 is the crossing locus No. 4
in figure 5. In comparison with those in figure 6, Iin figure 9 now is the veeringlocus of 3, and 3s; Il is the
veering locus of 35 and (s; IV is the veering locus of 3; and Bg; I11 is the crossing locus of G and 3. In
conjunction with figures 6, 7 and 9, it is concluded that £, is the paramount parameter of determining the
veeringloci. The overhang length of ¢, determines the eigenfrequency value(s) of veering loci. The model of two
identical beams can effectively find the eigenfrequency value of a crossing locus together with a corresponding
&,- In reality, the two beam cannot be identical due to the fabrication errors [54] and these crossing loci thus de
facto correspond to the veering loci with the smallest veering necks. Furthermore, as shown above, once this &, is
found, several more veering loci can be found by varying a beam length.

Besides &, and &,, other parameters such as A; and A, also have their impacts. In figures 10-12, £, and &, are
fixedas&, = 0.346 and &, = 1 tostudy the effects of A; and A,. In figure 10, the effect of A is firstly studied by
setting A, = 0. The first ten eigenfrequencies as the functions of A; are plotted. As A varies from —0.1t0 0.1,
all ten eigenfrequencies monotonically decrease. The mechanism responsible for this monotonic decrease is
simple: as defined in equation (9), A is the difference of mass per unit length between beam 2 and 1; larger A,
means more mass for the system, which leads to smaller eigenfrequencies. In the range of A; € [—0.1, 0.1], there
is only one crossing locus of s and 3, at A; = 0, which corresponds to the locus No. 4 in figure 5 or the locus I11
in figure 9. We can certainly extend the variation range of A to see if there are additional crossing or veering loci.
However, this variation of A; € [—0.1, 0.1] is actually a huge variation range in the practical applications of many
sensitive mass resonator [15, 57]. By setting A; = 0, the effect of A, is studied by plotting the first ten
eigenfrequencies as the functions of A, in figure 11. Now all ten eigenfrequencies increase monotonically with
A;. As defined in equation (9), A, is the difference of bending stiffness between beam 2 and 1; larger A, meansa
larger stiffness for the whole system, which leads to larger eigenfrequencies. Again, there is only one crossing
locus Bgand 37 at A, = 0, which, again, is the locus No. 4 in figure 5 or the locus Il in figure 9. Once again, the
overhang length is the dominant parameter; the parameters of A} and A,, as seen in figures 10 and 11, serve the
tuning function for B¢ and 3;.

Figure 12 plots the variations of s and [3; as the functions of A; and A,. In the studies of eigenvalue
veerings, when there is only one varying parameter, the eigenvalue variation is a curve and the corresponding
veering problem is thus called curve veering [8]; when there are two varying parameters, the eigenvalue variation
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Figure 10. The first ten eigenfrequencies as the functions of A; with £, = 0.346,&, = 1and A, = 0.
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Figure 11. The first ten eigenfrequencies as the functions of A, with §, = 0.346,§, = land A, = 0.

becomes a surface and the name of surface veering is thus given [8]. Similarly, the surface crossing is presented in
figure 12. The crossing loci are marked as a dashed line, which is (approximately) a straight line. The explanation
for this straight line of crossing loci can be found in equations (11) and (13). The major influence of A; and A,
on the eigenfrequencies is embodied in the parameter «, in equation (13) and definition of &, is given in
equation (11)as k, = ‘{/ (1 + A)/( + A,).Therefore, when A; and A, vary with a same quantity, which isa
straightline, x, does not change and the crossing loci are thus along this straight line of , = 1. Besides x5, A,

also has its influence on the eigenfrequencies through the boundary conditions as seen in the last two equations
of equation (12). While, such influence is rather small as A, varies in the range of [—0.1, 0.1]. As the result, the
crossing loci are (approximately) a straight line as seen in figure 12.
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Figure 12. The eigenfrequencies of s and (3; as the functions of A; and A; with §, = 0.346 and &, = 1. The dashed line indicates the
crossing loci.

Finally, the limitations of the model need to be addressed. The first is the aforementioned thick beam issue,
which lowers the eigenfrequencies of the overhang portion and the veering width can thus vary when &, is small.
The second is that no damping is included in the model and damping also lowers the eigenfrequencies. The main
reason for no damping is that the damping mechanisms in a microstructure still remain unclear [58]. While,
damping is a measured quantity in a real application, which can be simply used as an input. For each mode, its
corresponding (dimensional) damping coefficient (C;) is easily obtained by measuring the bandwidth of its
frequency response curve [59]. The governing equations of equation (5) are divided into three parts due to the
discontinuity of stiffness and mass. By following the approach presented in [60], it is not hard to prove that
the operator of equation (5) is self-adjoint and therefore, the orthogonality of the modes holds. With the
orthogonality property, the ith eigenfrequency of the damped overhanged structure (w) can be easily obtained

as: wf = wj/1 — 2(? [59]. Here (; = C;/(2w;) and wj is the ith eigenfrequency of the corresponding undamped

overhanged structure. This dimensional eigenfrequency is given as w; = (374 E L, /(1 L;") and B;s here are those
dimensionless results presented in this study. The third is that the uncertainties of the structure dimensions and
material properties are not considered. Due to the fabrication tolerance and material variations or defects, the
mass (distribution) and stiffness of a microstructure may not be accurately characterized [15, 16, 54]. The
solution is to find the effective mass and stiffness by matching the (measured) resonant frequencies or (static)
deflections [40], which requires to solve an inverse problem [41, 45]. A more delicate alternative is to use the
software/algorithm which can determine those uncertain parameters by quantifying their influence on the
outputs [61].

4. Conclusions

A continuum model on the overhanged two-cantilever structure, which can be easily extended to an array with
multiple cantilevers, is proposed. Unlike a discrete model which only describes two-mode interaction, this continuum
model includes the interactions of all modes. The eigenvalue formulation leads to a direct computation on the system
eigenfrequencies without any discretization procedure. With this continuum model and a direct computation method,
the eigenfrequency loci crossing and veering are presented by simply computing the eigenfrequencies as the functions
of the overhang length /thickness and differences of the beam length, stiffness and mass. The overhang couples the two
cantilevers, which leads to the mode splitting and then crossing or veering. The mode splitting, which generates a new
mode, results from the mixing of two adjacent modes of a beam. With the increase of the overhang length, the rapid
eigenfrequency increase of this new mode results in its separation from that of the lower mode, which then leads to its
crossing or veering with that of the higher mode. When two beams are identical, crossing occurs with the presence of
the overhang coupling effect. When a disorder such as the length, mass or stiffness difference between two beams is
introduced, veering occurs due to the coupling mechanism. The overhang length is the most important parameter
determining the veering loci; the length difference of the two beams can produce more veering loci. By presenting the
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eigenfrequency spectra, a more comprehensive study is provided, which can be useful in the optimum design of the
overhanged structures. In the structure of two overhanged cantilevers, the veering indicates the strong mode coupling.
The veering locus of two adjacent eigenfrequencies also corresponds to that of two other adjacent eigenfrequencies
with the largest separation. Physically, this means that the weak and strong physical couplings can be easily alternated
by exciting two different modes, which may hold some potential applications for mass sensing or opto/
electromechanics.
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Appendix

The definitions Ofb31, b32, b41, b42 and C31, €32, C415 C42

bs1 = cos(B)cosh(B) — sin(B)sinh(B), b3, = —sin(B)cosh(B) — cos(B)sinh(3),
by = sin(B) cosh(8) — cos(B)sinh(B), by = sin(B)sinh(B3) + cos(B)cosh(f),
31 = c08(k, BE,) cosh(k, BE,) — sin(k, BE,)sinh(k, BE,),
32 = —sin(k 58;) cosh (k2 58,) — cos(k20E,)sinh(k2 5E,),
a1 = sin(k, BE,) cosh(k, BE,) — cos(k,B€,)sinh(k2 5E,),
g = sin(k58,)sinh(k2 58,) + cos(k28E,) cosh(kz 5E,).
The definitions of matrix elements of K in equation (14)
kiy = sin(kBE,) — sinh(kBE,),  kip = cos(kBE,) — cosh(k3E,),
ki3 = —sin(BE,) — bz sinh(B¢,) — by cosh(BE,),  kiy = —cos(BE,) — bsysinh(B¢,) — bay cosh(BE,),
kyy = Klcos(k5¢,) — cosh(k5E,)], ko = —k[sin(kGE,) + sinh(kFE,)],
kys = —cos(€,) — bsicosh(BE,) — barsinh(BE,),  ku = sin(B,) — bsa cosh(BE,) — b sinh(BE,),
ksi =k, ksy = ki,
k3s = —Sin(/ﬁﬂfo) - C31Sinh(/€2/6)fo) — C41 COSh(M/Bfo),
kss = —cos(k238,) — czasinh(k2536,) — cap cosh(k256,),
kn=ki ko= kn,
kas = —ka[cos(BE,) + b3 cosh(ka58,) + cq1 sinh(k258,)],
ki = ra[sin(B¢,) — ¢35 cosh(k28,) — c4p sinh(r, B8],
ksi = —yr*[sin(kB,) + sinh(kBE,)],  ks; = —yr*[cos(kf3E,) + cosh(xBE,)],
ksy = sin(B€,) — bs1sinh(BE,) — baicosh(B,),  ksq = cos(BE,) — bsasinh(5E,) — bas cosh(5¢,),
kss = —(1 + Ay 5[ —sin(r2 08, + es1sinh(r28€,) + car cosh(r 05,1,
kse = —(1 4+ Ay)K3[—cos(k23€,) + c3asinh(k28E,) + 4 cosh(k BE,)],
ke = —yr’[cos(kBE,) + cosh(kBE,)],  ker = v’ [sin(k(3,) — sinh(xGE,)],
kes = cos(BE,) — bsicosh(BE,) — barsinh(BE,),  kes = —sin(B¢,) — b3z cosh(5E,) — baz sinh(5E,),
kes = —(1 + Ay)r3[—cos(k2BE,) + c31cosh(k23E,) + car sinh(rk, 8],
kes = —(1 + Ay w3 [sin(k,5€,) + c30 cosh(k2BE,) + cap sinh(k28E,)]-
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