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Abstract
Eigenfrequency loci veering, which indicates strongmode coupling and sometimesmode localization,
is amuch sought-after property in the applications ofmass sensing and opto/electromechanics. A
weak physical coupling is themechanism responsible for the eigenfrequency loci veering and overhang
is a widely used structure to realize suchmechanism. A continuummodel, which ismore accurate
and straightforward as comparedwith the discretemodels, is presented for the structure of two
overhanged cantilevers. The eigenvalue problem formulation based on this continuummodel leads to
a direct computation of the eigenfrequencies, which does not involve any numerical discretization
procedure. A comprehensive study on the eigenfrequency loci veerings andmode splittings of the
overhanged structure is presented. The influences of various parameters on the eigenfrequency loci
crossing and veerings are also systematically studied. An efficient optimumdesign tool for the
eigenfrequency loci veering of an overhanged structure is provided by the continuummodel together
with a direct computationmethod.

1. Introduction

In 1958, Anderson proposed amodel of electron transport predicating the phenomenon of ‘absence of diffusion’
[1], which now is known asAnderson localization in solid-state physics and variously called energy confinement
ormode localization in structuralmechanics [2]. The theory of Anderson localization essentially says that the
conventional transport as predicated by the Boltzmann or diffusion equation breaks down in disordered
systems. In an ‘ordered’ solid, once the disorder is introduced by imperfections or impurities, the eigenmodes of
the Schrödinger equation governing the electronmotionsmay become localized rather than keeping extended,
themetallic conductionwould be impossible [3]. Therefore, the solidmay abruptly change fromametallic
conductor to a semiconductor or an insulator. Anderson’s work on the localization theory is the corner stone for
his award of theNobel Prize for physics in 1977 [4]. The phenomenon ofmode localization is also frequently
encountered in various periodic structures, such as large space structures with cyclic symmetry (e.g.
communication antennas and solar energy collectors) [3], turbomachinery rotor (withmistuned blades) [5],
coupled pendula [6, 7], multi-spanned string [2] and beams [8, 9], etc. In a linear vibration, an eigenmode or
mode is an eigenvector and an eigenfrequency is an eigenvalue. Themode localization is closely relatedwith
another phenomenon called the eigenvalue loci veering inmany problems of solid state physics and structural
mechanics. According to Pierre [7], ‘strongmode localization and eigenvalue loci veering are twomanifestations
of the same drastic phenomenon occurring in disordered systems’.When themistuning/disorder parameters
vary, two of the eigenvalues, which physically can represent the resonance frequencies [2, 6–8] or the buckling
loads [9], may rapidly approach each other and then diverge abruptly without crossing. This rapid approaching-
diverging behavior is called veering in structuralmechanics [10, 11], which ismore straightforwardly called
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avoided crossing [12, 13] or anti-crossing [14] in solid-state physics. Both themode localization and eigenvalue
loci veering are a catastrophic phenomenon [7], i.e., a small variation in themistuning parameters results in the
large variations of eigenvalues andmode shapes. Themode localization or energy confinement as suggested by
their names indicates themotion/energy is confined in (small) geometric regions, which is harmful to the life
span and integrity of a structure [3, 5].While, when its catastrophic nature is ingeniously exploited, the
eigenvalue loci veering can be very useful in the applications ofmass sensing [15–22] and cavity opto/
electromechanics [23–32].

Coupling is themechanism responsible for the veering behavior of a disordered system [10, 11]. A discrete
system consisting ofN identical subsystems is aN-fold degeneracy system if the subsystems are uncoupled.
Coupling, however small, changes the systemuncoupled state to collective oscillations [6]. Although coupling
does not necessarily prevent a crossing, coupling can provide a degeneracy-splittingmechanism that forbids any
two of the coupled system eigenfrequencies to be the same (i.e., crossing) and thus leads to the veering [6].When
the degeneracy is splitted by a disorder, the strongmode localization occurs because theweak coupling between
the subsystems cannot produce the extendedmodes inwhich all subsystems contributemore or less the same
amplitude [6]. Inmass resonator sensors, the coupling can be realized by an overhang connecting several
substructures [15, 16, 19, 20] or by applying an electrostatic force [21, 22] or by both overhang and electrostatic
force [17, 18]. In optomechanics, amechanical resonator forms an end of the Fabry-Pérot (FP) optical cavity.
The radiation or bolometric pressure induced by the optical cavity is the driving force for themechanical
resonator to vibrate, which in turn changes the optical path length and affects the photon density stored in the FP
cavity [30, 32, 33]. As a result, the optical resonance frequency is shifted and therefore, the optomechanical
coupling is realized, which is also viewed as the entanglement between photon and phonon [13]. The
optomechanical coupling results in a velocity-dependent force acting on themechanical resonator, which can be
either damping or anti-damping [32]. The damping effect is utilized to cool amacroscopicmechanical resonator
[33], i.e., to reduce its thermalmotion, and the quantum ground state has been achieved [24]. On the other hand,
the anti-damping effect is used to amplify the resonatormotion and realize the self-oscillation [30]. One
development of optomechanics is to replace the optical cavity by an electrical one [23, 28], which providesmore
convenient and versatilemanipulations in the nanoelectromechanical systems (NEMS) [28] and optomechanics
thus becomes electromechanics. Another drastic development is no optical/electrical cavity at all, which is
replaced by ahighermode of themechanical resonator [13, 25–27, 29].Mahboob et al [25] andOkamoto et al
[26] realized the coupling by connecting two resonator beams via overhangs. Faust’s is to couple the in-plane
and out-of-planemodes of one resonator string by applying electrostatic force [27, 29]. Similarly,Mathew’s is to
couple theflexuralmodes of a circularmembrane by applying electrostatic force [13].

Due to its catastrophic nature, a tiny introduction of disorder, such as adsorption of an analyte, can cause
rather significant variations of the eigenfrequencies andmode shapes of a coupled structure, which is the sensing
mechanismofmanymass resonators [15, 16, 20, 34]. In an overhangedmass resonator based on themode shape
sensingmechanism, the effect ofmode localization needs to be enhanced to increase its sensitivity [15, 16, 35].
The enhancementmechanism is to reduce the coupling stiffness [15, 20]. For the resonator with two overhanged
cantilevers, the physical coupling stiffness kc and the cantilever effective stiffness k arewith the following relation
[20]

( )w w
w

=
-k

k 2
, 1c 2

2
1
2

1
2

whereω2 andω1 are the two (measured) adjacent eigenfrequencies andω2>ω1. The difference between two
eigenfrequencies (ω2−ω1) is termed the frequency splitting [14]. Clearly, according to the above equation,
the smallest frequency splitting results in the smallest kc for a given k. This smallest frequency splitting is also
called veering neck [21] or veeringwidth [35]. The eigenvalue loci veering is related to the closely spaced
eigenfrequencies [36] and the closeness of the eigenfrequency spacing can be used to evaluate the degree ofmode
coupling [37]. Veering signifies strongmode coupling [14], which becomes stronger as its veering neck becomes
smaller [37]. An essential information conveyed by equation (1) is that aweak physical coupling (kc) results in an
eigenfrequency loci veering, which corresponds to a strongmode coupling. Clearly, in equation (1) the physical
coupling is also indicated by the frequency splitting. An effective strategy to seek the strongmode coupling, or
say, to achieve aweak physical coupling is to design or tune a structurewith closely spaced eigenfrequencies. For
example, Shkarin et al [31] used twomodes of a squaremembranewith the eigenfrequency difference of 0.07%
to achieve a nearly complete (99.5%) hybridization of optical andmechanicalmodes. Okamoto et al [26] used
the twomodes of the overhanged beamswith the closely spaced eigenfrequencies of 293.94 kHz and 294.37 kHz
to achieve a high efficient energy transfer between twomodes. Comparedwith the quantized two-ion oscillators
which are strongly coupled by theCoulomb interaction potential [12], a known technical difficulty in the opto/
electromechanics is to achieve the performance of the long-lived collectivemotions of amacroscopically large
mechanical resonator due to the lack of strong opto/electromechanicalmode coupling [23]. Therefore, in order
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to achieve the strongestmode coupling, amajor effort in the opto/electromechanics and related researches is to
design or tune the control parameters to identify the veering locus/loci [12, 13, 23, 25–29, 31, 32].

As shown infigure 1, an overhang, which is variously called a sharedmechanical ledge [38] or shuttlemass
[17, 18], connects two cantilevers. Overhang provides a simple and direct couplingmechanism for (sub)
structures, which has been used in various applications [15–20, 25, 26, 38]. The discretemodels with the lumped
parameters have been used to study the overhanged structure [15, 17, 19, 20, 25, 26, 38, 39]. In this study, we
provide a continuummechanicsmodel to study the two overhanged cantilevers. The discretemodel suffers from
the following twomajor drawbacks, which are addressed one by one by our continuummodel. One is how to
obtain those lumped parameters. For a discretemodel to start, the lumped parametersmust be given. For
example, the effective overhanged cantilever stiffness of k is found by a continuummechanics approach [40]
and then the effective coupling stiffness of kc in equation (1) is actually obtained bymeasuring two adjacent
resonance frequencies ofω1 andω2 [20]. Finding k and kc is not an easy task [40]. A further problem is that kc and
k are different for differentmodes [40]. A general approach is to use the experimentallymeasured resonance
frequencies tofind those lumped parameters by solving an inverse problem [41], which is complex and difficult.
In comparison, there is no such need to specify those parameters in our continuummodel. The other drawback
is that in those discretemodels [15, 17, 19, 20, 25, 26, 38], only two adjacentmodes are selectedmainly due to the
difficulty of specifying the lumped parameters. This can cause threemajor problems. Firstly, there is only one
coupling/mixing/interaction between twomodes in a discretemodel. For a continuum structure, there are
infinitemodes. The influence of theω2−ω3 mode coupling on theω2mode sometimes can even be larger than
that of theω2−ω1mode coupling. Together with the error of specifying the lumped parameters, this one-
interaction only discretemodel shows rather significantly different results from those of experiments [19]. In
our continuummodel, allmode interactions are included and thusmore accurate results are expected. Secondly,
as only twomodes are included in a discretemodel, the focus has to be on these twomodes only. In themode-
shape basedmass sensingmechanism [15, 16, 35], weak physical coupling, or say, veering, is preferred. In
contrast, in the eigenfrequency-shift basedmass sensingmechanism, strong physical coupling, which is
indicated by large separations between eigenfrequencies, is preferred [39].

Through the continuummodel, we provide a comprehensive view on themode interactions by presenting
the eigenfrequency spectra, in which veerings andmode splittings can be easily identified. A pattern is found in

Figure 1.The schematic diagrams of an overhanged cantilever structurewith two beams and their dimensions.
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this study: a veering locus of two adjacent eigenfrequencies is also the locus of the largest separation of two
different adjacent eigenfrequencies. Thefinding of this patternmay help amass resonator to switch easily from
themode-shape basedmechanism to the eigenfrequency-shift basedmechanism and vice versa. Unlike the
electrostatic couplingmechanism [13, 21, 22, 27, 29], which can be easily optimized during an experiment by
tuning theDC gate voltage, once an overhang is fabricated, it is afixed structure. There is a huge demand for
optimizing the overhanged structure [15], which brings up the third problem: As the discretemodel only
handles twomodes each time and the difficulty of specifying lumped parameters, it will be extremely difficult
and complex to use the discretemodel as an optimization design tool. Very few attempts at optimizing the
coupled cantilevers by an overhang are tried. One example is the experimental approach on two identical
overhanged cantilevers, inwhich the only optimizing parameter is the separation distance between two
cantilevers [20]. Our continuummodel presents a systematic and comprehensive study on the impacts of
various parameters on the eigenfrequencies. For example, the geometric parameters, such as the length, width
and thickness (which implicitly includes the separation distance) andmaterial property (Young’smodulus) of an
overhang togetherwith the various differences such asmass, stiffness and length between two cantilevers. The
previous discretemodels [15, 17, 19, 20, 25, 26, 38, 39] in essence only offer some qualitative explanations on the
experimental findings rather than providing an optimization tool.With this continuummodel, an efficient and
more accurate optimization tool is presented.

2.Model development

In the schematic diagramof an overhanged cantilever structure infigure 1, one end of the overhang sis
connectedwith two beams and the other is clamped.Here b, h and Lo are thewidth, thickness and length of the
overhang, respectively. The corresponding parameters for beam1 and 2 are b1, h1 L1 and b2, h2 L2. The system
kinetic energy (T), which consists of three parts: Overhang and two beams, is given as follows

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝
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⎠ ( )ò ò ò=

¶
¶
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¶
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¶
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m w

t
dx

m w

t
dx

m w
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1 2

Herem,m1 andm2 are themass per unit length of the overhang, beam1 and beam2, respectively. For the
rectangular sections,m=ρ bt, r=m b t1 1 1 1 and r=m b t2 2 2 2 (ρ, ρ1 and ρ2 are the densities of the overhang and
the two beams, respectively). The three transverse displacements ofw,w1 andw2 are defined as the following:

⎧
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The systempotential/bending energy (V ) is given as follows
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where E,E1, E2 and I, I1, I2 are the Young’smoduli and the secondmoments of area of the overhang and two
beams, respectively. For rectangular cross sections, =I bh 123 , =I b h 121 1 1

3 and =I b h 122 2 2
3 , respectively.

By applying theHamilton’s Principle, i.e., ( )òd - =T V dt 0
t

t

1

2 , the following governing equations are derived:
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The corresponding twelve boundary conditions are also derived from theHamilton’s Principle as follows:
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Thefirst six equations are the cantilevered boundary conditions; the last six equations are to ensue the continuity
of displacement, slope,moment and shear force at x=Lo [42]. Here the Euler-Bernoulli beammodel, which is
indicated by the expressions of the kinetic and potential energies, is used. The two beams are coupled via the
governing equations and the boundary conditions. Physically, the overhang is the part shared by the two beams,
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inwhich the two beams are with the same transverse displacement ofw and two beams are thus coupled. The
continuity conditions of the last six equations of equation (6) also enforce the coupling from the boundary
condition angle. There is an issue on the beammodel here: when Lo is small, the overhang part geometrically is a
plate rather than a beam.While, when a plate bends into a cylindrical surface, it is still essentially a one-
dimensional structure and therefore, the beammodel applies [43, 44]. Our overhang (plate) here is in the same
geometric configuration as that ofWhitney’s plate, inwhich the beammodel is used [44]. Besides the issue of the
plate behavior, the overhang portion is rather chunkywhen Lo is small. In such scenario, the Timoshenkomodel
of a thick beam instead of the Euler-Bernoulli model of a slender beam should be adopted. Due to the
consideration of the rotary inertia and the shear force, all the eigenfrequencies computed by the Timoshenko
beammodel are smaller than those by the Euler-Bernoulli model [45]. This canmore or less affects the accuracy
of the eigenfrequency computation of an overhanged structure.

The following dimensionless quantities are introduced [46]:
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The governing equations of equation (5) are nownon-dimensionalized as the following:
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The dimensionless quantities in equation (8) are defined as follows:
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Physically,α and γ are the dimensionlessmass per unit length and bending stiffness of the overhang;Δ1 andΔ2

are the beam2dimensionless deviations of themass per unit length and bending stiffness from those of beam1,
respectively. By assuming ( )x= wtW U ei , ( )x= wtW U ei

1 1 , ( )x= wtW U ei
2 2 (ω: the dimensionless circular

frequency) and substituting them into equation (8), the following solution forms are obtained
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WhereAi,Bi andCi (i=1 to 4) are the twelve unknown constants to be determined. The dimensionless
quantities ofβ,κ andκ2 are defined as the following:
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The boundary conditions of equation (6)nowbecome the dimensionless ones as follows:
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In conjunctionwith equations (10) and (12), an eigenvalue problem can formulated by setting the determinant
of a 12×12matrix zero.However, significant computation effort can be saved by using the cantilevered
boundary conditions. By substituting equation (10) into thefirst six boundary conditions of equation (12), the
following solution forms are obtained
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where b31, b32, b41, b42 and c31, c32, c41, c42 are the eight constants defined in appendix.Nowby substituting
equation (13) into the last six boundary conditions of equation (12), the following equation is found:
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Here

V is a vector defined as


V

T = (A1,A1,B1,B2,C1,C2);K=K(β) is a 6×6matrix and its elements are given
in appendix. By setting the determinant ofK zero, an eigenvalue problem is formulated and the system
eigenfrequencies can thus be obtained numerically by theNewton-Raphsonmethod [47].When an
eigenfrequency is found and substituted into the above equation, the following equation is obtained by setting
C2=1.
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Once an eigenfrequency is substituted into the above equation, the constants ofA1,A2,B1,B2 andC1 can be
easily found by equation (15).With the substitution of these constants andC2=1 into equation (13), the
corresponding eigenvector is obtained.

Here we need to emphasize that equation (14) is analytically derived and the eigenfrequency computation is
a direct one, which does not involve any numerical discretization procedure. As in the crossing or veering
regions, the two eigenfrequencies are very close. As a result, some numerical discretizationmethods can lead to a
wrong conclusion onwhether the eigenvalues cross or veer even though their computational errors are
extremely small [10].Mathematically, the reason is that those discretizationmethods cannot preserve the self-
adjointness property of a continuous system [11], which introduces wrongful and unphysical coupling [10]. A
vivid example is given by Leissa [10] that the analytical results show the eigenfrequencies of the 3-1 and 1-3
modes of a squaremembrane cross each other; while, a numerical discretizationmethod shows thewrong
computational result of veering. The recent developments [48–51] in computationalmechanics using the
artificial neural network (ANN) algorithmmay overcome this discretization-induced problem. In theANN
algorithm, solving a partial differential equation (PDE), such as the governing equation of equation (8), is
formulated as an optimization problem, inwhich the variational energy [48] or the user-defined loss function
[49–51] isminimized. The essence of anANNalgorithm is iteration [48, 49] and the PDE governing equations
serve as the guidance to tell how to search the next points of realizing theminimization [49]. As theANN
algorithm ismesh-free [50], the aforementioned discretization-induced problemby the classical numerical
methods such asfinite element andfinite differencemay thus be avoided.

3. Results and discussion

The above derivations are a general one, which assumes that thematerial properties of the overhang, beam1 a
beam2 are different. Here for the simplicity reason, we assume that these three different parts aremade of a same
material, i.e., = =E E E1 2 and ρ=ρ1=ρ2, which is a common scenario ofmany resonator applications
[15–18, 38].

Firstly, we compute a special case by setting b=2b1=2b2, h=h1=h2,Δ1=Δ2=0 and ξ2=1. The
above parameters indicate that beam1 and beam2 are identical.When the overhang length is x = 0o , physically
there are two separate beamswhich vibrate independently.When the overhang length is ξo=1, the two beams
merge into one. Because it is customary to present the square root of the (dimensionless) eigenfrequency [46],
the variations of the first ten b sn (b w=n n , n=1 to 10) as the functions of ξo are presented infigure 2. The
eigenfrequency square roots of a uniformbeam ( fis) are also presented for comparison. For the convenience of
statement, we callβn and fi eigenfrequency hereafter. Infigure 2, there are onlyfive eigenfrequencies ( fis, i=1 to
5)whose value is less than 16 and the values of these firstfive eigenfrequencies ( fis) [46] are presented in table 1.
In comparison, in the same range there are ten eigenfrequencies in the overhanged structure. Because the
overhang couples the two beams, there are newly emerging eigenfrequencies of b si2 with even subscript
numbers andmarked as dashed lines infigure 2. At ξo=0, there is no overhang and the two beams are thus
uncoupled. The beams are independent and they show the characteristics of a uniformbeam, i.e.,
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b b= =- fi i i2 1 2 at x = 0o . At x = 0o , the eigenfrequencies of b -i2 1 andβ2i arise as a pair. As ξo increases, b -i2 1

andβ2i begin to separate:β2i−1 stays unchanged as fi; while,β2i increases rapidly to approach +fi 1. As the result,
themode associatedwithβ2i also experiences the same emerging and then separating process. The similar
scenario also occurs in a circular graphenemembrane [13] and overhanged beams [26] tuned by an electrostatic
force, their resemblance of eigenfrequency emerging and separating is noticed. This newβ2i-mode generating
and separating phenomenon is calledmode splitting [13, 26]. The emergence of newmodes is due to the
mixing ofmodes andmode splitting is equivalent to the transparency [13]. In opto/electromechanics, an
electromagnectically induced transparencymeans that the system is switched from reflecting to transmitting the
optical/electromagnetic waves [24, 33, 52].

The variation patterns of the newly emerging eigenfrequencies of b si2 are also examined. Infigure 2, there
are ten crossing loci asmarkedwithArabic numbers. In each crossing locus,β2i (dashed line) and b +i2 1 (solid
line) experience a rapid approaching-crossing-diverging process.With the increase of the overhang length of ξo,
β2i begins to increase rapidly until a crossing locus and then keep constant until a next crossing locus. For
example,β2 rapidly increases from ξo=0 until the crossing locusNo. 1with ξo=0.601 and then keeps
unchanged as f2 until ξ=1; while,β4 increases rapidly until crossing locusNo. 2 and keeps constant until
crossing locusNo. 3, the rapid increase process starts again and stops at crossing locusNo. 4,β4finally stays as
the constant of f4. For b -i2 1, exceptβ1 staying constant, others experience the cycle(s) of staying constant-
increasing. For example,β3 keeps constant until the crossing locusNo. 1 and then rapidly increases until the
crossing locusNo. 3 and then stays as the constant of f3. In summary, the variation pattern of b i2 is the cycle(s) of
‘rapid increasing-staying constant’ and that of b -i2 1 is the cycle(s) of ‘staying constant-rapid increasing’. Higher

Figure 2.The first ten eigenfrequencies (βn, n=1 to 10) as the functions of the overhang length (ξo) for two identical beams, i.e.,
L1=L2,m1=m2 andE1I1=E2I2. The dimensions of the overhang are set as b=2b1=2b2 and h=h1=h2; the corresponding
dimensionless parameters areα=γ=2,κ=κ2=1,Δ1=Δ2=0 and ξ2=1, respectively. Here fis (i=1 to 5) are thefirstfive
eigenfrequencies of a uniform cantilever beam. The crossing loci aremarked byArabic numbers.

Table 1.The firstfive eigenfrequencies ( fis) of a uniformbeam [46] andfirst ten eigenfrequencies (βns) of the overhanged structurewith
ξo=0.1, 0.57, 0.601 and 0.63.Here ξo=0.601 is theβ2/β3 crossing locus, at whichβ2=β3=f2=4.694 and ismarked asNo. 1 in
figure 2.

Uniform f1 L f2 L f3 L f4 L f5 L
beam 1.875 L 4.694 L 7.855 L 10.996 L 14.137 L

Overhanged β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

ξo=0.1 1.875 2.083 4.694 5.216 7.855 8.728 10.996 12.217 14.137 15.708

x = 0.57o 1.875 4.361 4.694 7.855 10.916 10.996 14.137 17.279 18.267 20.421

ξo=0.601 1.875 4.694 4.694 7.855 10.996 11.884 14.137 17.279 19.886 20.42

ξo=0.63 1.875 4.694 5.068 7.855 10.996 12.686 14.137 17.279 20.422 21.229
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eigenfrequency experiencesmore cycles. Infigure 2, the last crossing is No. 10, which is the crossing ofβ5/β6
at ξo=0.87. At ξo=1, the two overhanged beams nowphysically become one uniformbeam. It is noticed
that at ξo=0 and ξo=1, the system eigenfrequencies are the same as those of a uniformbeam ( fis). As the
eigenfrequency of a rectangular beam is proportional to ( ) ( )r=EI mL Eh L124 2 4 [46], the beamwidth has
no impact on the eigenfrequency of a uniformbeam. Therefore, the two separate beamswith the half width at
ξo=0 share the same eigenfrequencies of the one beamat ξo=1. Infigure 2, a clear pattern also arises: when
two adjacent eigenfrequencies cross, the other two adjacent eigenfrequencies are separatedwith the largest
distance. For example, at the crossing locusNo. 1,β2 andβ3 are closest, whileβ2 andβ1 are apart with the largest
distance. Physically, the closely-spacedβ2 andβ3 indicates aweak physical coupling as discussed in equation (1).
While, thewell-separatedβ2 andβ1 indicates a strong physical coupling [39] and thus aweakmode coupling
[37]. Therefore, both theweak and strong physical couplingswith a given overhang length can be achieved by
simply exciting two different sets ofmodes.

Figure 3 presents a closer look at the crossing locusNo. 1, which is theβ2/β3 crossing at ξo=0.601. Tenβn
values before, at and after the crossing with ξo=0.57, 0.601 and 0.63 are also presented in table 1. The crossing
pattern is the combined patterns of theβ2i−1 andβ2i variations as discussed above: Before ξo=0.601,β2 rapidly
increases andβ3 keeps constant; after ξo=0.601, things are reversed: β2 keeps constant as f2 andβ3 rapidly
increases. Because it is noted that sometimes it is very hard to distinguish crossing and veering [7, 10, 11], it is
worth discussingwhy the two eigenfrequencies here cross rather than veer. Infigures 2 and 3, the special case of
two identical beams is handled. As analyzed above, the eigenfrequencies of a uniformbeam is independent on its
width. Therefore, with any given overhang length (ξo), theremust be an fi eigenfrequency present all the time in
the system. Infigure 3,β3 initially stays constant asβ3=f2 andβ2 increases rapidly, theymust cross tomake
β2=f2 though the two beams are coupled. Physically, the eigenfrequency crossingmeans the generation of
degeneratemodes [6] and couplingmay not necessarily prevent crossing fromoccurring. A similar scenario is
encountered in a braced beam:when the brace of a translational spring is placed at a beam center, the two
eigenvalues (buckling loads or eigenfrequencies) cross [8]. Because the center is a node for somemodes, the
presence of a spring does not change the system stiffness for those correspondingmodes. Furthermore, here the
behavior ofβ2 rapid increasing before crossing locus and then keeping constant afterwards, is similar to the
‘ideal stiffness’ case [8, 9], inwhich any further increase of the stiffness of a translational bracing spring does not
raise the critical buckling load/eigenfrequency and the structure is said to be ‘fully braced’ [8]. One reason to
closely examine this special case of two identical beams is due to the discovery of intrinsic localizedmode (ILM)
by Sievers andTakeno in 1988 [53]. Unlike the aforementioned defect-induced localization [1], ILM exists in a
perfect crystal, which is due to the anharmonicity of lattice [53]. The ILM is also found both in themicroscopic
systemof overhangedmicrocantilever arrays [54] and in themacroscopic systems of a coupled pendulum array
[55] and an electrical transmission line [56]. The so-calledmono-element [54] is such case that the two
cantilevers, which form a unit in the overhangedmicrocantilever arrays, are identical. Analogously speaking,

Figure 3.A closer look at the crossing ofβ3/β2 around ξo=0.601.
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there is no ‘defect’ in this two-identical-beam case and it still demonstrates the rapid approaching-diverging
behavior of eigenfrequencies, which signals the localization [7].

Comparedwith the structure infigure 2, the overhangwidth infigure 4 is doubled as b=4b1=4b2 and the
other parameters are the same as those infigure 2. Again, thefirst ten eigenfrequencies (βns, n=1 to 10) as the
functions of the overhang length ξo are plotted. A significant difference between the eigenfrequency variations in
figures 2 and 4 is that the horizontal straight lines infigure 2 nowbecome ‘wavy’ ones infigure 4. Again, ξo=0 is
the scenario of two separate beams vibrating independently and that ξo=1 is the scenario of one beam;both
scenarios share the same eigenfrequencies of a uniform beambecause, as discussed before, the beamwidth has
no impact on the eigenfrequency of a uniformbeam.However, the variation of ξo causes the variations of the
effectivemass and stiffness of the overhanged structure as a whole. Furthermore, ξo has different impact on the
effectivemass and stiffness of differentmode shape, which is responsible for the different ‘waviness’ of different
mode. A similar scenario also occurs in a step-like cantilever beam [42]. The ten crossing loci aremarked by
Arabic numbers and comparedwith the corresponding crossing locus infigure 2, there is a slight position shift of
the crossing locus. For example, the crossing locusNo. 1 shifts from ξo=0.605 infigure 2 to ξo=0.625 in
figure 4. Infigure 5, thewidth of the overhang keeps the same as b=4b1=4b2 of that infigure 4, but the
thickness nowbecomes as h=1.6h1=1.6h2. Now the variations of eigenfrequencies becomemore ‘wavy’. As

discussed above, the eigenfrequencies of a uniformbeam are proportional to ( )rEh L122 4 . As a result,β2i−1 at
ξo=1 is larger than fi because of the increase of thickness. Ten crossing loci are alsomarkedwith the Arabic
numbers and again, this thickness variation also causes the shifts of the crossing loci.

Infigures 2, 4 and 5, the two beams are identical and the impact of the overhang variations on the
eigenfrequencies is studied.Now let us examine how a difference, or say, a disorder between the two beams
impacts the eigenfrequencies, which is the so-called di-element case [54]. Infigures 6 to 12, the dimensions of
the overhang arefixed as: b=4b1=4b2 and h=1.6h1=1.6h2. Infigure 6, the impact of the difference
between the two beam lengths on the eigenfrequencies is studied. The parameters of ξo=0.271 and
Δ1=Δ2=0 are set andfixed.Here ξo=0.271 is the crossing locusNo. 7 ofβ8/β9 infigure 5 (with ξ2=1).
Thefirst ten eigenfrequencies as the functions of ξ2 are plotted infigure 6. As defined in equation (7), ξ2 is the
dimensionless length of beam2 and that of beam1 is alwaysfixed as 1. The general tendency of these ten
eigenfrequencies is to decrease with the increase of ξ2 though some eigenfrequencies keep unchanged in certain
ranges. The explanation is simple: Shorter beam is stiffer.With a length difference between the two beams,
veerings now arise. Infigure 6, there are three veering loci and one crossing locus. These three veering loci are at
ξ2=0.585, 0.79 and 1.21, which aremarked by Roman numbers of I, II and IV, respectively. I is the veering
locus ofβ6 andβ7; II is the veering locus ofβ7 andβ8; IV is the veering locus ofβ9 andβ10. At these three veering
loci, all these three pairs of the two adjacent eigenfrequencies rapidly approach and bounce off from the value of

Figure 4.The first ten eigenfrequencies as the functions of the overhang length (ξo) for two identical beams. The dimensions of the
overhang are set as b=4b1=4b2 and h=h1=h2. Consequently, the corresponding dimensionless parameters nowbecome
α=γ=4,κ=κ2=1,Δ1=Δ2=0 and ξ2=1, respectively.
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15.083, which is reasonwhy these four loci are aligned horizontally. III is with ξ2=1, i.e., the case of two
identical beams. Therefore, III infigure 6 is theβ8/β9 crossing locus ofNo. 7 infigure 5.

Infigure 7, the overhang length is slightly changed from ξo=0.271 to ξo=0.3 to see how the crossing/
veering loci of I , II, III and IV evolve. There are two outstanding differences occurring. One is that III becomes a
veering locus. As seen infigure 5, there is only oneβ8/β9 crossing locus at ξo=0.271. As the overhang length is
shifted to ξo=0.3, the gap betweenβ8 andβ9 enlarges and therefore, there is no crossing locus anymore. The
other is that the gap between two adjacent eigenfrequencies, i.e., the veering neck [21] or veeringwidth [35],
enlarges significantly at each veering locus. Figure 8 presents a comparison and closer look at the veering locus I

Figure 5.The first ten eigenfrequencies as the functions of the overhang length (ξo) for two identical beams. The dimensions of the
overhang are set as b=4b1=4b2 and h=1.6h1=1.6h2. Consequently, the corresponding dimensionless parameters now become
α=6.4, γ=16.384,κ=κ2=1,Δ1=Δ2=0 and ξ2=1, respectively.

Figure 6.The first ten eigenfrequencies as the functions of the beam2 length (ξ2). The overhang length is ξo=0.271.
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infigures 6 and 7. Infigure 8(a), ξo=0.271 and the veering occurs around ξ2=0.583with the veering neck of
β7−β6=0.036. In comparison, ξo=0.3 infigure 8(b) and the veering occurs around ξ2=0.597with amuch
larger veering neck ofβ7−β6=0.509. Themost outstanding characteristics of veering is that the two
eigenfrequencies rapidly approach each other and then bounce off, but they do not cross. Here for the
disordered systemwith two beams of different lengths, the veeringmechanism is coupling [2, 6, 10, 11]. The
coupling induced by an overhang generates a newmode (β6), which approaches rapidly towards a highermode
(β7). At the same time, the coupling prevents two eigenfrequencies to cross. The eigenfrequency loci veering as
presented infigure 8 can be understood like this: the variation of overhang length brings the two

Figure 7.The first ten eigenfrequencies as the functions of the beam2 length (ξ2). The overhang length is ξo=0.3.

Figure 8.A closer look at the veerings ofβ6/β7 with (a) ξo=0.271 infigure 6marked as I and (b) ξo=0.3 infigure 7 alsomarked as I.
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eigenfrequencies closer; while, the coupling results in amutual repulsion to push the two eigenfrequencies away
from each other [21].

Asmore veering loci are revealed by varying ξ2 for thefixed overhang length of ξo=0.271, wemay need to
check onemore case with a different ξo to see if the same pattern holds. Infigure 9, ξo is changed as ξo=0.346,
which corresponds to the crossing locusNo. 4 (with ξ2=1) infigure 5. Thefirst ten eigenfrequencies are plotted
as the functions of ξ2. Similar tofigure 7, there are three veering locimarked by Romannumbers of I, II and IV,
which are at ξ2=0.5, 0.735 and 1.26, respectively. Clearly, III with ξ2=1 infigure 9 is the crossing locusNo. 4
infigure 5. In comparisonwith those infigure 6, I infigure 9 now is the veering locus ofβ4 andβ5; II is the
veering locus ofβ5 andβ6; IV is the veering locus ofβ7 andβ8; III is the crossing locus ofβ6 andβ7. In
conjunctionwith figures 6, 7 and 9, it is concluded that ξo is the paramount parameter of determining the
veering loci. The overhang length of ξo determines the eigenfrequency value(s) of veering loci. Themodel of two
identical beams can effectively find the eigenfrequency value of a crossing locus together with a corresponding
ξo. In reality, the two beam cannot be identical due to the fabrication errors [54] and these crossing loci thus de
facto correspond to the veering loci with the smallest veering necks. Furthermore, as shown above, once this ξo is
found, severalmore veering loci can be found by varying a beam length.

Besides ξo and ξ2, other parameters such asΔ1 andΔ2 also have their impacts. Infigures 10–12, ξo and ξ2 are
fixed as ξo=0.346 and ξ2=1 to study the effects ofΔ1 andΔ2. Infigure 10, the effect ofΔ1 isfirstly studied by
settingΔ2=0. Thefirst ten eigenfrequencies as the functions ofΔ1 are plotted. AsΔ1 varies from−0.1 to 0.1,
all ten eigenfrequenciesmonotonically decrease. Themechanism responsible for thismonotonic decrease is
simple: as defined in equation (9),Δ1 is the difference ofmass per unit length between beam2 and 1; largerΔ1

meansmoremass for the system, which leads to smaller eigenfrequencies. In the range ofΔ1ä [−0.1, 0.1], there
is only one crossing locus ofβ6 andβ7 atΔ1=0, which corresponds to the locusNo. 4 infigure 5 or the locus III
infigure 9.We can certainly extend the variation range ofΔ1 to see if there are additional crossing or veering loci.
However, this variation ofΔ1ä [−0.1, 0.1] is actually a huge variation range in the practical applications ofmany
sensitivemass resonator [15, 57]. By settingΔ1=0, the effect ofΔ2 is studied by plotting thefirst ten
eigenfrequencies as the functions ofΔ2 infigure 11.Now all ten eigenfrequencies increasemonotonically with
Δ2. As defined in equation (9),Δ2 is the difference of bending stiffness between beam2 and 1; largerΔ2means a
larger stiffness for thewhole system,which leads to larger eigenfrequencies. Again, there is only one crossing
locusβ6 andβ7 atΔ2=0, which, again, is the locusNo. 4 infigure 5 or the locus III infigure 9. Once again, the
overhang length is the dominant parameter; the parameters ofΔ1 andΔ2, as seen infigures 10 and 11, serve the
tuning function forβ6 andβ7.

Figure 12 plots the variations ofβ6 andβ7 as the functions ofΔ1 andΔ2. In the studies of eigenvalue
veerings, when there is only one varying parameter, the eigenvalue variation is a curve and the corresponding
veering problem is thus called curve veering [8]; when there are two varying parameters, the eigenvalue variation

Figure 9.The first ten eigenfrequencies as the functions of the beam2 length (ξ2). The overhang length is ξo=0.346.
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becomes a surface and the name of surface veering is thus given [8]. Similarly, the surface crossing is presented in
figure 12. The crossing loci aremarked as a dashed line, which is (approximately) a straight line. The explanation
for this straight line of crossing loci can be found in equations (11) and (13). Themajor influence ofΔ1 andΔ2

on the eigenfrequencies is embodied in the parameterκ2 in equation (13) and definition ofκ2 is given in
equation (11) as ( ) ( )k = + D + D1 12 1 2

4 . Therefore, whenΔ1 andΔ2 varywith a same quantity, which is a
straight line,κ2 does not change and the crossing loci are thus along this straight line ofκ2=1. Besidesκ2,Δ2

also has its influence on the eigenfrequencies through the boundary conditions as seen in the last two equations
of equation (12).While, such influence is rather small asΔ2 varies in the range of [−0.1, 0.1]. As the result, the
crossing loci are (approximately) a straight line as seen infigure 12.

Figure 10.The first ten eigenfrequencies as the functions ofΔ1 with ξo=0.346, ξ2=1 andΔ2=0.

Figure 11.The first ten eigenfrequencies as the functions ofΔ2 with ξo=0.346, ξ2=1 andΔ1=0.
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Finally, the limitations of themodel need to be addressed. Thefirst is the aforementioned thick beam issue,
which lowers the eigenfrequencies of the overhang portion and the veeringwidth can thus varywhen ξo is small.
The second is that no damping is included in themodel and damping also lowers the eigenfrequencies. Themain
reason for no damping is that the dampingmechanisms in amicrostructure still remain unclear [58].While,
damping is ameasured quantity in a real application, which can be simply used as an input. For eachmode, its
corresponding (dimensional) damping coefficient (Ci) is easily obtained bymeasuring the bandwidth of its
frequency response curve [59]. The governing equations of equation (5) are divided into three parts due to the
discontinuity of stiffness andmass. By following the approach presented in [60], it is not hard to prove that
the operator of equation (5) is self-adjoint and therefore, the orthogonality of themodes holds.With the
orthogonality property, the ith eigenfrequency of the damped overhanged structure (ωi

d) can be easily obtained
as: w w z= -1 2i

d
i i

2 [59]. Here ζi=Ci/(2ωi) andωi is the ith eigenfrequency of the corresponding undamped

overhanged structure. This dimensional eigenfrequency is given as ( )w b= E I m Li i
2

1 1 1 1
4 andβis here are those

dimensionless results presented in this study. The third is that the uncertainties of the structure dimensions and
material properties are not considered. Due to the fabrication tolerance andmaterial variations or defects, the
mass (distribution) and stiffness of amicrostructuremay not be accurately characterized [15, 16, 54]. The
solution is tofind the effectivemass and stiffness bymatching the (measured) resonant frequencies or (static)
deflections [40], which requires to solve an inverse problem [41, 45]. Amore delicate alternative is to use the
software/algorithmwhich can determine those uncertain parameters by quantifying their influence on the
outputs [61].

4. Conclusions

Acontinuummodelon theoverhanged two-cantilever structure,which canbe easily extended to anarraywith
multiple cantilevers, is proposed.Unlike adiscretemodelwhichonlydescribes two-mode interaction, this continuum
model includes the interactionsof allmodes.The eigenvalue formulation leads to adirect computationon the system
eigenfrequencieswithout anydiscretizationprocedure.With this continuummodel andadirect computationmethod,
the eigenfrequency loci crossing andveering arepresentedby simply computing the eigenfrequencies as the functions
of theoverhang length/thickness anddifferences of thebeam length, stiffness andmass.Theoverhang couples the two
cantilevers,which leads to themode splitting and then crossingor veering.Themode splitting,whichgenerates anew
mode, results from themixingof twoadjacentmodesof abeam.With the increaseof theoverhang length, the rapid
eigenfrequency increaseof this newmode results in its separation fromthat of the lowermode,which then leads to its
crossingor veeringwith that of thehighermode.When twobeamsare identical, crossingoccurswith thepresenceof
theoverhang coupling effect.Whenadisorder suchas the length,mass or stiffness differencebetween twobeams is
introduced, veeringoccursdue to the couplingmechanism.Theoverhang length is themost important parameter
determining the veering loci; the lengthdifferenceof the twobeamscanproducemore veering loci. Bypresenting the

Figure 12.The eigenfrequencies ofβ6 andβ7 as the functions ofΔ1 andΔ1 with ξo=0.346 and ξ2=1. The dashed line indicates the
crossing loci.
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eigenfrequency spectra, amore comprehensive study is provided,which canbeuseful in theoptimumdesignof the
overhanged structures. In the structureof twooverhanged cantilevers, the veering indicates the strongmode coupling.
The veering locusof twoadjacent eigenfrequencies also corresponds to that of twoother adjacent eigenfrequencies
with the largest separation. Physically, thismeans that theweak and strongphysical couplings canbe easily alternated
by exciting twodifferentmodes,whichmayhold somepotential applications formass sensingoropto/
electromechanics.
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Appendix

The definitions of b31, b32, b41, b42 and c31, c32, c41, c42

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

b b b b b b b b
b b b b b b b b
k bx k bx k bx k bx
k bx k bx k bx k bx

k bx k bx k bx k bx
k bx k bx k bx k bx

= - = - -
= - = +
= -
=- -
= -
= +

b b

b b

c

c

c

c

cos cosh sin sinh , sin cosh cos sinh ,

sin cosh cos sinh , sin sinh cos cosh ,

cos cosh sin sinh ,

sin cosh cos sinh ,

sin cosh cos sinh ,

sin sinh cos cosh .

31 32

41 42

31 2 2 2 2 2 2 2 2

32 2 2 2 2 2 2 2 2

41 2 2 2 2 2 2 2 2

42 2 2 2 2 2 2 2 2

The definitions ofmatrix elements ofK in equation (14)

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

[ ( ) ( )] [ ( ) ( )]
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

[ ( ) ( ) ( )]
[ ( ) ( ) ( )]

[ ( ) ( )] [ ( ) ( )]
( ) ( ) ( ) ( ) ( ) ( )

( ) [ ( ) ( ) ( )]
( ) [ ( ) ( ) ( )]

[ ( ) ( )] [ ( ) ( )]
( ) ( ) ( ) ( ) ( ) ( )

( ) [ ( ) ( ) ( )]
( ) [ ( ) ( ) ( )]

kbx kbx kbx kbx
bx bx bx bx bx bx

k kbx kbx k kbx kbx
bx bx bx bx bx bx

k bx k bx k bx
k bx k bx k bx

k bx k bx k bx
k bx k bx k bx
gk kbx kbx gk kbx kbx
bx bx bx bx bx bx

k k bx k bx k bx

k k bx k bx k bx
gk kbx kbx gk kbx kbx
bx bx bx bx bx bx

k k bx k bx k bx

k k bx k bx k bx

= - = -
=- - - = - - -
= - = - +
=- - - = - -
= =
=- - -
=- - -
= =
=- + +
= - -

=- + = - +
= - - = - -

=- + D - + +

=- + D - + +

=- + = -
= - - = - - -

=- + D - + +

=- + D + +

k k

k b b k b b

k k

k b b k b b

k k k k
k c c

k c c

k k k k
k b c

k c c

k k

k b b k b b

k c c

k c c

k k

k b b k b b

k c c

k c c

sin sinh , cos cosh ,

sin sinh cosh , cos sinh cosh ,

cos cosh , sin sinh ,

cos cosh sinh , sin cosh sinh ,

, ,
sin sinh cosh ,

cos sinh cosh ,

, ,
cos cosh sinh ,

sin cosh sinh ,

sin sinh , cos cosh ,

sin sinh cosh , cos sinh cosh ,

1 sin sinh cosh ,

1 cos sinh cosh ,

cos cosh , sin sinh ,

cos cosh sinh , sin cosh sinh ,

1 cos cosh sinh ,

1 sin cosh sinh .

o o o o

o o o o o o

o o o o

o o o o o o

o o o

o o o

o o o

o o o

o o o o

o o o o o o

o o o

o o o

o o o o

o o o o o o

o o o

o o o

11 12

13 31 41 14 32 42

21 22

23 31 41 24 32 42

31 11 32 12

35 2 31 2 41 2

36 2 32 2 42 2

41 21 42 22

45 2 31 2 41 2

46 2 32 2 42 2

51
2

52
2

53 31 41 54 32 42

55 2 2
2

2 31 2 41 2

56 2 2
2

2 32 2 42 2

61
3

62
3

63 31 41 64 32 42

65 2 2
3

2 31 2 41 2

66 2 2
3

2 32 2 42 2
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