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a b s t r a c t

It is of great significance to rapidly and accurately predict the energy performance of centrifugal pumps
for the macro-control of the entire electric power system. However, some challenges are encountered, for
example, the numerical simulation requires huge computing resources and calculating time, the theo-
retical loss model needs to improve the prediction accuracy, etc. Based on the multiple geometrical
parameters and operation conditions, a hybrid neural network is proposed to predict the energy per-
formance (i.e. the head, power and efficiency) of centrifugal pumps, where the theoretical loss model is
incorporated into the back propagation neural network and then the neural network structure is opti-
mized by automatically determining the node number of hidden layers. When compared with the ex-
periments, the energy performance is well predicted by using the hybrid neural network with the mean-
square-error (MSE) for the head, power and efficiency of 0.0062, 8.4E-4, 0.020, respectively. Besides, by
considering the theoretical loss model, the hybrid neural network demonstrates a dramatic decrease in
the head MSE and the efficiency MSE when compared with the original neural network. Furthermore, the
hybrid neural network performs much better than the traditional linear regression in a wide flow-rate
range for multiple centrifugal pumps.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid development of the global economy, the demand
for energy supply is gradually increasing. Although people are
vigorously exploiting and utilizing the natural resources on earth,
especially the non-renewable energy (i.e. coal, oil, natural gas, etc.),
the contradiction between energy supply and demand becomes
more and more prominent. It is believed that we need to break
through two key issues in order to achieve the sustainable energy
development. One is developing new renewable energy such as
wind energy, geothermal energy and ocean energy; and the other is
making our utmost effort to conserve energy and reduce emissions.
g), zhangzhen2@imech.ac.cn
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Y. Wang).
In the whole energy framework, centrifugal pumps play a sig-
nificant role which can transport the fluid to a specified place by
converting the mechanical energy from the prime mover into the
fluid pressure energy and kinetic energy. It is widely applied in
petrochemicals, nuclear power generation, irrigation, urban water
supply and heating systems. Take the Austrian district heating
networks for example, the centrifugal pumps provide over 15 TWh
heat for around 26% of buildings in 2017 [1]. Besides, centrifugal
pumps make contributions to the reliability and efficiency of the
electric power system by controlling voltage [1], reducing peaks [2],
managing congestion [3] and reserving excess energy [4].

Therefore, it is urgent to rapidly predict the energy performance
of centrifugal pumps from the perspective of macro-controlling the
entire electric power system. A large number of efforts have been
made to study the energy performance for different types of pumps
[5e9]. With the rapid development of computer science and
technology, computational fluids dynamics (CFD) is acknowledged
as an effective tool to visualize the internal flow features and
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predict the energy performance [10,11]. Gu, Pei [12] studies the
clocking position of the pump to improve the energy performance
by using incompressible Reynolds-averaged NaviereStokes equa-
tion (RANS), indicating that the maximum difference in the effi-
ciency is 2.61% at the design condition. Nam and Chae [13] develops
a numerical simulation model to predict the ground heat exchange
rate. The simulation model is coupled with the ground heat
transfer, the ground surface heat together with the ground heat
exchanger, and the simulated temperature is slightly higher than
the experimental one with the average error of 0.57 �C [13]. As an
energy-saving device, a large-size ionic wind pump is optimized to
meet the expectations by using the numerical simulation with the
maximum error of 6.2% when the voltage is 10 kV [14]. However,
the accuracy of the numerical simulation is strongly dependent on
the expertise of the CFD engineer, as it is sensitive to the mesh
quality, the turbulence model and the numerical schemes [15e18],
and thus, it is necessary to conduct the validation and verification
for each simulation case [19,20]. In addition, although the numer-
ical simulation is feasible to predict the energy performance around
the design point, it is difficult to capture the unsteady features at
the off-design points, such as the stall, secondary flows together
with the pressure pulsations [21e23]. And more importantly, nu-
merical simulation requires huge resources and long calculation
time, and this cannot satisfy the requirement of the prediction
rapidity during the macro-control of the electric power system.

The theoretical loss models are built to evaluate the energy
performance for various pumps by calculating the various losses in
each components [24]. This method needs very detailed geomet-
rical parameters and usually be used in the design procedure with
the energy performance mostly depending on designer’s experi-
ence [25]. The head and efficiency are rapidly predicted with a set
of loss models by iteratively calculating for S1 and S2 stream sur-
face [26], and good agreement is achieved between the predicted
and experimental values with the maximum error of 15% [27].
Barbarelli, Amelio [28] develops a one-dimensional numerical code
to estimate the energy performances of centrifugal pumps used as
turbines in a wide range of specific speed from 9 to 65 rpm,m3/

4,s�1/2, and the estimation error is from 5 to 20%. To extend the
prediction capability at off-design conditions, the incidence loss
and throat flows are suggested to be considered in the mean-line
performance prediction method [29]. An experimentally validated
optimization routine is proposed by Singh and Nestmann [30] to
predict the turbine mode characteristics of a pump, and the errors
for all of the centrifugal pumps can fall within ±4% in the full load
operating range. From the above, the theoretical loss model is an
effective tool for the energy performance prediction, but its pre-
diction accuracy still needs to be improved.

Recently, machine learning has gradually attracted an increasing
attention due to its outstanding achievements in various applica-
tions, like the image identification, the speech recognition, espe-
cially the AlphaGo. Machine learning is a data-driven method,
including the genetic algorithm (GA) [31,32], the neural network
(NN) [33,34], etc. Hinton and Salakhutdinov [35] reports that high-
dimensional data can be converted to low-dimensional codes by
training a multilayer neural network with a small central layer to
reconstruct high-dimensional input vectors. Therefore, many
studies have beenmade to simulate the complex turbulent flows by
using the machine learning. Tracey, Duraisamy [36] develops a
machine learning algorithm to construct a stochastic model of the
error of low-fidelity models using information from higher-fidelity
data sets, and this methodology can provide better approximations
of uncertain model outputs and generate confidence intervals. The
deep neural network (DNN) method combined with regularization
is constructed to simulate in the channel flow, and the test results
show that the regularization can suppress the oscillation and
2

prevent the overfitting [37]. Ling, Kurzawski [38] proposes a neural
network architecture which uses a multiplicative layer to embed
Galilean invariance into the predicted anisotropy tensor, demon-
strating an improved prediction accuracy when compared with the
baseline RANS linear and nonlinear eddy viscosity models. In terms
of the energy performance evaluation for hydraulic pumps, there
are usually three indices, i.e., head, power and efficiency. These
indices are not only strongly related to each other, but also highly
nonlinear with many geometrical parameters. However, the neural
network performs well to rapidly predict the pump hydraulic
performance [33,34]. The radial basis neural network (RBNN) is
adopted to construct the relationship between the performance
indices and the multiple geometrical parameters based on the
training data, and this trained RBNN showa good ability to evaluate
the energy performance of new samples during the optimization
design [39]. Since the neural network is straightforward without
depending on the designers’ experience, the trained neural
network maybe lacks some physics to some extent. Besides, poor
network topologymay lead to overfitting or under-fitting, but there
is no clear principle for the determination of the network topology,
which should be discussed from case to case.

To instruct the macro-control of the electric power system, a
hybrid neural network is proposed based on the available experi-
ments. Based on the multiple geometrical parameters and opera-
tion condition, the theoretical loss model is incorporated into the
neural network and the neural network structure is optimized
automatically. Details of the proposed methodology are described
in Section 3 and Section 4. Section 5 discusses (a) the effects of the
neural network structure, (b) the comparisons with the original
neural network and (c) the comparisons with the linear regression
method. Conclusions are provided in Section 6.

2. Problem description

The centrifugal pump is treated as a typical energy-consuming
device in the electric power system. The wide applications of
centrifugal pumps benefit from its numerous advantages, i.e.,
simple and compact structures, easy installation, low maintenance
cost, and reliable operations. The centrifugal pump is composed of
an inlet pipe, a centrifugal impeller and a volute, as shown in Fig. 1.
The main geometrical parameters are described in Fig. 2, including
the inlet diameter for the inlet pipe D0, the inlet diameter for the
impeller D1, the outlet diameter for the impeller D2, the blade outlet
width b2, the blade outlet angle b2, the volute throat area Ft, and the
blade number z.

It is of great significance to accurately and rapidly evaluate the
energy performance for centrifugal pumps. Usually, the energy
performance is described by the head H, the power P and the effi-
ciency h. The energy performance is not only strongly affected by
the main geometrical parameters described above, but also related
to the operation conditions, such as the flow rate Q and the rota-
tional speed n. Additionally, the design flow rate Qd is usually
provided for a specific pump. Therefore, the problem is how to
forecast the energy performance based on the seven geometrical
parameters and the operation conditions. This paper aims at pro-
posing a hybrid neural network combined with the theoretical loss
models and the network structure optimization in order to make
up for the deficiency of the traditional data-driven method, that is
lacking in some underlying physics.

441 samples are collected from experiments of ten centrifugal
pumps. The energy performance tests are conducted on a closed
test rig in Shenyang, China, which meets the international standard
of ISO9906 and Chinese national standard of GB/T3216. The test
accuracy of the experimental device is Level I. The centrifugal
pumps are tested at the room temperature with water as the



Fig. 1. The centrifugal pump structure including the inlet pipe, the centrifugal impeller
and the volute.
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experimental medium. The flow rate is measured by an electro-
magnetic flowmeter; the shaft power is measured by a torque
transducer. The pressure is measured by two pressure sensors. One
is installed at the upstream of the pump, and the other is installed
at the downstream of the pump. Thus, the pump head is calculated
by the measured pressure difference. Each pump is operated at
various flow-rates, which is controlled by an outlet valve. All of the
measured data are processed and saved automatically by a data
acquisition system.
Fig. 2. Geometrical parameter dia
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3. Theoretical loss model of energy prediction

3.1. Theoretical head

Based on the Euler equation, the theoretical head Ht∞ for an
ideal fluid as it passes through an infinite multi-blade impeller,

Ht∞ ¼1
g
ðu2v2u∞ �u1v1u∞Þ (1)

where subscript 1 and 2 presents the impeller inlet and outlet,
respectively; subscript ∞ denotes the value is calculated on the
assumption that the blade number is infinite and the blade thick-
ness is infinitely thin, so the fluid is strictly flowing along the blade
shape and the flow angle is equal to the blade angel; g is the ac-
celeration of gravity, ¼ 9.81 m/s2; u is the circumferential velocity
of impeller; vu∞ is the circumferential component of absolute ve-
locity v∞.

In general, v1u∞ is assumed to be zero under the axial inflow
condition, and then the theoretical head can be simplified as

Ht∞ ¼u2v2u∞
g

(2)

In practice, the impeller blade is finite number (usually 4e7)
with a certain thickness. In the flow passage of the finite blade
impeller, the relative velocity would slip at the impeller outlet due
to the inertia of the fluid, as shown in Fig. 3, wherew is the relative
velocity, subscript m denotes the meridional component. It is noted
that velocity slip phenomenon indicates the energy transferred to
the fluid by the rotating impeller is decreased. Therefore, the slip
effect is considered by calculating the difference for the circum-
ferential component of absolute velocity between the infinite blade
condition and finite blade condition,

Dv2u ¼ v2u∞ � v2u (3)

The slip factor s is defined in equation (4) to evaluate the slip
effect, which is the key to calculate the theoretical head.
gram of a centrifugal pump.



Fig. 3. Velocity triangle at the impeller outlet demonstrating the slip phenomenon.
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s¼u2 � Dv2u
u2

¼ 1� Dv2u
u2

(4)

Many investigations are made to improve the s formula
[40e43]. Based on large experimental data for centrifugal pumps,
Liu, Tan [44] studies different formulas for the slip factor, and the
Wiesner equation is introduced herein to calculate the slip factor as
shown in equation (5). Thus, the theoretical head is derived by
regression analysis with a calculation coefficient k given in equa-
tions (6) and (7), where the coefficient j2 is denoted as 0.8 for the
volute centrifugal pumps, ns is the specific speed.

s¼1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sin b2

p
z0:7

(5)

Ht ¼u2
g

�
ksu2 �

Q
3600pD2b2j2 tan b2

�
(6)
k¼

8>>>><>>>>:
1:009

�
1� e�0:088ns

�
; 30<ns <65 !n � 2000r=min

0:71
� ns
100

�3
� 2:58

� ns
100

�2
þ 2:91� ns

100
þ 0:00726; ns � 65!n

1:036
�
1� e�0:06ns

�
; ns >65!n<2000r=min
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3.2. Loss in the inlet pipe

Before the fluid enters into the centrifugal pump impeller, a
hydraulic loss occurs in the inlet pipe, which is calculated by
equation (8). In general, the velocity field is relatively uniform, so
this loss is small, especially under the design condition.

Dhsuc¼ l
C2
0

2g
(8)

C0 ¼
4Q
pD2

0

(9)

where l is the friction coefficient; C0 is the axial velocity in the inlet
pipe; D0 is the inlet diameter for the inlet pipe; Q is the flow rate.

Since the Reynolds numbers are of 105 magnitudes in the
� 2000r=min (7)



Fig. 4. (a) Schematic diagram of the incidence loss and (b) inlet velocity triangle.
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centrifugal pumps, the friction coefficient l is calculated by equa-
tion (10) which is still effective for Re < 106 [7].

l¼ 0:3164

Re0:25
(10)
3.3. Incidence loss in the impeller

The inlet blade angle for a centrifugal pump is determined by
meeting the requirement of non-impact inflows at the design flow
rate. When the centrifugal pump is operated under the off-design
condition, the inlet flow angle is not consistent with the blade
angle, causing the flow separation as shown in Fig. 4. The relative
velocity at the impeller inlet w1 is decomposed into w10 and w1u.
w10 is in the same direction as the relative velocity w1d under the
design condition. w1u is the imaginary circumference velocity,
indicating the incidence level.

Therefore, the incidence loss in the impeller is defined in
equation (11), where finc is the incidence loss coefficient, ranging
from 0.5 to 0.7 [26,45].

Dhinc ¼ finc
w2

1u
2g

(11)

Based on the velocity triangle in Fig. 4 (b), the w1u can be
calculated by equation (12), where Qd is the design flow rate.

w1u

u1
¼ v1 � v1d

v1d
¼ Q � Qd

Qd
(12)

Substituting equation (12) into equation (11), the incidence loss
finally can be written as follows,

Dhinc ¼
finc
2g

�
u1

Q � Qd
Qd

�2

(13)
5

3.4. Disk friction loss

When the impeller is rotating, the fluid between the shroud and
the blades would generate friction and cause hydraulic loss which
is termed as disk friction loss DPdf . For a centrifugal pump, the disk
friction loss DPdf is large and defined as follows,

DPdf ¼ fdfrlD
2
2u

3
2 (14)

fdf ¼

8>>>>><>>>>>:

0:166875

Re0:5df

;Redf <3� 105

0:0038875

Re0:2df

;Redf � 3� 105
(15)

Redf ¼
rlu2R2

ml
(16)

where fdf is the disk friction loss coefficient, Redf is the Reynolds
number, rl is the liquid density and ml is the liquid dynamic
viscosity.

3.5. Actual head, power and efficiency

Based on the previous work [7], the energy is lost during the
process of converting input power into the fluid energy. In general,
the energy losses for a centrifugal pump are decomposed into the
hydraulic loss, the volume loss and the mechanical loss. The hy-
draulic losses are related to the geometrical structure and operation
conditions, including the loss in the inlet pipe Dhsuc, incidence loss
Dhinc, surface friction loss Dhsf, blade loading loss Dhbl, separation
loss Dhsep, wake mixing loss Dhmix, incidence loss in the volute
DhVinc, friction loss of the volute DhVsf and separation loss of the
volute DhVdiff. The total hydraulic losses Dhtol is defined in equation
(17) by summing up all of the losses and the actual head H is the
difference between the theoretical head Ht and the total hydraulic
losses Dhtol with the definition in equation (18).



Fig. 5. Diagram of the typical back propagation neutral network (BPNN).
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Dhtol ¼Dhsuc þ Dhinc þ Dhsf þ Dhbl þ Dhsep þ Dhmix þ DhVinc
þ DhVsf þ DhVdiff

(17)

H¼Ht � Dhtol (18)

Besides, additional losses are the recirculation loss DPrec, the
disk friction loss DPdf, and the leakage loss DPlk. According to the
energy conservation, the input power by the prime mover is the
sum of the effective power and the additional losses as mentioned
above.

P¼ rgQHt þ DPrec þ DPdf þ DPlk (19)

Therefore, the total efficiency for a centrifugal pump is deter-
mined as follows,

h¼ rgQH
P

¼ rgQ ½Ht � Dhtol�
rgQHt þ DPrec þ DPdf þ DPlk

(20)
si ¼
(
xi ¼ ½D0ðiÞ;D1ðiÞ;D2ðiÞ; b2ðiÞ;b2ðiÞ; zðiÞ; FtðiÞ;QdðiÞ;nðiÞ;QðiÞ�T ;
yi ¼ ½HðiÞ; PðiÞ; hðiÞ�T

)
(23)
4. Hybrid neural network

Based on the available geometrical parameters and operation
conditions given in Section 2, the loss in the inlet pipe Dhsuc, the
incidence loss Dhinc and the disk friction loss DPdf can be computed
as described in Section 3. However, the formulas for the other losses
are too complex to calculate which are given in the literature [7]. In
this paper, a hybrid neural network is developed to evaluate the left
losses (i.e., DhNN and DPNN in equation (21)), and finally the energy
performance (H, P, h) can be computed by equation (22).
6

DhNN ¼ Dhsf þ Dhbl þ Dhsep þ Dhmix þ DhVinc þ DhVsf þ DhVdiff
DPNN ¼ DPrec þ DPlk

(21)

H ¼ Ht � Dhtol ¼ Ht � ðDhsuc þ Dhinc þ DhNNÞ
P ¼ rgQHt þ DPdf þ DPNN

h ¼ rgQ ½Ht � Dhsuc � Dhinc � DhNN�
rgQHt þ DPdf þ DPNN

(22)

The back propagation neural network (BPNN) is a classic data-
driven method including the input layer, the hidden layer
together with the output layer as shown in Fig. 5. Firstly, the data
samples are classified into three sets, i.e., the training set, the
validation set and the test set. The training set is used for the feed
forward propagation process by fitting the weights and biases and
obtaining an error when compared with the true values, which is
termed as training error. The validation set is used to adjust and
optimize the weights and biases in the back propagation process
and get a validation error every epoch. Once the validation error
meets one of the convergence criterions, the BPNN model is finally
determined and cannot be tuned anymore. The test set is only used
to evaluate the generalization capability for the determined BPNN
model.

In this paper, the BPNN method is used to assess the energy
performance for centrifugal pumps with the modeling data

described as S ¼ fX;Yg, whereX ¼ fx1;x2;/; xN�1; xNgT2RN�10 is

the inputs, Y ¼ fy1; y2;/; yN�1; yNgT2RN�3 is the targets obtained
by the experiments, N is the number of sampling data. The i-th
sample data set can be expressed in equation (23). It can be clearly
seen that there are ten inputs and three outputs in this neural
network. Ten inputs are expressed as xi ¼
½D0ðiÞ;D1ðiÞ;D2ðiÞ; b2ðiÞ; b2ðiÞ; zðiÞ; FtðiÞ;QdðiÞ;nðiÞ;QðiÞ�T , i.e. the
inlet diameter for the inlet pipe D0, the inlet diameter for the
impeller D1, the outlet diameter for the impeller D2, the blade outlet
width b2, the blade outlet angle b2, the blade number z, the volute
throat area Ft, the design flow rate Qd, the rotational speed n, and
the flow rate Q. Three outputs are the energy performance

expressed as yi ¼ ½HðiÞ; PðiÞ; hðiÞ�T , i.e. the head H, the power P, and
the efficiency h.
It is widely acknowledged that the neural network structure is
of great significance to the BPNN prediction capability. The present
neutral network has ten inputs and three outputs, but the node
number for the hidden layer is still unknown, which is a very
important parameter without a universal and scientific solution. In
general, the node number is dependent on the designer’s experi-
ences and determined through multiple trials. If the node number
for the hidden layer is too small, the BPNN is not able to learn; if the
node number is toomany, the training error can be reduced to some
extent, but it will undoubtedly increase the learning time and may



Fig. 6. Hybrid neural network combined with theoretical loss models and network structure optimization.
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fall into a local minimum, causing over-fitting phenomenon. Thus,
it is necessary to determine an appropriate node number for hidden
layers, taking as few nodes as possible to meet the requirement of
the learning accuracy. Based on the previous investigations [46,47],
the node number in the hidden layer is recommended according to
equation (24), where n is the node number of the input layer,
n ¼ 10; m is the node number of the output layer, m ¼ 3; a is a
constant ranging from 1 to 10; nNN is the node number of the
hidden layer.

nNN ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
nþm

p þ a (24)

The recommended selection region in equation (24) is com-
bined with the classic back propagation neural network and then
the theoretical loss model is introduced to constitute the hybrid
neural network for the energy performance prediction of centrif-
ugal pumps, as shown in Fig. 6. The detailed process is explained as
7

follows.

Step 1. Collect 441 samples S ¼ fX;Yg from the experiments of
ten centrifugal pumps and calculate the theoretical head and losses
based on the geometrical parameters and operation conditions.

Step 2. Define the node number for the hidden layers by using Eq.
(24) with a slightly increasing margin. As a result, the node number
for the first hidden layer varies from 4 to 20, and the node number
for the second hidden layer varies from 0 to 20.

Step 3. Divide the samples into the training set, the validation set
and the test set. 132 samples from 441 samples are treated as the
test samples. 85% of the rest 309 samples are treated as the training
samples, and 15% of the rest 309 samples are for validation. Save the
current learning number as i.

Step 4. Train the network feedforward. The activation function is a
hyperbolic tangent transfer function, that is tansig, defined as



Fig. 8. The test error for various neural network structures with the best neural
network structure marked in �
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tansig(x)¼ 2/(1þe�2x)-1. For this activation function, the x value can
be arbitrary, and the output of the activation function is in the range
of �1 ~ þ1.

Step 5. Assess the capability of the hybrid neural network by
using the mean-squared-error (MSE) in equation (25), where j
means the j-th performance index (i.e., head, power, efficiency), yi;j
is the true value (i.e., the experimental value), byi;j is the predicted
output, p indicates the number of the current set.

MSEj ¼
1
p

Xp
i¼1

 
yi;j � byi;j

!2

; j¼1;2;3 (25)

Step 6. Evaluate whether the current network capability meets
the convergence criterions, i.e., (1) the validation error is smaller
than the preset error, (2) the validation error does not decrease any
more during 200 iterations, (3) the epoch reaches the maximum
iterations. The process is terminated if any of the convergence
criterions is achieved. If no, adjust the weights together with the
biases, and go back to Step 4. If yes, continue to the next step.

Step 7. Assess the current network with the test set and calculate
the test error using equation (25).

Step 8. Evaluate whether the test error meets the test re-
quirements. If yes, post-process the data by using Eq. (22), and the
current neural network is ready to predict the energy performance
for new samples. If not, evaluate whether the learning number i is
larger than the preset maximum number. If i < maximum number,
randomly divide the 309 samples again with 85% for training and
15% for validation, save the learning number as i¼ iþ 1, and go back
to Step 4. If i � maximum number, go back to Step 2, indicating the
current test error cannot meet the requirements after multiple at-
tempts and thus it is necessary to adjust the neural network
structure.

5. Results and discussions

5.1. Effects of the neural network structure

The neural network (NN) capability is strongly affected by the
Fig. 7. The validation error and test error for various neural network (NN) structures.

Fig. 9. MSE history during the training, validation, test process.

8

neural network structure. Based on the empirical formula in
equation (24) togetherwith an increasingmargin, the node number
for the 1st hidden layer varies from 4e20, and the node number for
the 2nd hidden layer varies from 0e20. Note that the node number
of the 2nd hidden layer is defined as zero, indicating there is only
one hidden layer.

Although during the learning and testing process as shown in
Fig. 6, MSE is used to evaluate the training error, the validation error
and the test error. Usually, the training error is smaller than the
validation error. The validation error is used to optimize the neural
network parameters, and the test error is to assess its generaliza-
tion capability. The test error and validation error for various neural
network structures are shown in Fig. 7. The best neural network
structure is marked with red color with the validation error of
0.003 and the test error of 0.01. Moreover, the validation error is
generally smaller than the test error at the same neural network
structure, indicating that the test error can be treated as a
comprehensive evaluation index for the neural network.

Fig. 8 shows the distribution of the test error for various neural



Fig. 10. Absolute relative errors of (a) head, (b) power, (c) efficiency for all the test samples.

Table 1
Statistics of absolute relative errors for all the test samples by the hybrid NN.

Head Power Efficiency

Minimum 0.0012% 0.011% 0.0012%
Maximum 3.5% 6.9% 8.6%
Mean 0.28% 1.2% 0.35%
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network structures. The test error is very large in the lower left
corner, which demonstrates that the node number for the hidden
layers is too small to obtain a satisfied result for the present
physical problem. The test error (i.e., the test MSE) becomes smaller
Table 2
The error indices for all the test samples by comparing the predicted values with the
experimental data. RMSE is the square of the MSE, as defined in equation (27).

RMSEj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
p

Xp
i¼1

 
yi;j � byi;j

!2
vuut ; j¼1;2;3 (27)

Head Power Efficiency

MSE 0.0062 8.4E-4 0.020
RMSE 0.079 0.029 0.14
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with increasing the node numbers for the hidden layers. However,
it is over 0.39 when the hidden layers both have 19 nodes. The best
neural network structure is marked with white color in Fig. 8,
where the node number is 19 for the first hidden layer and 11 for
the second hidden layer.
5.2. Predictions for the test samples using the hybrid neural
network

The convergence history during the training, validation and test
process is shown in Fig. 9 by using the best neural network struc-
ture. It is shown that the MSE decreases dramatically without
fluctuations and over-fitting during the training, validation and test
process, indicating the learning process is converged very well. The
best performance is achieved at epoch 1476 as marked with a black
circle in Fig. 9.

Furthermore, the predicted values are compared with the
experimental values for the test samples in Fig. 10 by using the
absolute relative error, which is defined in equation (26).

absolute relative error¼��yi;j�byi;j���yi;j ; i¼1�132; j¼1�3

(26)

where i represents the i-th test sample; j represents the j-th energy



Fig. 11. The head comparisons for one centrifugal pump between the experimental data and the hybrid neural network (NN) predictions.

Fig. 12. The power comparisons for one centrifugal pump between the experimental data and the hybrid neural network (NN) predictions.

Fig. 13. The efficiency comparisons for one centrifugal pump between the experimental data and the hybrid neural network (NN) predictions.
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performance, i.e., head, power, efficiency; yi;j is the target (i.e., the

experimental value), byi;j is the predicted output.
For the test samples, statistics of absolute relative errors are

listed in Table 1. The absolute relative error for the head ranges from
0.0012% to 3.5% with the mean value of 0.28%, the absolute relative
error for the power ranges from 0.011% to 6.9% with the mean value
10
of 1.2%, and the absolute relative error for the efficiency ranges from
0.0012% to 8.6% with the mean value of 0.35%. From Fig. 10, most of
the absolute relative errors are around the mean values. It is
demonstrated that the energy performance (i.e., the head, power
and efficiency) is predicted well by using the hybrid neural
network.



Table 3
Statistics of absolute relative error for one centrifugal pump.

Method Item Head Power Efficiency

Original NN Minimum 0.015% 0.22% 0.0029%
Maximum 0.72% 4.8% 0.53%
Mean 0.14% 1.1% 0.13%

Hybrid NN Minimum 0.0011% 0.026% 0.0043%
Maximum 0.36% 2.0% 0.16%
Mean 0.089% 0.84% 0.059%

Linear regression Minimum 0.35% 0.078% 0.18%
Maximum 11% 14% 24%
Mean 3.3% 2.7% 4.9%
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Table 2 shows the error indices for all the test samples with the
mean-square-error (MSE) and the root-mean-square-error (RMSE).
Note that RMSE is the square of the MSE, as defined in equation
(25). Note that MSE and RMSE are treated as statistical performance
indices without units. The MSE obtained by the hybrid NN is
0.0062, 8.4E-4, 0.020 for the head, power and efficiency, respec-
tively. The RMSE for the head, power and efficiency is 0.079, 0.029,
0.14, respectively.

For the 132 test samples, one of the centrifugal pumps is
selected to present the energy performance along with the flow
rate Q variations. The geometrical parameters are D0 ¼ 60mm,
D1 ¼ 56mm, D2 ¼ 184mm, b2 ¼ 6mm, b2 ¼ 14�, z ¼ 4, Ft ¼
513mm2, Qd ¼ 15m3=h, n ¼ 2860rpm, and the flow rate Q is
varied from Q ¼ 0 � 34m3=h. Figs. 11-13 show the energy perfor-
mance comparisons for this centrifugal pump between the exper-
imental data and the predictions obtained by the hybrid neural
network. Statistics of the energy performance for this centrifugal
pump are shown in Table 3. During operation conditions for this
centrifugal pump, the absolute relative error is 0.0011% ~0.36% for
the pump head, 0.026% ~2.0% for the power, and 0.0043% ~0.16% for
the efficiency. The mean of the absolute relative error is 0.089% for
the head, 0.84% for the power, and 0.059% for the efficiency. The
corresponding predictions on the head, power and efficiency are in
good accordance with the experimental data when the flow rate
ranges from Q ¼ 0 � 34m3=h.
Fig. 14. Comparisons of the absolute relative error distribution for all the test samples
between the original neural network and the hybrid neural network.
5.3. Comparisons with the original neural network

The hybrid neural network proposed in this paper is compared
with the original neural network, which directly predict the energy
performance without considering the theoretical loss model. Fig. 14
shows the comparisons of the absolute relative error distribution
between the original neural network and the hybrid neural
network. For the 132 test samples, most of the absolute relative
errors are around zero. With the absolute relative error increasing,
the number of the test samples is gradually decreased. When
looking at the absolute relative error around zero, the hybrid NN
number is more than the original NN number. On the other hand,
for the absolute relative error around the corresponding maximum,
the hybrid NN number is smaller than the original NN number.
Therefore, from the perspective of the absolute relative error dis-
tribution, the hybrid NN performs better with most of the absolute
relative errors around zero.

Table 4 shows the means of absolute relative errors for all the
test samples. The means of absolute relative errors obtained by the
original NN are 3.9%, 0.97%, 1.3% for head, power, and efficiency,
respectively. In contrast, means of relative errors obtained by the
hybrid NN are 0.28%, 1.2%, 0.35% for head, power, and efficiency,
respectively. Therefore, for the head and efficiency, means of the
absolute relative errors from the hybrid NN are smaller than that
from the original NN, indicating that the predicted head and
11
efficiency by the hybrid NN are much closer to the experimental
data.

One centrifugal pump is taken from the test samples to illustrate
the energy performance in Fig. 15. The energy performance is
predicted well by both the original neural network and the hybrid
neural network. The absolute relative errors are shown in Fig. 16 for
the head, power and efficiency in the range of Q ¼ 0 � 34m3=h. It
is illustrated that the absolute relative errors predicted by the
original NN are larger than that predicted by the hybrid NN when
the flow rate is too small or too large. Take the maximum absolute



Table 4
Means of the absolute relative errors for all the test samples.

Method Head Power Efficiency

Original NN 3.9% 0.97% 1.3%
Hybrid NN 0.28% 1.2% 0.35%
Linear regression 6.6% 2.2% 10%

Table 5
MSE of the energy performance (i.e., the head, power and efficiency) for all the test
samples.

Head Power Efficiency

Original NN 0.50 5.9E-4 1.3
Hybrid NN 0.0062 8.4E-4 0.020
Linear regression 2.8 0.0036 17

Table 6
RMSE of the energy performance (i.e., the head, power and efficiency) for all the test
samples.

Head Power Efficiency

Original NN 0.71 0.024 1.1
Hybrid NN 0.079 0.029 0.14
Linear regression 1.7 0.060 4.1
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relative error of the head for example, it is 0.72% and 0.36% for the
original NN and hybrid NN, respectively, as shown in Table 3. Be-
sides, the maximum absolute relative error of the power is 4.8% for
the original NN and 2.0% for the hybrid NN, and the maximum
absolute relative error of the efficiency is 0.53% for the original NN
and 0.16% for the hybrid NN. Furthermore, for this centrifugal
pump, all of the means of absolute relative errors by the hybrid NN
are smaller than that by the original NN.

MSE is used to evaluate the prediction capability of the original
neural network and the hybrid neural network, as listed in Table 5.
For the original NN, the head MSE is 0.50, the power MSE is 5.9E-4,
and the efficiency MSE is 1.3. In contrast, for the hybrid NN, the
head MSE is 0.0062, the power MSE is 8.4E-4 and the efficiency
MSE is 0.020. As a result, the hybrid NN method shows a better
prediction capability, presenting a dramatic decrease by 0.4938 in
the head MSE and also a reduction by 1.28 in the efficiency MSE
when compared with the original NN.

Moreover, Table 6 shows the RMSE comparisons between the
original NN and the hybrid NN based on thewhole test samples. For
the original NN, the RMSE is 0.71, 0.024, 1.1 for the head, power,
Fig. 15. The energy performance comparisons for one centrifugal pump obtain

Fig. 16. The absolute relative error comparisons for one centrifugal pump obta

12
efficiency, respectively. For the hybrid NN, the RMSE is 0.079, 0.029,
0.14 for the head, power, efficiency, respectively. As a result, for the
hybrid NN, the RMSE is decreased by 0.631 in the head and by 0.96
in the efficiency, although the power RMSE is slightly larger than
that of the original NN.
5.4. Comparisons with the linear regression

There are many advanced data-driven algorithms, but they al-
ways require a lot of sample, which is not applicable for present
ed by using the original neural network and the hybrid neural network.

ined by using the original neural network and the hybrid neural network.



Fig. 17. The variations of the energy performance along with the flow rate (a) head, (b) power and (c) efficiency.

Fig. 18. Comparisons of the absolute relative error obtained by the hybrid neural network and the linear regression method.
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physical problem. Based on many previous investigations, the
characteristic curves of the energy performance show an approxi-
mate linear relation versus flow rate [7,48]. To verify the prediction
capability of the hybrid neural network, a multiple quadratic linear
regression model [49,50] is carried out for comparison. It is defined
as follows,

bbyi;j ¼ a0;i;j þ
X10
k¼1

�
ak;i;jxk;i;j þ akk;i;jx

2
k;i;j

�
þ
X
h< k

ahk;i;jxk;i;jxh;i;j (28)

where i represents the i-th sample; j means the j-th performance
index (i.e., head, power, efficiency); k is the k-th input variable;

coefficient a is adjusted tomake the predicted value bbyi;j close to the
target (i.e., the experimental value). As a best linear unbiased
estimator, the Ordinary Least Squares (OLS) [50] is adopted herein
to calculate the regression coefficient. This method minimizes the
sum of squared distances between the true value (i.e. the experi-
mental value) and the fitted responses from the regression model.

The same database obtained from the experiments are used to
build the multiple quadratic linear regression model. 309 samples
are used for fitting and 132 samples are for testing. Note that the
data classification for the linear regression is the same with that for
the hybrid neural network. The same centrifugal pump is selected
to illustrate the energy performance obtained by the linear
regression method.

Fig. 17 shows the variations of the three energy performance
along with the increasing flow rate. It is observed that the hybrid
neural network can predict the energy characteristics very well
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when compared with the experiments. In contrast, there are some
deviations in the results obtained by the linear regression, espe-
cially at the very small flow rates or very large flow rate, as marked
with the green rectangles.

The absolute relative errors of the energy characteristics ob-
tained by the hybrid neural network and the linear regression are
shown in Fig. 18. The absolute relative error of the linear regression
is very large, especially at the very small flow rates or very large
flow rates, which is also depicted by Fig. 17. From Table 3, the ab-
solute relative error predicted by the linear regression is varied
from 0.35% to 11% for the head, from 0.078% to 14% for the power,
and from 0.18% to 24% for the efficiency. As listed in Table 5, theMSE
obtained by the linear regression is 2.8, 0.0036 and 17 for the head,
the power and the efficiency, respectively, which is increased
obviously when compared with the MSEs of the hybrid neural
network. As for the RMSE by the linear regression as listed in
Table 6, the RMSE is 1.7 for the head, 0.060 for the power and 4.1 for
the efficiency. However, the RMSE of the hybrid neural network
shows a decrease by 1.621 in the head, 0.031 in the power and 3.96
in the efficiency, indicating the hybrid neural network can perform
much better than the traditional linear regression in a wide flow-
rate range for multiple centrifugal pumps.
6. Conclusion

This paper aims to accurately and rapidly predict the energy
performance (i.e. the head, power and efficiency) of centrifugal
pumps. Based on the multiple geometrical parameters and
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operation conditions, a hybrid neural network is proposed by
incorporating the theoretical loss model into the back propagation
neural network, which is a physics-informed neural network and
can predict accurate results with a small sample size. Besides,
another advantage is that the neural network structure can be
automatically optimized. After the hybrid neural network is finally
determined, 132 samples are used to test the prediction accuracy of
the hybrid neural network by comparing with the experiments, the
original neural network, the linear regression. The following con-
clusions can be drawn:

(1) For the best neural network structure of this problem, the
validation error is 0.003, the test error is 0.01, and there are
19 nodes for the first hidden layer and 11 nodes for the
second hidden layer.

(2) The energy performance is predicted well by using the
hybrid neural network when compared with the experi-
ments. For all the test samples, the mean-square-error (MSE)
for the head, power and efficiency is 0.0062, 8.4E-4, 0.020,
respectively, and the RMSE for the head, power and effi-
ciency is 0.079, 0.029, 0.14, respectively.

(3) By considering the theoretical loss model, the hybrid neural
network shows a better prediction accuracy, especially at the
extremely large or small flow rates, demonstrating a dra-
matic decrease in the headMSE and the efficiency MSEwhen
compared with the original neural network.

(4) When compared with the linear regression method, the
RMSE of the hybrid neural network shows a decrease by
1.621 in the head, 0.031 in the power and 3.96 in the effi-
ciency, indicating that the hybrid neural network performs
much better than the traditional linear regression in a wide
flow-rate range for multiple centrifugal pumps.
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