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This paper reviews the development of the space–time conservation element and solution element (CESE) method

and summarizes its applications in various research areas. The CESE method is a special finite-volume-type method

that provides an alternative approach to numerical solutions of fluid-dynamic equations and conservation laws in

various physical systems. Based on a unified treatment of time and space, this method solves the integral form of the

governing equations bydiscretization of the space–time domain.Recent progress inCESE schemesmainly includes the

construction of a family of upwind CESE schemes, the extended definitions of conservation elements and solution

elements for arbitrary meshes, and a new approach to developing high-order CESE schemes. Selected applications of

theCESEmethod (includinghigh-speed aerodynamics,multifluid flows, detonations, andaeroacoustics) are presented.

Features of the CESE method are described.

Nomenclature

B = magnetic field, T
Cd = drag coefficient
e = total energy per unit mass of fluid, J∕kg
F = flux vector in x direction
Ft, Fx, Fy = temporal and spatial derivatives of F
G = flux vector in y direction
h = unified space–time flux, defined byh � �F;G;U�
p = pressure, Pa or atm
q = heat-flux vector,W∕m2

S = area of a boundary surface, m2

T = temperature, K
t = time, s
U = vector of conservative variables
Ut,Ux,Uy = temporal and spatial derivatives of U
u, v = x and y components of flow velocity, m∕s
W = weighted-average function
x, y = spatial coordinates, m
α = parameter in the weighted-average function
κ = thermal conductivity,W∕�m ⋅ K�
μ = viscosity, Pa ⋅ s
ρ = density, kg∕m3

ρg = density of gas in two-phase flows, kg∕m3

τ = viscous-stress tensor, N∕m2

Subscripts

i, j = index of grid points
inv = inviscid
L, R, C = left, right, and central
max = maximum value
n = index of time levels

vis = viscous
∞ = freestream

Superscripts

n = index of time levels
−,� = left and right
* = unknowns at a new time level

I. Introduction

T HE space–time conservation element and solution element
(CESE) method is a special finite-volume-type method for

solving equations of conservation laws. Similar to the traditional
finite volume method, the CESE discretization enforces conserva-
tion. However, it uses a different procedure, which has a compact
stencil, to calculate the spatial derivatives; and it achieves the same
accuracy in time and space with a fully discrete one-stage formu-
lation. Due to its attractive numerical accuracy and robustness, it has
been developed into a valuable alternative method for solving prob-
lems in computational fluid dynamics (CFD). In the last two decades,
the CESE method has been successfully extended and applied to a
wide spectrum of physical problems, especially to nonlinear time-
dependent hyperbolic systems involving the dynamical evolution of
waves and discontinuities.
Chang and To [1] proposed the CESE method in 1991. The

principles of early CESE schemes (referred to asa–ε ora–α schemes,
etc.) were elaborated by Chang et al. in Refs. [2–5]. To overcome the
shortcoming of the a–α scheme, the Courant-number-insensitive
(CNI) CESE scheme aimed at practical CFD problems [6–8] and
became a major topic in CESE development in the early 2000s. This
family of CESE schemes (including thea–ε scheme, thea–α scheme,
and the CNI scheme) are all based on a nondissipative core called the
a scheme. The main reason for such constructions is to control
numerical dissipation actively or dynamically as needed. The ability
to control numerical dissipation is essential inmanyCFDproblems as
well as other dispersive wave-propagation problems.
Extensions of the CESE solver to two- and three-dimensional

(2-D and 3-D, respectively) unstructured meshes [9–11], 2-D and
3-D structured meshes [12], and multidimensional Navier–Stokes
(NS) equations [13,14] have been carried out. Efforts have also been
made to design local time-stepping [15] and higher-order [16]
CESE schemes. Discussions on themathematical properties of CESE
schemes have been presented by Chang [17] and Yang et al. [18].
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Validation studies of the CESE method, along with comparative
studies of this and other numerical approaches, have been conducted
extensively [19–22]. In recent years, an important topic in CESE
research has been the application of the CESE method to highly
nonuniform and high-aspect-ratio computational meshes, which are
often required in simulations of boundary layers. In particular, the
CESE method has been applied to aerodynamic heating problems
and direct numerical simulation of laminar or turbulent flows. It is
also worth noting that CESE schemes are currently explicit in time
with the associated restriction on time-step size, and extensions to
implicit time-stepping CESE schemes are under investigation.
As pointed out by Zhang et al. [12], the CESE method is not an

incremental improvement of a previously existing CFD method.
Although physical laws are usually presented as partial differential
equations (PDEs), the CESE method is entirely based on the integral
formof the governing equations.By introducing 1) the concepts of the
conservation element and the solution element in the discretization of
the space–time domain, 2) the staggered time-marching strategy, and
3) the direct storage and updating of the derivatives of physical
quantities, the CESE method possesses a complete conservation
property and a high degree of locality. Results of numerical experi-
ments indicate that the simplest CESE scheme has a second-order
convergence rate, whereas its ability to capture discontinuities is
desirable inmany applications [23]. Owing to its accuracy and robust-
ness, the CESE method is employed in the CFD module of the
simulation software LS-DYNA [24].
This paper provides an overview of the CESE method and its

applications in different fields, with an emphasis on recent works.
After a presentation of the fundamentals of CESE in Secs. II and III,
developments of the CESE method over the past five years are
highlighted in Sec. IV. For the early history of CESE, one can refer
to the excellent reviews by Liu et al. [23] and Wang [25]. Section V
provides remarks on some numerical features of the CESE schemes.
In Sec. VI, a comprehensive survey of applications of the CESE
method is presented, with a broad scope covering aerodynamics,
multifluid flows, detonations, aeroacoustics, andmany other research
areas. Finally, conclusions are given in Sec. VII.

II. Space–Time Integral Form of Governing Equations

Governing equations for a specific physical problem can be
formulated in different ways. However, the form of equations that
is used in a numerical method will have a fundamental influence
on its numerical performance. A major feature of the CESE method
is the adoption of a space–time integral form of the governing
equations, in which time and space are treated on the same footing
[1]. For illustrative purposes, we consider the Navier–Stokes equa-
tions for two-dimensional compressible flows as

∂U
∂t

� ∂Finv

∂x
� ∂Ginv

∂y
� ∂Fvis

∂x
� ∂Gvis

∂y
(1)

where U denotes the vector of conservative variables such that

U �

0
BBBB@

ρ

ρu

ρv

ρe

1
CCCCA (2)

where Finv and Ginv are the inviscid fluxes of the form

Finv �

0
BBBB@

ρu

ρu2 � p

ρuv

�ρe� p�u

1
CCCCA; Ginv �

0
BBBB@

ρv

ρuv

ρv2 � p

�ρe� p�v

1
CCCCA (3)

and Fvis and Gvis are the viscous fluxes, which can be written as

Fvis �

0
BBBB@

0

τxx

τxy

τxxu� τxyv − qx

1
CCCCA; Gvis �

0
BBBB@

0

τxy

τyy

τxyu� τyyv − qy

1
CCCCA (4)

In Eqs. (2) and (3), ρ is the density of the fluid; u and v are the x
and y components of the flow velocity, respectively; p is the static
pressure; and e is the total energy per unit mass of the fluid. In Eq. (4),
τ is the viscous-stress tensor and q is the heat-flux vector. By using
Newton’s formula for viscous stress and Stokes’s hypothesis, τ can be
written as

τ � μ

�
�∇u� � �∇u�T −

2

3
�∇ ⋅ u�I

�
(5)

where μ is the viscosity, u is the flow velocity vector, I is the
unit tensor, and ∇ is the gradient operator. The heat-flux vector q
can be expressed by Fourier’s law of heat conduction

q � −κ∇T (6)

where κ is the thermal conductivity, and T is the temperature.
Note that once the transport properties and the equation of state are
provided, Eq. (1) becomes a closed set of equations.
To rewrite Eq. (1) in a more compact form, we introduce the

notation

F � Finv − Fvis; G � Ginv −Gvis (7)

Next, with a unified treatment of time and space, we define x, y,
and t as coordinates in a three-dimensional Euclidean space E3.
Hence, Eq. (1) can be written in a divergence-free form as

∇ ⋅ h � 0; h � �F;G;U� (8)

After applying Gauss’s divergence theorem to an arbitrary control

volume V in E3, of which the boundary surface is denoted by S�V�,
we finally write the governing equations asI

S�V�
h ⋅ n dS � 0 (9)

wheren denotes the unit outward normal vector onS�V�. Clearly, this
equation gives a direct description of the space–time conservation of
mass,momentum, andenergy in fluid flows; and it faithfully preserves
the original physical laws. In the CESE method, this integral form
[Eq. (9)] serves as the starting point for the construction of numerical
schemes.

III. Conservation Element and Solution Element
Method

This section is devoted to demonstrating the basic ideas of the
CESE method. For clarity of mathematical notation without loss of
generality, the CESE method is applied to a one-dimensional (1-D)
scalar model equation of the form

∂u
∂t

� ∂f�u�
∂x

� 0 (10)

Numerical discretization and solution schemes for Eq. (10) will be
presented in this section.

A. Discretization

The first process of theCESEmethod is to discretize the space–time
domain that is relevant to the computation. The discretization
procedure begins with generating the mesh for the physical space
and determining the time-step size for the time-marching algorithm,
which is similar to most CFD methods. The features of the CESE
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discretization include the arrangement of the solution points, the

selection of the unknown variables to be calculated and stored at

each solution point, and the construction of control volumes for the

space–time integral form of the governing equation. All these features

can be illustrated by introducing two special concepts: the conserva-

tion element (CE) and the solution element (SE).
Consider the application of the CESE method to Eq. (10). With a

uniformdivisionof the 1-Dphysical space and a constant time step, the

2-D x-t plane is discretized by a space–time mesh as shown in Fig. 1

(solid lines). The spatial coordinate of the jthmesh node is denoted by

xj. The position of each cell center is xj�1∕2 � �xj � xj�1�∕2, and the
cell size isxj�1 − xj � Δx. In this time-marchingalgorithm, each step

�tn−1; tn� consists of two half-steps: �tn−1; tn−1∕2� and �tn−1∕2; tn�. The
time-step size is defined as Δt � tn − tn−1.
The unknown function u�x; t� is represented by the discrete

values of u at a set of specific space–time points, called solution

points. For integer time levels ft0; t1; : : : ; tn : : : g, the solution

points are mesh nodes (circles in Fig. 1). For half-integer time

levels ft1∕2; t3∕2; : : : ; tn�1∕2 : : : g, the solution points are cell centers

(squares in Fig. 1). In other words, a staggered mesh is used at

each intermediate time level. In the basic CESE scheme, unknown

variables that need to be calculated and stored at each solution point

[e.g., point (j, n)] include not only u but also its spatial derivative ux:

unj ≡ u�xj; tn�; �ux�nj ≡
∂u
∂x

�xj; tn� (11)

Aschematic of the paths of information flow in a single CESE time

step is shown in Fig. 2. As seen in this figure, the CESE scheme

results in a highly compact stencil in space and time. If a half-step is

treated as the basic iteration, the half-width of the symmetric stencil is

Δx∕2 because unknowns at point (j, n) only depend on the data

stored at (j − 1∕2, n − 1∕2) and (j� 1∕2, n − 1∕2).

Based on the space–time mesh shown in Fig. 1, a set of
small space–time elements (named conservation elements) can be
constructed as demonstrated in Fig. 3. To each solution point, a CE is
assigned. For example, the CE for point (j, n), denoted as �CE�nj , is
the rectangle whose four vertices are the points (j − 1∕2, n − 1∕2),
(j� 1∕2, n − 1∕2), (j� 1∕2, n), and (j − 1∕2, n). Clearly, the CEs
cover the whole space–time domain without overlap. It is worth
noting that the arrangement of CEs in two successive half-time steps
is staggered. Within each conservation element, the space–time
integral form of Eq. (10) is numerically implemented, and discrete
equations for unknowns are established.
When performing the space–time integration of Eq. (10) over aCE,

an important question is how to evaluate u and f along the boundary
of the CE. This leads to the introduction of a solution element for
each solution point. The definition of �SE�nj is shown in Fig. 4, where
two line segments bisect each other at point (j, n), forming a cross
with four endpoints of (j� 1∕2, n), (j, n� 1∕2), (j − 1∕2, n), and
(j, n − 1∕2). In the same way, SEs for half-integer points can be
defined. Note that each conservation element �CE�nj is bounded by

three solution elements: �SE�nj , �SE�n−1∕2j−1∕2 , and �SE�n−1∕2j�1∕2. The SEs

cover the boundaries of every CE with no overlap. Inside each SE,
the functions u�x; t� and f�x; t� are assumed to be linear and can
be approximated by first-order Taylor expansions about the center
of the SE. To be specific, in the solution element �SE�nj , u and f are

constructed as

u�x;t�� unj ��ux�nj �x−xj���ut�nj �t− tn�; �x;t�∈ �SE�nj (12)

and

Fig. 1 Computational mesh and the arrangement of solution points.

Fig. 2 Time-marching variables and the information flow in one CESE
time step.

Fig. 3 Definition and arrangement of conservation elements.

Fig. 4 Definition of the solution element associated with solution point
(j, n).
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f�x;t�� fnj ��fx�nj �x−xj���ft�nj �t− tn�; �x;t�∈ �SE�nj (13)

where ut and ft are the temporal derivatives of u and f, respectively.

B. Nondissipative Core Scheme

In this section, a nondissipative CESE scheme, named the a
scheme, is established to solve the 1-D scalar conservation law
Eq. (10). A space–time flux vector is defined as

h � �f; u� (14)

where f and u can be regarded as the components of flux vector h in
the x direction and t direction, respectively. With this definition,
Eq. (10) can be converted into the space–time integral form of
Eq. (9) by following the procedure in Sec. II.
Consider a half-stepmarching from time leveln − 1∕2 to time level

n. At the solution point (j, n), two independent unknowns [unj and

�ux�nj ] need to be calculated simultaneously. Thus, two algebraic

equations need to be formulated by discretizing the integral conser-
vation law. For this purpose, we split the conservation element �CE�nj
into two subelements: �CE−�nj and �CE��nj . As shown in Fig. 5,

�CE−�nj is the rectangle ACDE, and �CE��nj is the rectangle

CBFD. Each edge of these rectangles belongs to one of the three
SEs associated with �CE�nj .
Next, the space–time integral conservation law is implemented

over each of the sub-CEs. Let the control volume V in Eq. (9) be
�CE−�nj and �CE��nj in turn, and so one can obtainI

S�CE−�nj
h ⋅ n dS � 0 (15)

I
S�CE��nj

h ⋅ n dS � 0 (16)

where h is expressed by Eq. (14), and n is the unit outward normal
vector on the boundary of �CE−�nj or �CE��nj .
As marked in Fig. 6, the average values of u�x; t� on line segments

DE, DF, AC, and BC are denoted by U�
L, U

�
R, UL, and UR, respec-

tively. In addition, FL, FR, and FC represent the average values of
f�x; t� on line segments AE, BF, and CD (note that CD is the
interface between two sub-CEs), respectively. With this notation,
integral equations (15) and (16) can be expressed as

U�
L

Δx
2

� UL

Δx
2

� �FL − FC�
Δt
2

(17)

U�
R

Δx
2

� UR

Δx
2

� �FC − FR�
Δt
2

(18)

which explicitly state the balance of space–time flux in each sub-CE.

To proceed with the scheme construction, U�
L, U

�
R, UL, UR, FL,

FR, andFC in Eqs. (17) and (18)must be related to the time-marching

variables (i.e., u and ux) at the solution points using the concept of the
solution element. Recall that u and f are assumed to be linear

functions of x and t inside each individual SE and can be calculated

by first-order Taylor expansions about the solution point. Since line

segmentsAC andAE belong to �SE�n−1∕2j−1∕2 ,UL andFL can actually be

expressed in terms of the known information stored at (j − 1∕2,
n − 1∕2), namely, point A in Figs. 5 and 6. Performing Taylor

expansions in �SE�n−1∕2j−1∕2 yields

UL � u
n−1∕2
j−1∕2 � Δx

4
�ux�n−1∕2j−1∕2 (19)

FL � f
n−1∕2
j−1∕2 � Δt

4
�ft�n−1∕2j−1∕2 (20)

Similarly, sinceBC andBF belong to �SE�n−1∕2j�1∕2,UR andFR can be

evaluated by the Taylor expansions about solution point (j� 1∕2,
n − 1∕2):

UR � un−1∕2j�1∕2 −
Δx
4

�ux�n−1∕2j�1∕2 (21)

FR � fn−1∕2j�1∕2 �
Δt
4
�ft�n−1∕2j�1∕2 (22)

In Eqs. (19–22), u and ux at time level n − 1∕2 are already known.
Since f � f�u� is a prescribed function in the conservation law, one
has

fn−1∕2j	1∕2 � f
�
u
n−1∕2
j	1∕2

�
(23)

By using the chain rule, the spatial derivative of f is expressed as

�fx�n−1∕2j	1∕2 � ��∂f∕∂u�ux�n−1∕2j	1∕2 (24)

The temporal derivative of u can be obtained using Eq. (10), which
is the governing equation itself:

�ut�n−1∕2j	1∕2 � −�fx�n−1∕2j	1∕2 (25)

By using the chain rule again, the temporal derivative of f is

derived as

�ft�n−1∕2j	1∕2 � ��∂f∕∂u�ut�n−1∕2j	1∕2 (26)

Hence UL, FL, UR, and FR can be explicitly calculated using the

preceding formulas.
Next, consider unknowns at time level n. The first-order Taylor

expansion in �SE�nj relates U�
L and U�

R to unknowns unj and �ux�nj at
time level n:Fig. 5 Definition of sub-CEs: CE− and CE�.

Fig. 6 Space–time flux through the boundaries of sub-CEs.
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U�
L � unj −

Δx
4

�ux�nj (27)

U�
R � unj �

Δx
4

�ux�nj (28)

Substituting Eqs. (27) and (28) into Eqs. (17) and (18), one obtains

unj −
Δx
4

�ux�nj � UL � �FL − FC�
Δt
Δx

(29)

unj �
Δx
4

�ux�nj � UR � �FC − FR�
Δt
Δx

(30)

From the sum of Eqs. (29) and (30), one can derive

unj � 1

2
�UL �UR� �

Δt
2Δx

�FL − FR� (31)

and from the difference of Eqs. (29) and (30), one can derive

Δx
4

�ux�nj � 1

2
�UR −UL� �

Δt
2Δx

�2FC − FL − FR� (32)

So far, Eq. (31) is an explicit time-marching formula for unj ,

but �ux�nj cannot be directly provided by Eq. (32). This is because

FC, which denotes the average value of flux f through the interface
CD, has not been addressed. In the original CESE scheme, FC is
given by the Taylor expansion in �SE�nj , i.e.,

FC � fnj −
Δt
4
�ft�nj (33)

With a procedure analogous to Eqs. (23–26), fnj and �ft�nj can be
expressed in terms of unj and �ux�nj . Since unj is determined by

Eq. (31), the only unknown in Eq. (32) is �ux�nj , and a time-marching

formula for �ux�nj can eventually be derived.

Note that a complete CESE time step consists of two half-steps: a
half-step marching from nodes to centers and a half-step marching
from centers to nodes. The marching schemes for both half-steps are
identical, except for the indexes of the solution points. At the initial
time (usually t0 � 0), the initial conditions of u and ux must be
specified. At the boundaries of x, corresponding boundary conditions
for u and ux need to be implemented.
The aforementioned CESE scheme is referred to as the a scheme

in the literature [2]. A remarkable feature of the a scheme is its use of
Taylor expansion in the inverse-time direction to relate the interface
flux FC to the marching variables [see Eq. (33)]. Such a treatment
results in the space–time inversion invariance of the a scheme, which
further makes this scheme nondissipative [17]. From a historical
perspective, the a scheme serves as the nondissipative core of sub-
sequent CESE-family schemes.

C. CESE Schemes with Artificial Dissipation

A nondissipative scheme is not practical for problems where
shock wave capturing is of concern. Thus, based on the a scheme,
some CESE schemes with artificial dissipation have been proposed,
e.g., thea–ε scheme [4], thea–α scheme [5], and theCourant-number-
insensitive scheme [6–8]. Generally, these schemes follow the frame-
work of the a scheme but abandon the inverse-time Taylor expansion
of Eq. (33) for the fluxFC. Note that Eq. (31) for the updating of u

n
j is

actually a result of flux balance in the conservation element �CE�nj ,
irrespective of FC, and therefore Eq. (31) remains unchanged when
extending the nondissipative scheme to a dissipative one.
Necessary dissipation can be introduced into the CESE scheme by

updating the spatial derivative �ux�nj in a different way fromEqs. (32)
and (33). In the following, the widely used a–α scheme is outlined as
an example. First, unj is evaluated using Eq. (31). Then, two different

estimations for �ux�nj can be obtained:

�u−x �nj �
unj −

h
u
n−1∕2
j−1∕2 � �Δt∕2��ut�n−1∕2j−1∕2

i
Δx∕2

(34)

�u�x �nj �
h
u
n−1∕2
j�1∕2 � �Δt∕2��ut�n−1∕2j�1∕2

i
− unj

Δx∕2
(35)

Finally, �ux�nj is taken as a weighted average of �u−x �nj and �u�x �nj ,

�ux�nj � W��u−x �nj ; �u�x �nj ; α� (36)

whereW is aweighted-average functionwith an adjustable parameter
α (α � 1 and α � 2 are commonly used) expressed as

W�x−; x�; α� � jx�jαx− � jx−jαx�
jx�jα � jx−jα (37)

Although the equations in this section apply to 1-D scalar models,
important ideas in the early development of the CESE method
have been demonstrated. Extensions of the CESE method to 2-D
and 3-D cases for Euler, NS, and other physical equations have been
well implemented [9–14]. In the extension to NS equations for
viscous-flow problems, great efforts have been made to handle the
CESE schemes in highly nonuniform and high-aspect-ratio meshes
for the purpose of resolving boundary layers.

IV. Recent Progress in CESE Schemes

Increasing attention to complex problems such asmultiphase flows,
high-speed aerodynamics, and detonation simulations calls for further
improvements to the abilities of existingnumerical schemes to capture
strong discontinuities, handle complex geometries, and resolve fine
flow structures. Accordingly, recent works on CESE schemes have
made progress in the following aspects.

A. Upwind CESE Schemes

The aforementioned CESE schemes are categorized as central
schemes, in which the upwind numerical flux technique is not used.
Recently, Shen et al. [26], Shen andWen [27,28], Shen et al. [29], and
Shen and Parsani [30] proposed characteristic-based upwind CESE
schemes for capturing contact discontinuities (e.g.,material interfaces)
with improved accuracy and robustness.
The upwind CESE scheme follows the basic ideas of the non-

dissipative core scheme as much as possible, but some necessary
dissipation is introduced by an upwind procedure that is in good
accordancewith physical processes. For illustrative purposes, the 1-D
scalar equation [Eq. (10)] is again considered. The same mesh as
shown in Fig. 1 is adopted, and the arrangement of CEs is preserved.
However, the definition of the SEs needs to be modified, as shown in
Fig. 7. Compared with �SE�nj in Fig. 4, the new �SE�nj becomes a
rectangle and no longer contains any part that allows for t < tn. With
such a modification, it should be noted that Eqs. (17–32) can still be
derived by the same procedures as presented in Sec. III.B.
The difference between the upwind CESE scheme and the

a scheme lies in the treatment of FC [the average flux through

Fig. 7 Definitions of CE and SE for upwind CESE schemes.
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the interface CD between sub-CEs �CE−�nj and �CE��nj ]. Instead of
using the inverse-timeTaylor expansion [Eq. (33)], the upwindCESE
scheme approximates FC as

FC � f
�
u
n−1∕4
j

�
(38)

where u
n−1∕4
j is the value of u at the midpoint of CD. In the present

upwind CESE scheme, un−1∕4j is derived from known data at time

tn−1∕2 and can be taken as the solution of the Riemann problem with

discontinuous initial data on the left and right sides ofCD, which can

be provided by Taylor expansions in �SE�n−1∕2j−1∕2 and �SE�n−1∕2j�1∕2:

�uL�n−1∕4j � UL � Δx
4

�ux�n−1∕2j−1∕2 � Δt
4
�ut�n−1∕2j−1∕2

�uR�n−1∕4j � UR −
Δx
4

�ux�n−1∕2j�1∕2 �
Δt
4
�ut�n−1∕2j�1∕2 (39)

whereUL andUR are given by Eqs. (19) and (21). For the purpose of
suppressing oscillations, slope reconstructions with proper limiters
are required when using Eq. (39) in cases of strong discontinuities.
After FC is obtained, the spatial derivative �ux�nj can be calculated

using Eq. (32). Note that the time-marching scheme in Eq. (31) for unj
is not affected by the aforementioned upwind procedure.
When the upwind CESE scheme is applied to a system of multiple

equations (e.g., the Euler equations), the local Riemann problem
becomesmore complex than that in a scalar case. Therefore, approxi-
mate Riemann solvers [e.g., the Harten, Lax, and van Leer [31],
contact-restoring Harten, Lax, and van Leer (HLLC) [32], and

Roe [33] Riemann solvers) or other upwind techniques (e.g., local
Lax–Friedrichs flux [30]) can be chosen to compute the flux vector at
the interfaces between sub-CEs. In multidimensional problems [27],
rotated Riemann solvers are preferred for optimizing the direction
of the local Riemann problem. So far, the upwind CESE scheme has
been extended to multidimensional structured/unstructured meshes
for compressible Euler, Navier–Stokes [30], and magnetohydrody-
namics (MHD) [34] equations.

B. CESE Schemes on Arbitrary Meshes

Due to the complexity of geometric configurations and the
necessity for local mesh refinements, an optimal computational grid
for a 2-D/3-D practical problem may be structured, unstructured, or
even hybrid. If conservation elements and solution elements can be
defined in a general manner that is suitable for various meshing
strategies, the extension of CESE schemes to practical applications
will be greatly facilitated [35–37].
Recently, Shen et al. [37] proposed a novel method to construct

CEs on arbitrary meshes. Consider a 2-D spatial mesh consisting of
mixed quadrilateral and triangular cells. A representative part of this
mesh is illustrated by Fig. 8a. The CE for grid nodeV1 at time level n
is shown in Fig. 8b. The CEs for cell centers C1 and C2 at time level
n� 1∕2 are shown in Figs. 8c and 8d, respectively. Not only the grid
nodes and the cell centers but also the midpoints of the cell edges are
involved in the definitions of CEs and sub-CEs. Naturally, a CE is
split into at least three sub-CEs, and each of these sub-CEs is a
quadrangular prism.
Based on the preceding definition of conservation elements for

arbitrary meshes, corresponding CESE schemes can be either central
or upwind. If the upwind treatment is adopted, the definition of

Fig. 8 Definition of conservation elements in CESE schemes based on a hybrid mesh.
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solution elements will follow the method shown in Fig. 7. Otherwise,
solution elements are defined similarly to those in Fig. 4. SeeRef. [37]
for a detailed illustration.
Here, the second-order upwind CESE scheme on an unstructured

hybrid mesh is presented briefly. Consider the 2-D NS equations
[Eq. (1)] and focus on the step from tn−1∕2 to tn. In this step, the
unknowns for a typical grid node Vi include the conserved variables
and their spatial derivatives at pointVi and time tn, which are denoted
by Un

i , �Ux�ni , and �Uy�ni . The construction of the CE for each grid

node Vi is shown in Fig. 8b. For themth sub-CE of CE�Vi�, denoted
by CEm�Vi� (m � 1; 2; : : : ;M), as shown in Fig. 9, applying Eq. (9)
to this sub-CE yields a flux-balancing equation

U�
mSm � UmSm −

Δt
2

X2
l�1

�
Δy�l�m F�l�

m − Δx�l�m G�l�
m

�

� Δt
2
�Lm−1F̂m−1 − LmF̂m� (40)

where Sm is the base area of CEm�Vi�; andU�
m,Um, �F�1�

m ;G�1�
m �, and

�F�2�
m ;G�2�

m � are average values over quadrilaterals ABViD,CmGHE,
ADECm, and ABGCm, respectively. The definitions of U, F, and G

are given by Eqs. (2–7); andUm, �F�1�
m ;G�1�

m �, and �F�2�
m ;G�2�

m � can be
obtained using the Taylor expansion in SE�Cm�. The parameterLm is

the length of GH, and F̂m is the flux through the interface BGHVi

between CEm�Vi� and CEm�1�Vi�. The interfacial flux F̂m can be
calculated based on the data constructed from SE�Cm� and
SE�Cm�1�, with an upwind technique used for calculating its inviscid
part. Hence,U�

m (m � 1; 2; : : : ;M) can be obtained fromEq. (40) for
each sub-CE affiliated to CE�Vi�.
With values of U�

m (m � 1; 2; : : : ;M), algebraic equations for
unknowns Un

i , �Ux�ni , and �Uy�ni can be established. The top surface
ofCE�Vi�, which is a polygonal element at time level n (see Fig. 10),
consists of M quadrilateral subelements. The mth quadrilateral is
the top surface of CEm�Vi�, as shown in Fig. 9. The centroid of the
polygonal element is denoted by pointGi, and the centroid of themth
quadrilateral is point Gm (m � 1; 2; : : : ;M). In this second-order
CESE scheme, a piecewise linear assumption is adopted to approxi-
mate U�x; y; t� within SE�Vi�. As a result, U�

m (m � 1; 2; : : : ;M)
can be interpreted as the value of U at time level n at point Gm,
andU��Gi� is the average of U�x; y; tn� over the polygonal element.
Based on Eq. (40), the area-weighted average of U�

m (m �
1; 2; : : : ;M) yields the explicit time-marching scheme for U��Gi�:

U��Gi��
2
4XM

m�1

UmSm−
Δt
2

XM
m�1

X2
l�1

�
Δy�l�m F�l�

m −Δx�l�m G�l�
m

�35∕XM
m�1

Sm

(41)

Note that all fluxes through the interfaces between neighboring
sub-CEs are canceled, and Eq. (41) is the direct result of conservation
laws over the entire CE�Vi�.

By using the first-order Taylor expansion inside SE�Vi�, a set of
linear equations of �Ux�ni and �Uy�ni can be established as

�Ux�ni δxm � �Uy�ni δym � U�
m − U��Gi� (42)

�Ux�ni δxm�1 � �Uy�ni δym�1 � U�
m�1 − U��Gi� (43)

for each m, where δxm � x�Gm� − x�Gi�, and δym �
y�Gm� − y�Gi�. Therefore, a total of M sets of �Ux�ni and �Uy�ni
can be obtained by solving linear equations (42) and (43) for

m � 1; 2; : : : ;M. As suggested by Shen et al. [37], a weighted-

average function can be employed to determine an optimal set of

derivatives �Ux�ni and �Uy�ni , with consideration of the shock-captur-
ing capability as well as the accuracy in smooth regions. Note that the

centroidGi does not necessarily coincide with the node Vi. By using

the first-order Taylor expansion

Un
i �U��Gi���Ux�ni �x�Vi�−x�Gi����Uy�ni �y�Vi�−y�Gi�� (44)

the value of Un
i can be updated.

C. High-Order CESE Schemes

High-order schemes enable a numerical simulation to accurately

resolve fine structures in the physical problem at a relatively low

computational cost. Compared with other numerical methods, the

CESE method demonstrates two attractive features that are favorable

for high-order extensions:
1) The highly compact stencil in the original CESE scheme need

not be extended when constructing high-order schemes.
2) The temporal and spatial accuracies can be improved simulta-

neously [37–41].
Nominally, a CESE scheme based on a first-order Taylor expansion

in the solution elements is regarded as a second-order CESE scheme.

Recently, Shen et al. [37] proposed arbitrary-order CESE schemes on

hybrid meshes, which is an extension of the method of Liu and Wang

[38].Yanget al. [39] thenelaboratedon thismethodology formagneto-

hydrodynamic simulations. To construct an nth-order CESE scheme

(n > 2), the space–time fluxes in Eq. (9) need to be approximated by

(n − 1)th-order Taylor expansions in eachSE.Consequently, variables
that need to be stored and updated at each solution point include U as

well as its spatial derivatives up to the (n − 1)th-order, and some

unknown high-order derivatives will appear in the integral equation

[Eq. (9)] for each CE. Thus, high-order derivatives need to be updated

before evaluating U and its first-order derivatives. In the method of

Shen et al. [37], these high-order derivatives are updated in a descend-

ing sequence from the highest order to the second order. Detailed

descriptions of the time-marching scheme for high-order derivatives

can be found in Ref. [39].Fig. 9 CE�Vi�: themth sub-CE belonging toCE�Vi�,m � 1;2; : : : ;M.

Fig. 10 Top surface of CE�Vi�: a polygonal element consisting of M
quadrilateral subelements.
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For the purpose of illustration, the third-order CESE scheme
of Shen et al. [37] for the 1-D scalar equation [Eq. (10)] is described
as follows. With the same definition of computational mesh and CE
(see Figs. 1 and 3), the integral conservation law in the form of Eq. (9)
is applied to the conservation element �CE�nj . In this third-order
scheme, the second-order Taylor expansion is used to construct
u�x; t� and f�x; t� within each SE (see Figs. 4 and 5). As a result,
the discrete equation for unknowns at mesh node (j, n) is derived as

unjΔx� �uxx�nj
Δx3

24
� UL � UR � FL − FR (45)

where

UL � Δx
2

un−1∕2j−1∕2 � Δx2

8
�ux�n−1∕2j−1∕2 � Δx3

48
�uxx�n−1∕2j−1∕2 (46)

UR � Δx
2

un−1∕2j�1∕2 −
Δx2

8
�ux�n−1∕2j�1∕2 �

Δx3

48
�uxx�n−1∕2j�1∕2 (47)

FL � Δt
2
fn−1∕2j−1∕2 � Δt2

8
�ft�n−1∕2j−1∕2 � Δt3

48
�ftt�n−1∕2j−1∕2 (48)

FR � Δt
2
fn−1∕2j�1∕2 �

Δt2

8
�ft�n−1∕2j�1∕2 �

Δt3

48
�ftt�n−1∕2j�1∕2 (49)

Note that at time level n − 1∕2, u, ux, and uxx are already known.
Moreover, first- and second-order derivatives with respect to time t
(e.g. ft, ftt, ut, utt, and uxt) at time level n − 1∕2 can be calculated by
using the Cauchy–Kowalewski procedure, as shown in Eqs. (24–26).
Hence, the right-hand-side terms in Eq. (45) can be obtained
explicitly.
As suggested in Ref. [37], before updating unj and �ux�nj , the

highest-order spatial derivative �uxx�nj can be calculated first. A

central difference is used to estimate �uxx�nj as

�uxx�nj �
h
�ux�n−1∕2j�1∕2 � �Δt∕2��uxt�n−1∕2j�1∕2

i
−
h
�ux�n−1∕2j−1∕2 � �Δt∕2��uxt�n−1∕2j−1∕2

i
Δx

(50)

Then, unj can be derived from Eq. (45). Finally, �ux�nj can be

determined by a procedure similar to Eqs. (34–37) in Sec. III.C.

However, the first-order Taylor expansions in Eqs. (34) and (35)

should be replaced with corresponding second-order Taylor expan-

sions. Thus, two different estimations for �ux�nj can be obtained as

�u−x �nj �
unj −

h
u
n−1∕2
j−1∕2 ��Δt∕2��ut�n−1∕2j−1∕2 ��Δt2∕8��utt�n−1∕2j−1∕2

i
Δx∕2

(51)

�u�x �nj �
h
un−1∕2j�1∕2��Δt∕2��ut�n−1∕2j�1∕2��Δt2∕8��utt�n−1∕2j�1∕2

i
−unj

Δx∕2
(52)

Substituting Eqs. (51) and (52) into theweighted-average function

in Eq. (36) yields the optimal estimation of the first-order spatial

derivative �ux�nj .
Additionally, Bilyeu et al. [40] presented a viable approach

to developing high-order CESE schemes, with ideas different from

Shen et al. [37]. In Ref. [40], Bilyeu et al. successfully constructed a

fourth-order CESE Euler solver for 2-D unstructured meshes, which

is an extension of Chang’s fourth-order CESE method for the 1-D

Burgers equation [41].

V. Some Features of CESE Schemes

In this section, some remarks are made on the numerical character-

istics of the CESE schemes described in Secs. III and IV. Simulations

of two simple but canonical problems are performed to demonstrate

the capabilities of the CESE method in comparison with established

numerical approaches. The stability and efficiency of various CESE

schemes are discussed. In particular, a von Neumann analysis for the

second-order upwind CESE scheme and an estimation of the data

storage in the CESE method are provided.

A. Accuracy

Generally, the accuracy of a CESE scheme depends on the order

of the Taylor expansions that are used to approximate unknowns and

fluxes within each solution element (i.e., the degree of the approxi-

mation polynomials). If the (M − 1)th-order Taylor expansions are
used, the theoretical order of accuracy of the scheme isM in space and

time. The most frequently used CESE schemes, including the central

and upwind types, are second-order schemes.

A feature of the CESE scheme is its ability to capture shock waves

and contact discontinuities with high resolution. In this section, two

canonical flow problems are numerically simulated by CESE and

other schemes to demonstrate the accuracy of CESE schemes. First,

Sod’s shock-tube problem [42] is solved by a CESE method and

a finite volume method (FVM) simultaneously. The CESE code is a

1-D implementation of the second-order a–α scheme described in

Sec. III.C. The FVM counterpart incorporates the second-order

monotonic upstream-centered scheme for conservation laws (known

as MUSCL) reconstruction, the van Leer limiter, and the HLLC

Riemann solver. Both the CESE and the FVM computations employ

a uniform mesh with 200 cells and a Courant–Friedrichs–Lewy

(CFL) number of 0.9. Numerical results of the density distribution

from x � −1 to x � 1 at time t � 0.5 are shown in Fig. 11 in

comparison with the exact Riemann solution. The CESE scheme

resolved a narrower contact discontinuity than the FVM scheme.

At the tail of the rarefaction wave, the CESE results match the exact

solution better than the FVM results.

The second problem is the Mach 3 inviscid flow through a 2-D

tunnel with a forward-facing step inside. See Ref. [43] for initial

conditions, boundary conditions, and geometrical parameters. This

case is simulated by the a–α and upwind CESE schemes, as well as a

flow solver [44] based on the upwind FVM. All of the three schemes

(a–α CESE, upwind CESE, and upwind FVM) have second-order

accuracy in space and time, and they employ the same computational

mesh (see Fig. 12a) and the same Courant–Friedrichs–Lewy number

of 0.95. Density fields at time t � 4.0 are shown in Figs. 12b and 12c.
In comparison with the upwind FVM scheme, both the a − α
and upwind CESE schemes can accurately capture the structure of

shock waves. Moreover, the upwind CESE scheme can resolve the

phenomenon of shear-layer instability (see Fig. 12c), which is not

observed in the present FVM results.

To assess the accuracy of the high-order CESE schemes described in

Sec. IV.C, the Shu–Osher problem and the double Mach-reflection

problem were studied intensively in Ref. [37], where the fourth-order

CESEschemeprovided agood resolution of fine structures in the flows.

B. Stability

Numerical stability of the CESE method has been investigated

ever since this method was proposed. This review paper examines
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several different CESE schemes, and the Courant–Friedrichs–Lewy

condition must be satisfied in each of them for the system to remain

stable. Consequently, the time-step size used by a CESE scheme has

to be restricted according to the upper bound of the stable CFL

number for that scheme.
For the second-order a scheme (Sec. III.B) and the second-order

a–α scheme (Sec. III.C), the stability condition requires the CFL

number to be less than unity. The proof of this conclusion can be

found in Refs. [2,18].
For the second-order upwind CESE scheme (Sec. IV.A), the stable

upper bound of the CFL number is also equal to one. This stability

analysis is not available in the existing literature.Here, a vonNeumann

analysis on the stability of the second-order upwind CESE scheme is

performed. Consider the 1-D linear scalar convection equation, i.e.,

Eq. (10)withf � au (here,a is a positive constant). For this equation,
the exact solution of the local Riemann problem with initial data

[Eq. (39)] can be readily obtained, and thus the interface flux FC

[Eq. (38)] is

FC � a

�
UL � Δx

4
�ux�n−1∕2j−1∕2 � Δt

4
�ut�n−1∕2j−1∕2

�
(53)

With thisFC, Eqs. (31) and (32) become the explicit expressions of

the second-order upwind CESE scheme. Define a solution vector

qnj �

2
64

unj

Δx
4

�ux�nj

3
75 (54)

so that Eqs. (31) and (32) can be written in a matrix form

qnj � QLq
n−1∕2
j−1∕2 �QRq

n−1∕2
j�1∕2 (55)

where the coefficient matrices are

QL � 1

2

"
1� ν 1 − ν2

−1� ν −1� 4ν − ν2

#
; QR � 1

2

"
1 − ν −1� ν2

1 − ν −1� ν2

#

(56)

and ν is the CFL number, which is defined as

ν ≡ a
Δt
Δx

(57)

Analogously, this scheme can be applied to the half-step marching

from time level n − 1 to time level n − 1∕2:

qn−1∕2j−1∕2 � QLq
n−1
j−1 �QRq

n−1
j ; qn−1∕2j�1∕2 � QLq

n−1
j �QRq

n−1
j�1 (58)

After substituting Eq. (58) into Eq. (55), a complete time step in the

second-order upwind CESE scheme can be formulated as

qnj � �QL�2qn−1j−1 � �QLQR �QRQL�qn−1j � �QR�2qn−1j�1 (59)

Let qnj be a Fourier component with arbitrary wave number k such

that

qnj � A�n; θ�eijθ; �−π < θ ≤ π� (60)

where θ � kΔx is the reduced wave number, and i is the imaginary

unit. Substituting Eq. (60) into Eq. (59) yields

A�n; θ� � M2A�n − 1; θ� (61)

where

M �

2
6664
cos

θ

2
− iν sin

θ

2
i�ν2 − 1� sin θ

2

i�1 − ν� sin θ
2

�2ν − 1� cos θ
2
� i�ν2 − 2ν� sin θ

2

3
7775 (62)

The spectral radius of matrix M is denoted by ρ�ν; θ� and is

calculated numerically as a function of the CFL number 0 ≤ ν ≤ 1
and the reduced wave number −π < θ ≤ π. The variation of ρ�ν; θ�
with respect to ν and θ is shown in Fig. 13. Provided that the CFL

number is less than or equal to unity, it can be seen that ρ�ν; θ� ≤ 1
holds for all wave numbers; thus, this second-order upwind CESE

scheme is numerically stable. Additionally, the numerical dissipation

in the second-order upwind CESE scheme vanishes as the CFL

number approaches zero or one.
For high-order CESE schemes, the stable upper bound of the CFL

number depends on the scheme’s construction. Chang [41] proposed

a novel approach for constructing highly stable high-order CESE

schemes using the same space–time stencil as that in the second-order

CESE scheme. This construction methodology also retains the CFL-

number constraint for numerical stability (i.e., ν ≤ 1), which is

favorable for explicit time-stepping computations.
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a) CESE result vs FVM result: density b) CESE result vs FVM result: internal energy

Fig. 11 Numerical results of Sod’s shock-tube problem [42] at dimensionless time t � 0.5.
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C. Efficiency

The CESE method has a highly compact stencil in space and
time, as shown in Fig. 2, regardless of the order of the scheme. The
compactness of the CESE method is favorable for parallelization.
In a CESE scheme, the number of independent variables that must

be stored and updated at each solution point (denoted byK) is related

to the order of accuracy. For a spatiallyD-dimensional (D � 1, 2, or
3) andMth-order accurate (M ≥ 2) CESE scheme, a precise counting
indicates that

K�D;M� �

8>>><
>>>:
M; D � 1

M�M� 1�∕2; D � 2

M�M� 1��M� 2�∕6; D � 3

(63)

Note that this number is the same as the number of degrees of
freedom for each cell in the discontinuous Galerkin (DG) scheme.
Therefore, thememory requirement of aCESE scheme is comparable
to that of a DG scheme if the CESE and DG schemes are of the same
order and they are used to solve the same problem on the same mesh.
The CESE method requires neither a reconstruction procedure

based on a wide stencil nor a multistage time-integration technique.
Moreover, central CESE schemes (just like central finite volume and
central finite difference schemes) do not include any upwind oper-
ations related to flux calculation.Nevertheless, theCESEmethoduses
the Cauchy–Kowalewski procedure to express the temporal deriva-
tives in terms of spatial derivatives. It also takes time to update the
spatial derivatives using the algorithms described in Secs. III and IV.
The computational speed of the CESE method is determined by the
combined effect of all these factors. For example, consider the second-
order a–α CESE and FVM schemes employed in the 1-D shock-tube
problem in Sec.V.A. For each scheme, theCPU time consumed by the
computational program per time step was measured. The CPU times
listed inTable 1 demonstrate the favorable efficiency of thea–αCESE
scheme.

VI. Applications

Since its inception in the 1990s, theCESEmethod has been applied
to a wide range of scientific and engineering problems. Although
CFD problems are the primary objectives of the CESE method, this
simple and general method actually fits various PDE systems with
physical backgrounds beyond fluid dynamics. This section focuses
on the recent highlights of CESE applications in several representa-
tive research areas.

A. High-Speed Flows in Aerospace Applications

The CESE method has been successfully applied to typical super-
sonic aerodynamic problems, including the supersonic flow over a
blunted flat plate [45],Mach reflection of shockwaves [46], unsteady
viscous flows in rocket nozzles [47], counterflow jets for the reduc-
tion of aerothermal load on spacecrafts [48,49], and the flow over
roughness elements in a supersonic boundary layer [50].
In recent years, increasing interest in reentry flights and Mars

missions has resulted in increasing attention to the field of hypersonic
aerothermodynamics. Typically, the flows encountered byhypersonic
vehicles are characterized by strong shockwaves and thermochemical
nonequilibrium effects. To thoroughly understand the complicated
flow physics involved and reliably predict aerodynamic heating,
numerical studies are essential.
Recently, Wen et al. [51], Shen et al. [52], and Massimi et al. [53]

conducted a systematic study of hypersonic chemically reacting non-
equilibrium flows over spheres using a 2-D axisymmetric CESE
solver based on hybrid meshes. Simulations were performed for three
different working gases: nitrogen, air, and carbon dioxide. The vibra-
tional energy relaxation and the dissociation and recombination reac-
tions were taken into account. In particular, the physically consistent
coupled vibration–chemistry–vibration (CVCV) [54] model was
employed. Here, three flow cases are selected to show the capabilities
of the CESEmethod. Theworking gases, sphere radii, and freestream
conditions of these cases are listed in Table 2. The numerical results of
the dimensionless shock standoff distances (the ratio of the standoff
distance to the sphere radius) are listed in Table 3, alongside the
experimental and theoretical results of Wen and Hornung [55]. It
can be seen that the CESE results agree well with the experimental
and theoretical results. Furthermore, the shapes of the shock waves
are shown in Fig. 14, where the numerical density contours are

Fig. 12 FVM and CESE results for Mach 3 step problem: density
contours at time t � 4.0.
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overlaid on the experimental finite fringe differential interferograms.

The shapes of the numerical bow shocks match the experimental

results well.

Another important nonequilibrium process in an atmospheric-

entry flow is ionization in a high-temperature shock layer. Massimi

et al. [56] carried out a numerical investigation of hypersonic ionized

flows over rounded nose geometries. A 2-D axisymmetric CESE

solver based on hybrid meshes was used to solve the NS equations

with the two-temperature seven-species Park model for ionization

reactions. The weakly ionized air flow in the Radio Attenuation

Measurement (RAM-C II) flight test at a 71 km altitude [57] was

simulated. As shown in Fig. 15, the CESE results of the maximum

electron number densities along the direction normal to the vehicle’s

surface are in good agreement with the data measured during the

flight test [57].

B. Compressible Multifluid Flows

Multifluid flows involving shock-induced instability and shock-

accelerated inhomogeneities play essential roles in a wide variety of

problems including, but not limited to, supersonic combustion,

inertial confinement fusion, and supernova explosion. Numerical

simulations of these complex flows prove to be challenging in the

presence of moving and deformable material interfaces, especially

for fluids with large differences in their densities or thermodynamic

properties. Therefore, a discontinuity-capturing, mass-conserving,

and positivity-preserving scheme is desirable for compressiblemulti-

fluid simulations.
Qamar et al. [58] implemented the CESE method of Chang [2]

and Zhang et al. [12] for solving the one- and two-dimensional

compressible two-fluid models of Kreeft and Koren [59]. Numerical

simulations were performed for gas–liquid Riemann problems and

interactions of air shock waves with bubbles containing lighter and

heavier gases. In comparison with the nonoscillatory central scheme

[60] and the kinetic flux-vector splitting scheme [61], the CESE

schemegives better resolution of discontinuities. Fu et al. [62] applied

the CESE method to a two-fluid Richtmyer–Meshkov instability

(RMI) investigation. Their numerical results are consistent with the

corresponding experimental results [63]. Furthermore, the detailed

characteristics (including small vortices along discontinuities, rollup

structures, and the evolution of the amplitude of the mixing layer

in RMI) are clearly revealed by the CESE simulation. Recently, the

upwind CESE method was used extensively in studies of interfacial

instabilities [64–67].
In the recent works of Shen et al. [29], Guan et al. [68], and Fan

et al. [69], compressible two-fluid flows are described by a volume-

fraction-based five-equation model [70] coupled with the stiffened

gas equation of state [71]. Extensive numerical simulations were

carried out using the maximum-principle-satisfying upwind CESE

scheme [29], which is an improved version of the upwind CESE

scheme presented in Sec. IV. The maximum-principle-satisfying

property is achieved by adopting a very simple limiter proposed by

Zhang and Shu [72]. Furthermore, the ability to capture contact

discontinuities (material interfaces) can be enhanced by employing

Table 1 CPU time per step in the 1-D computation of the
shock-tube problem

Method CPU time per step, ms

Second-order CESE (200 cells) 0.0125
Second-order FVM (200 cells) 0.0188

Table 2 Freestream conditions of flow cases selected fromWen and
Hornung [55]

Case no. Gas Radius, in. ρ∞, kg∕m3 u∞, m∕s T∞, K

1 N2 1.5 0.0195 5140 2200

2 Air 1.0 0.0278 3930 1370
3 CO2 2.0 0.0326 3490 2010

Table 3 Experimental, theoretical, and numerical dimensionless
shock standoff distances

Case no. Experiment [55] Theory [55] Simulation [51]

1 0.100 0.095 0.100
2 0.105 0.093 0.095
3 0.088 0.084 0.087

ν

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ
Δ

-3.1416
-2.3562

-1.5708
-0.7854

0
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1.5708
2.3562

3.1416

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

ρ(ν, θ)

Fig. 13 Spectral radius ρ�ν;θ� of matrixM in the von Neumann analysis of the upwind CESE scheme.
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the HLLC Riemann solver in the upwind procedure. As a result,
challenging numerical simulations of the gas–liquid Riemann prob-
lem and the RMI on a circular interfacewere successfully performed,
in which the mass of each fluid component is conserved and the
positivity of volume fractions is preserved [29].
Here, we review the numerical studies of shock-accelerated inho-

mogeneous flows conducted by Shen et al. [29], Guan et al. [68], and
Fan et al. [69]. Figure 16 shows a schematic of the computation of a
shock–bubble interaction [29], in which a planar shock propagates
from left to right at Mach 1.22 and impacts a helium bubble with a
radius of 25 mm. The morphology of the bubble during its deforma-
tion process is shown in Fig. 17. It can be seen that the interface
between the different fluids is sharply captured, and vorticities are
generated near the interface due to the baroclinicity [73]. To quanti-
tatively validate the CESE method, the trajectories of the upstream

point, the jet point, and the downstream point of the bubble are plotted
in Fig. 18. A good agreement is observed in the comparison between
the CESE results and those obtained by the level-set method [74].
Furthermore, a simulation of a shock–water-column interaction

was performed in Ref. [29] to demonstrate the ability of the upwind
CESE method to handle gas–liquid interfaces. The setup of this
problem resembles that of the shock–bubble interaction (see Fig. 16).
However, the simulation of a shock–water-column interaction
becomes more challenging due to the high-density ratio and large
difference between the thermodynamic properties of air and water. In
this case, the radius of the water column was 2.4 mm and the Mach
number of the shockwavewas 1.47. Because of the high density (and
thus large inertia) of the water column, the interaction process can
actually be separated into two stages: the propagation of pressure
waves and the deformation of thewater column. At the early stage, as
shown in Fig. 19, the shock propagates through the water column as
though passing over a rigid cylinder, but the pressure inside thewater
column changes very quickly and becomes highly heterogeneous.
After the incident shock has passed, as shown in Fig. 20, the water is
gradually stripped away by the high-speed airflow. Note that the
instabilities were captured in detail in this CESE simulation. For
quantitative validation, the drag coefficients of the water column at
different times were derived from the CESE results. As shown in
Fig. 21, there is good agreement with the numerical simulations of
Chen [75] and the experimental data of Igra and Takayama [76].
Guan et al. [68] simulated the shock-induced breakup process of a

liquid droplet immersed in air. The initial setup of this numerical case
is shown in Fig. 16. By following the methodology in Ref. [29], the
flowfield inside the liquid droplet was clearly visualized in the CESE
results, which indicate that the flow pattern inside the droplet is
established soon after the impact by the incident shock and holds
steady for a long time after it passes. For the first time, a saddle point
was observed in this internal flow pattern. Cases with different
incident shock strengths were tested (Fig. 22), and a simple theory
was proposed to correlate the stationary position of the saddle point
with the Mach number of the incident shock.
A comprehensive study of the jet-formation phenomenon in the

interaction of a planar shock with a heavy gas inhomogeneity was

Fig. 14 Comparison of the numerical and experimental shapes of the bow shocks [51]. Reprinted with permission from Elsevier.

Fig. 15 Comparison of electron number density along the body for
RAM-C II flight test at 71 km altitude.

Fig. 16 Schematic of the initial setup for the interaction of an incident shock wave and a gas bubble/water droplet/water column.
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conducted by Fan et al. [69], in which the maximum-principle-
satisfying upwind CESE scheme was adopted for numerical simu-
lations.A schematic of the computation setup is shown inFig. 23.As a
validation of this CESE scheme, the interaction between aMach 1.17
air shockwave and an sulfur hexafluoride (SF6) square cylinder (with
a length of 56.6 mm) was simulated with the aim of reproducing
the corresponding experimental images [77]. The numerical results
shown in Fig. 24 are in excellent agreement with the experimental
images, especially for themorphology of the gas interface, the pattern

of the shock system, and the consequent jet formation on the middle
leeward surface of the inhomogeneity. Based on the detailed infor-
mation provided by the CESE simulation, the mechanism of jet
formation was revealed, and a geometrical criterion was proposed
to determine whether a jet will be formed [69].
Extensive numerical examples in this subsection indicate that the

CESE method captures shocks and contact discontinuities sharply
without spurious oscillations and proves to be a robust and accurate
numerical tool for studies of compressible multifluid flows.

Fig. 17 Deformation history of a helium bubble impacted by a Mach 1.22 shock [29]. Reprinted with permission from Elsevier.
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C. Detonation Simulation

A detonation wave is essentially a strong shock wave supported by

the chemical energy release behind it [78]. This has been attracting

worldwide research interest because of its potential application to

propulsion systems. For detonation, in addition to theoreticalmodeling

and experimental observation, an alternative approach is to perform

highly resolved and accurate numerical simulations to gain insights

into the complex physical processes involved.

An unstable multidimensional structure is inherent in the detona-

tion phenomenon. By using the CESE method to solve reactive Euler

equations, Park et al. [79] andZhang et al. [80] conducted2-Dand3-D

simulations of unstable detonations and crisply resolved the flow

features, including the transverse wave structure, triple points, Mach

stems, counter-rotating vortices, and unburned pockets. Weng and

Gore [81] studied the 3-D flow dynamics in a pulse-detonation engine

using the CESE method. Shen et al. [82] applied the CESE method

to 3-D Euler equations coupled with a two-step reaction model and

investigated the mechanism of 3-D detonation propagation in rectan-

gular ducts.

Recently, Shi et al. [83] noticed that in numerical studies of cellular

structures in detonationwaves, it was difficult tomatch the numerical

cell size with that observed in experiments. For a hydrogen–oxygen

detonation simulation, this discrepancy can be partly attributed to

neglect of the vibrational relaxation processwhenmodeling chemical

reactions. To illustrate the importance of vibrational nonequilibrium

effects on the detonation cell size, the CESE method was used to

solve reactive Euler equations under four different scenarios:
1) The whole system is in thermodynamic equilibrium.
2) The vibrational relaxation is considered and the translational–

rotational temperature is used as the dominant temperature of the
chemical reactions.
3) The vibrational relaxation is considered, whereas Park’s two-

temperature model [84] is used to account for the effect of vibrational
temperature on chemical-reaction rates.
4) A more physically consistent vibration–chemistry–vibration

coupling (CVCV) model [54] is adopted. In Fig. 25, cellular deto-
nation patterns corresponding to physical models 1–4 are visualized
with the numerical soot-foil technique [78]. When the Park’s two-
temperature model [84] or the CVCV model is used, the detonation
cell is effectively enlarged, and a more reasonable agreement can be
achieved between the numerical cell width and the experimental
measurement. Therefore, the vibrational relaxation process in the
chemical-reaction models is an important mechanism in gaseous
detonation.

Initiation of detonations has been numerically studied using the

CESE method. Wang et al. [85] considered implosion as a useful

approach to facilitate the detonation initiation process. To analyze the

complex structures of converging shock waves and the subsequent
detonation initiation, 1-D NS equations with a 24-step chemical

model for hydrogen–oxygen detonation and 2-D Euler equations
with a one-step chemical model for propane (C3H8)–air detonation

were solved using the CESEmethod. The results clearly demonstrate
that the CESE method can capture the salient features of complex
implosion flows. As a result of shock interactions in the implosion

system, a robust detonation wave can be quickly developed.
Recently, Shen and Parsani [86] used the CESE method to inves-

tigate the direct initiation of detonation driven by a blast wave. To
study the role of multidimensional instabilities in the direct initiation

of detonations, CESE simulations were performed for 1-D and 2-D
reactive Euler equations. Comparisons between the 1-D and 2-D
results indicate that multidimensional effects must be included in a

predictive model of the direct initiation of unstable detonations. Heat
release and unsteadiness are undoubtedly two competing factors in
the failure or success of the initiation of real detonations, but they are

accompanied by a third key factor: inherent multidimensional insta-
bilities. As shown in Fig. 26, multidimensional instabilities lead to

the formation of strong transversewaves, which on one hand increase
the risk of failure of the detonation, and on the other hand give rise to
the initiation of local overdriven detonations that enhance the overall

self-sustainability of the global process. The competition between
these two possible mechanisms plays an important role in the direct
initiation of detonations. In Ref. [87], the reinitiation mechanism of a

diffracted detonation wave was investigated numerically using the
CESE method.
Since liquid or solid fuels are in favor for many propellant appli-

cations, understanding the characteristics of two-phase detonations

has become important. The CESE method has been successfully
extended to solve the gas–liquid and gas–solid detonation problems,
and it has proved to be highly accurate and robust. Wang et al. [88]

applied the CESE method to gas–droplet detonations under an Eule-
rian–Eulerian (two-fluid) framework, in which the droplet phase is
considered as a continuum medium. Additionally, Wang et al. [89]

simulated the explosive synthesis of titania (TiO2) nanoparticles
using the Eulerian–Eulerian description and a similar CESE scheme

as in Ref. [88]. Dong et al. [90] applied the CESEmethod to a piston-
driven detonation in energetic solid granules. In theworkof Shenet al.
[91], an Eulerian–Lagrangian two-phase flowmodel was constructed

for liquid-fueled detonations, and the CESE method was adopted for
the numerical simulations. In the mixtures with lean fuel, the propa-
gation velocity of the two-phase detonation was found to be smaller

than that of the equivalent gaseous detonation. This deficit in the
detonation velocity is not only due to heat and drag losses in the
reaction zone but also the incomplete fuel reaction between the shock

wave and the Chapman–Jouguet plane.
Zhang et al. [92] studied the detonation processes in reactive

gas–solid-particle mixtures using the CESE method. The two-phase
detonation was described under an Eulerian–Lagrangian framework.

Themotion of the gas can be described by the unsteady, multispecies,
reactive Euler equations with interphase interaction terms, whereas
the motion of every particle can be tracked by Newton’s laws

of motion. The surface-kinetic-oxidation and diffusion hybrid com-
bustion models [93] were employed to model the combustion rate

of the solid particles. Momentum exchange, heat transfer, and mass
exchange between the gas and the particles were considered. With
efficient message passing interface parallelization techniques, a

CESE simulation code for solving these physical models has been
developed. Numerical simulations of 1-D and 2-D aluminum (Al)–air
detonations (see Fig. 27) were performed, and comparisons between

themonodisperse and polydisperse gas–particle detonationswith log-
normal particle size distributionswere conducted. From thenumerical

results, it can be seen that most features of monodisperse Al–air
detonations, including the double peaks in the gas pressure profile
and the kink in the gas temperature profile, disappear in polydisperse

detonations. Moreover, in polydisperse detonations, the reaction
zones are larger than those in monodisperse cases, which conse-
quently yield larger detonation cell sizes. Since the cellular structures

reflect themultidimensional instabilities of detonation propagation, it

Fig. 18 Position history of the upstream point, the jet point, and the

downstream point of the helium bubble [29]. Reprinted with permission
from Elsevier.
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is clearly demonstrated that the particle size distributions affect the

multidimensional instabilities of gas–particle detonations.

D. Computational Aeroacoustics

By taking advantage of rapid advances in the CFD field, modern

aeroacoustic problems can be promisingly solved through high-

resolution numerical simulations of unsteady compressible Euler or

NS equations. Nevertheless, in a number of computational aeroa-

coustic problems, the coexistence of both shock waves and small

disturbances (acoustic waves) places stringent requirements on the

numerical method.

Wang et al. [94] used the CESE method to study the sound–

shock interaction problem and investigated the accuracy of the

CESE method for aeroacoustic problems involving shock waves.

Fig. 19 Sequences of pressure contours (in units of pascals) in the early stages of a shock–water-column interaction [29]. Reprintedwith permission from
Elsevier.
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Loh et al. [95] considered three selected problems (namely, a linear
benchmark problem, instability waves on a free shear layer, and

shock–vortex interactions) to further demonstrate CESE as a viable

tool for computational aeroacoustics (CAA). The second-order
CESE scheme yielded good numerical results with high resolution

and low dispersion. Additionally, the authors also pointed out that

the nonreflecting boundary condition, which plays an important role
in CAA, is much simpler to implement in the CESE method than in

traditional methods [3,95]. Yen et al. [96,97] modified the Courant-
number-insensitive CESE scheme [96] and the local time-stepping

CESE scheme [97] to improve the numerical efficiency for realistic

multidimensional CAA problems where large grid-size disparity is
inevitable. A 3-D simulation was performed for the propagation of a

Gaussian acoustic pulse and a vorticitywave embedded in aMach 0.5

mean flow. The CESE results agreed well with the corresponding

analytical solution in preserving both the form and amplitude of the

waves [96]. A series of 3-D CESE simulations for the Helmholtz

resonator problem were demonstrated in Ref. [97]. Excellent agree-

ment between the linear acoustic theory and the CESE solution was

achieved using just a second-order CESE scheme.
For CAA problems in practical engineering applications related

to engines and aircraft, theCESEmethod has also been employed as a

numerical tool. Loh and Zaman [98] developed an axisymmetric NS

solver using the CESE method and conducted a numerical investiga-

tion to shed light upon an aeroacoustic resonance phenomenon

often encountered by convergent–divergent nozzles under transonic

conditions. Additionally, a 3-D CESE NS solver was implemented

by Loh et al. [99] and applied to compute the screech noise generated

Fig. 20 Evolution of the numerical schlieren plot during the stripping breakup of the water column [29]. Reprinted with permission from Elsevier.
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by an underexpanded supersonic jet. Kim et al. [100] simulated the

supersonic unsteady flow over an open cavity, which is considered as

a mixing-enhancement and flame-holding approach in the scramjet

engine concept. The CESE method was applied to solve 2-D NS

equations, and it successfully captured the self-sustained oscillations
in the supersonic cavity flows. The computed frequencies and ampli-

tudes of the pressure oscillations compare favorably with the theo-

retical and experimental data. Cheng et al. [101] also studied subsonic

and supersonic flows over open-cavity geometries. The generation
and propagation of flow-induced acoustic waves were faithfully

captured by an unsteadyNS solver based on theCESEmethod.When

compared with experimental and analytical data, satisfactory results

were obtained for the oscillation frequency of the dominant mode.

E. Computational Solid Dynamics

In recent years, high-resolution discontinuity-capturing numerical
methods devised for CFD problems have been considered as alter-
native approaches to solving nonlinear solid-dynamic problems with
Eulerian formulations. Among these methods, the CESEmethod has
attracted considerable attention from researchers in computational
solid dynamics due to its simple logic, high accuracy, and ability to
capture the behaviors of nonlinear waves.
Wang et al. [102] applied the CESE method to two high-velocity

impact problems in elastic–plastic materials: the Taylor copper-
bar-impact problem and the penetration of a long rod (tungsten heavy
alloy) into a steel target. In this numerical study, theCESEmethodwas
adopted to solve the Eulerian governing equations that describe the
solid dynamics, and the level-set technique was used for tracing
material interfaces. Chen et al. [103] extended the CESE solver in
Ref. [102] to simulate high-velocity impact problems involving elas-
tic–plastic flows, high strain rates, and spall fractures. Their simulation
of aluminum plates colliding with stainless-steel plates showed excel-
lent agreement with the experimental data.
By treating the density, velocity, and stress components as primi-

tive unknowns, the governing equations of elastic waves in solids
can be cast into a set of fully coupled first-order hyperbolic PDEs,
including the conservation laws of mass and momentum as well as
the rate-type constitutive relations for materials. Hence, the CESE
method, which is suitable for hyperbolic systems, has been applied to
simulate linear and nonlinear waves in elastic solids. Yu et al. [104]
presented their CESE simulations of resonant standing waves arising
from a time-harmonic external axial load and compression waves
arising from a bimaterial collinear impact. Yang et al. [105] studied
the propagation and reflection of extensional waves in an abruptly
stopped elastic rod using the CESE method. Chen et al. [106]
performed CESE simulations of planar-wave expansion from a point
source in an anisotropic solid of cubic symmetry (gallium arsenide).
Yang et al. [107] extended the CESEmethod to simulate stress waves
in solids of hexagonal symmetry and studied wave propagation in a
heterogeneous solid composed of three blocks of beryl with different
lattice orientations. Using the CESE method as a numerical tool,

Fig. 21 Drag coefficientCd of water column impacted by shock. Dimen-

sionless time t� defined as t� � tug∕d, where ug is postshock gas velocity
and d is diameter of water column [29]. Reprinted with permission from
Elsevier.

Fig. 22 Morphologies and internal flow patterns of a water droplet under shock impact with different shock Mach numbers Ms [68]. Contours show

density of air with units in kilograms per cubic meter. Reprinted with permission from AIAA.

Fig. 23 A schematic of the initial setup for the interaction of a shock and a heavy gas inhomogeneity.
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Lowe et al. [108] conducted a comprehensive study of nonlinear

longitudinal waves (including both weak and strong shocks, rarefac-

tions, and contact discontinuities) in tapered elastic rods. Among

these research works, the CESE simulations effectively captured

waves in various solid materials and provided results consistent with

the available analytical solutions.

F. Magnetohydrodynamics

The magnetohydrodynamic equations, which combine the NS

equations for fluid dynamics and the Maxwell equations for electro-

magnetics, can describe the plasma flows in aerospace applications

and astrophysics. Because the computationalMHDmethod is usually

required to satisfy the divergence-free constraint for a magnetic field

B, some special treatments are incorporated into theMHD numerical

schemes to enforce ∇ ⋅B � 0. Since the inception of the CESE

method, researchers have applied this novel approach to the MHD

equations to solveMHDproblems accurately with a relatively simple

algorithm.

Zhang et al. [109,110] studied MHD benchmark problems

using the CESE method. Investigations of an MHD shock-tube

problem and anMHD-vortex problem demonstrated that the original

CESE method can be directly used to solve the MHD equations.

Fig. 24 Experimental images and numerical schlieren results for a shock–gas-cylinder interaction [69]. Reprinted with permission fromAIP Publishing
(is = incident shock, rs = refracted shock, ts = transmitted shock,ms =Mach stem, gi = gas interface, dts = direct transmitted shock, lts = lateral transmitted
shock, ds = diffracted shock, uvr = upstream vortex pair, dvr = downstream vortex pair).

Fig. 25 Numerical soot foils in detonation simulations with four different physical models [83]. Reprinted with permission from Taylor and Francis.

Fig. 26 Pressure contours (nondimensionalized by pressure of
unburned reactant) in the 2-D simulation of detonation initiation [86].
Reprinted with permission from Cambridge University Press.

Fig. 27 Traces of maximum pressure in an aluminum–air detonation
[92]. Reprinted with permission from Elsevier.
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According to the numerical comparisons reported in Refs. [109,110],
the CESE results without additional treatments for ∇ ⋅ B � 0 com-
pared favorably with previously reported reference solutions. This
finding mainly comes from the observation of the numerical results,
and the reason is not clear yet. Actually, in Refs. [109,110], compar-
isons were performed between the baseline CESE scheme and the
CESE scheme in conjunction with a special treatment to maintain
∇ ⋅ B � 0, but no obvious difference was observed.
Feng et al. [111] developed a numerical platform to investigate

solar–interplanetary physics and space weather. The CESE method
was adopted to solve 3-D MHD equations, and adaptive mesh
refinement was used to better resolve flow features that have spatial
scales many orders of magnitude smaller than the vast size of solar–
interplanetary space. This CESE-based MHD-simulation approach
wasvalidated through the numerical studyof solar corona, solarwind,
and comparison with observation data. Recently, Yang et al. [34,39]
extended this CESEMHD solver to a high-order version [39] as well
as an upwind version [34] using the methodology of Shen et al. [26],
Shen and Wen [27], and Shen et al. [37]. Numerical tests including
MHD-vortex and MHD-blast-wave problems indicated that both the
high-order and the upwind extensions can improve the accuracy of
CESE results. Furthermore, a new strategy to keep the magnetic field
fundamentally divergence freewas proposed in Ref. [39], which uses
the advantage of the CESE method that the spatial derivatives of the
magnetic field are treated as marching variables in the algorithm.

G. Computational Electromagnetics

Numerical techniques such as the finite difference, finite volume,
and finite element methods have been applied to time-domain simu-
lations of electromagnetic fields and waves by solving Maxwell’s
equations. Nevertheless, recent development of the CESE method
provides an alternative framework for computational electromag-
netics.
Wang et al. [112] used the CESE method to solve the scattering

field of transverse magnetic waves due to a perfect conducting
circular cylinder. The computed results of the electric and magnetic
intensity distributions on the cylinder surface, the surface current, and
the radar cross section showed good agreement with the analytical
solutions. Sessions and Winans [113] developed a generalized Max-
well solver based on the Courant-number-insensitive CESE scheme
[6]. In theirwork, electromagneticwave propagation in nondispersive
and dispersive materials was studied numerically. The second-order
CESE method was shown to be accurate on highly nonuniform
meshes and performed well for problems involving highly discon-
tinuous material properties.

H. Hydraulic Engineering

In hydraulic engineering, free-surface gravity flows in rivers and
reservoirs can be approximately described by the shallow-water
equations, which form a nonlinear hyperbolic system of conservation
laws. The classical shallow-water equations are also known as the
Saint-Venant equations. Although multiple assumptions have been
made in the derivation of the shallow-water equations, their solutions
remain challenging for numerical methods.
Molls andMolls [114] applied theCESEmethod to the 1-D and 2-D

Saint-Venant equations and simulated a 1-D idealized dambreak, a 1-D
hydraulic jump in a straight rectangular channel, and a 2-D oblique
hydraulic jump. The CESE results were compared with experimental
data, analytical solutions, and numerical results obtained by conven-
tional high-resolution schemes. These comparisons indicated that the
CESE method is simple, robust, and accurate for hydraulic applica-
tions. Saleem et al. [115] applied theCESEmethod to a set of extended
shallow-water equations incorporating temperature gradients and var-
iable bottom topography. Extensive numerical simulations of dam-
break problems and perturbation problems verified the high accuracy
of the CESE method.

I. Other Applications

In addition to the research fields covered by Secs. VI.A–VI.H,
many other scientific and engineering problems also benefit from the

capabilities of the CESE method. The following are some examples.
Lim et al. [116] and Yao et al. [117] studied chromatographic adsorp-
tion problems in chemical engineering using theCESEmethod. Chou
and Yang [118] solved the non-Fourier heat conduction equations by
using the CESEmethod to simulate the behavior of thermal waves in
ultrafast heat conduction processes. To simulate the non-Fourier heat
conduction in solids at low temperatures, Qamar and Ashraf [119]
employed the CESE method to solve the hyperbolic system derived
by taking moments of the Boltzmann–Peierls kinetic equation for
phonon transport. Noor and Qamar [120] implemented the CESE
method for simulating the batch crystallization process with fines
dissolution. Nisar et al. [121] performed numerical simulations of
the charge transport in semiconductor devices by solving a hydrody-
namical model with the CESE method. Rehman et al. [122] solved a
dusty-gas-flow model using the upwind HLLC-CESE scheme pro-
posed by Shen et al. [26].

VII. Conclusions

The CESE method is an explicit one-step compact finite-
volume-type numerical method that provides an alternative approach
to accurate, robust, and efficient computations of scientific and
engineering problems. From a historical perspective, this paper
has reviewed the development of the CESE method since the 1990s
and summarized the remarkable improvements and extensions of
the CESE method in the last five years. A variety of applications of
the method have been presented, with emphasis on its numerical
performance under different scenarios.
The essential ingredients in the CESE method include the

following:
1) Spatial derivatives of physical quantities are stored and updated

as independent unknowns.
2) A staggered space–time mesh is employed.
3) The interior structure within each solution element is built with

the Taylor expansion.
4) The time-marching approach is based on the Cauchy–Kowa-

lewski procedure.
Individually, none of these considerations is new, but the

CESEmethod combines them together.As a result, theCESEmethod
possesses a low numerical dissipation and a high compactness.
Numerical examples, including benchmark cases and applications,
indicate that the CESE method has a high resolution of shock
waves, shear layers, multimaterial interfaces, fine structures, and
small disturbances. Therefore, the CESE method demonstrates good
performances in the numerical investigations of wave-propagation
problems, such as detonations, aeroacoustics, shock-induced inter-
facial instabilities, and shock–bubble/droplet interactions.
In the future, attention will be paid to the extension of CESE

schemes to implicit time-stepping schemes.
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