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Abstract: This paper numerically investigates the self-propelled swimming of a flexible filament driven by coupled pitching and 
plunging motions at the leading edge. The influences of bending rigidity and some actuation parameters (including the phase offset 
between pitching and plunging, and the amplitudes of pitching and plunging motions) on the swimming performance are explored. It is 
found that with increasing rigidity, the swimming style gradually transits from the undulatory mode to the oscillatory mode. The 
plunging-pitching actuation is found to be superior to the plunging-only actuation, in the sense that it prevents the decrease of speed at 
high rigidity and achieves a higher efficiency across a wide range of rigidity. The comparison of the body kinematics with those of 
animal swimmers, and the classification of the wake structures are discussed. The results of this study provide some novel insights for 
the bio-inspired design of autonomous underwater vehicles.
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Introduction  

The role of passive flexibility in bio-locomotion 
has received an increasing attention recently from the 
communities of biologists and engineers. For 
biological propulsors, passive flexibility makes a great 
contribution in producing the deformation during the 
swimming or the flying. The proper “mixing” of 
active control and passive flexibility is believed to be 
the key in optimizing the locomotion performance. 
For the design of bio-inspired swimmers, the 
utilization of passive flexibility can significantly 
reduce the complexity of active control in the 
actuation system.

To gain a physical insight into the hydrodynamic 
effect of passive flexibility, some highly simplified 
bio-locomotion models were developed. A 
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self-propelled flexible filament (or panel) actuated 
locally at the leading edge is a model that has been 
extensively studied. In this model, the kinematics of 
the body (excluding the leading edge) is determined 
by the fluid-structure interaction (FSI), and is not 
prescribed. Here we might stress that in this model the 
motion in the swimming direction is unrestricted[1-2]. 
The free-swimming (or self-propelled) condition in 
this model distinguishes it from the model in which a 
“tethered” flexible body is placed in an incoming flow 
and forced to oscillate. The model of the latter type is 
very dissimilar to a biological swimmer and thus the 
studies based on such model will not be covered in 
this literature review. We notice that more complex 
models with the full geometry of angulliform 
swimmers have also been studied[3-4]. The studies 
related to this kind of models will not be discussed 
here either.

Among the studies based on this simplified 
model, the most intensively investigated actuation is 
the sinusoidal plunging motion. The effects of some 
key parameters, including the plunging amplitude, the 
bending rigidity, the mass ratio, the thickness, the 
shape and the Reynolds number, on the swimming 
performance have been systematically investigated for 
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a flexible 2-D filament[5-8] or a flexible 3-D panel[9-10]. 
All results indicate that a moderate flexibility is 
beneficial for enhancing the swimming performance 
(in terms of the cruising speed and efficiency). The 
relation between the structural resonance and the 
performance optimization, and the effect of flexibility 
on the wake symmetry properties were addressed in 
some papers[6-7, 9-11]. It should be noted that the above 
studies focused on the deformation of the first mode 
(or the oscillatory swimming style as adopted by tuna 
and dolphin).

Another type of actuation, namely, the coupled 
motions of (sinusoidal) plunging and pitching, was 
mainly used for reproducing the deformation of a 
higher mode (or the undulatory swimming style as 
adopted by eel, stingray and knifefish). In a series of 
experiments conducted by Lauder and coworkers at 
Harvard University[12-17], the influences of some key 
parameters (such as the length, the shape and the 
stiffness) on the deformation pattern and the 
swimming performance were studied. The swimming 
performances of the two aforementioned actuations 
(i.e., the plunging-only one and the plunging-pitching 
one) were also compared in Lauder et al.[13-14]. It was 
found that in the case of the plunging-only actuation, 
the cruising speed could reach the peak at one rigidity 
value and then decreases. However, in the case of the 
plunging-pitching actuation, a broad plateau in the 
cruising speed could be reached when the rigidity 
exceeds a certain value. In the work by Ramananarivo 
et al.[18], it was found that the energy dissipation due 
to the interaction with the surrounding fluid was 
essential for the development of a traveling wave in 
the body kinematics (one typical feature of the 
anguilliform swimming). In the studies by Dai et 
al.[19-20], the carangiform swimming style was 
successfully reproduced by tuning the non-uniformly 
distributed rigidity and mass ratio. The influence of 
the phase offset between the plunging and pitching 
motions on the swimming performance was addressed 
by Kim et al.[21] and Piñeirua et al.[22].

Despite of the insights gained by the afore- 
mentioned studies, the knowledge of the swimming 
performance of the plunging-pitching actuation is far 
from complete. First, the performances of the 
plunging-only and plunging-pitching actuations have 
not been systematically compared across a wide range 
of the bending rigidity. Second, little is known about 
how to properly combine the plunging and pitching 
motions to achieve the optimal performance. The 
inconsistency in some previous studies regarding the 
optimal phase offset between the plunging and 
pitching motions needs to be clarified in particular. 
Third, a quantitative comparison between the kinema- 
tics of the elastic swimmer and those of animal 
swimmers is still lacking. In this work, we use high- 

fidelity numerical simulation and broad parametric 
sweeps to tackle this problem. Based on the 
simulation results, the ideal parameters for optimizing 
the swimming performance are suggested.

1. Computational model and governing equations
We consider the self-propelled swimming of a 

flexible filament in a 2-D fluid flow. The swimming 
of the filament is actuated by the coupled plunging 
and pitching motions prescribed at the leading edge 
(see Fig. 1 for a schematic diagram of the computa- 
tional model). The driving motions can be described 
in a mathematical form as:

                                                  (1)

                                             (2)

where  and  are the vertical and angular 
displacements of the leading edge, respectively.  
and  are the amplitudes of the plunging and 
pitching motions, respectively.  is the flapping 
frequency and  is the phase offset between the 
pitching and the plunging motions.

Fig. 1 (Color online) A schematic diagram of the computational 
model

    The flow around the filament is assumed to be 
laminar and incompressible. The Naiver-Stokes 
equations which govern the fluid motion can be 
written in a dimensionless form as:

                          (3)

                                                                       (4)

where  is the fluid velocity,  is the pressure, 
 is the dimensionless Eulerian force which 

represents the effect of an immersed body on the fluid 
flow. The flapping Reynolds number in Eq. (3) is 
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defined as , where ,  and  
are the reference velocity, the body length and the 
kinematic viscosity of the fluid, respectively. Here the 
reference velocity is defined as .
    The governing equations for the motion of the 
filament can be written in a dimensionless form as:

            (5)

                                                                 (6)

where  is the position vector for the Lagrangian 
marker point on the filament,  is the Lagrangian 
coordinate along the arc length,  is the dimen- 
sionless Lagrangian forcing which represents the 
interaction between the filament and the fluid.
    The dimensionless quantities ,  and  in 
Eq. (5) are the mass ratio, the dimensionless tension 
coefficient and the dimensionless bending rigidity, 
respectively. The definitions of these dimensionless 
quantities are:

, ,        (7)

where  and  are the densities of the fluid and 
the filament, respectively.  and  are the 
(dimensional) tension coefficient and the (dimensional) 
bending rigidity, respectively. It should be noted that 
the equations which govern the motion of the filament 
are nonlinear due to the inhomogeneity in the 
dimensionless tension coefficient . This tension 
coefficient is also used to enforce the inextensibility 
condition (Eq. (6)). The governing equation for  
can be derived by rearranging Eqs. (5), (6). The values 
of  are then obtained by numerically solving a 
boundary value problem[23].

2. Numerical methods and settings
    The immersed boundary method based on the 
discrete stream function formulation is used to solve 
the Navier-Stokes equations (Eqs. (3), (4))[24-25]. The 
structure equations (Eqs. (5), (6)) are solved by using 
a finite difference method for the spatial discretization. 
A three-time-level scheme is used for the temporal 
advancement, in which the tension term is treated 
explicitly and the bending term is treated implicitly. 
The FSI simulation is performed by loosely coupling 
the two different solvers, i.e., alternately advancing 
the fluid equations and the structure equations. This 

FSI solver has been thoroughly validated and was 
successfully used in the previous studies on the self- 
propelled swimming of an elastic swimmer[6, 19-20, 26].
    The computational domain in this study is a 
rectangular box with the size of 

. This computational domain is divided into 
seven subdomains and a multi-block Cartesian mesh is 
generated for the simulation (see Fig. 2). The highest 
mesh resolution of  is used in the innermost 
subdomain of , surrounding 
the filament. Lower resolutions are used in the outer 
subdomains. For the outermost subdomain, the mesh 
resolution is reduced to . The time step is 
chosen such that the maximum Courant-Friedrichs- 
Lewy (CFL) number never exceeds 0.5.

Fig. 2 (Color online) The computational domain and the multi- 
block Cartesian mesh used in the numerical simulation. 
Seven subdomains with different mesh resolutions are 
shown. The gray line in the innermost subdomain 
represents the initial position of the filament

    Since the unknowns to be solved here are the 
stream functions (rather than the velocities), the 
conservation of the velocity flux at the interfaces 
between the coarse and fine meshes can be 
automatically satisfied. The decrease of the accuracy 
and the distortion in the vorticity field are found 
locally at such interfaces, because of the irregular dual 
cells near the hanging nodes for performing the 
discrete curl  operation[24] (see Fig. 1 of Ref. 
[24]). However, the effect of such interfaces on the 
overall accuracy is very limited. First, the number of 
the hanging nodes is very small. Second, such 
interfaces are located at the places far away from the 
swimmer.

The no-slip boundary condition is enforced on 
the four sidewalls of the computational domain. The 
non-slip boundary on the filament is imposed by using 
the direct-forcing immersed boundary technique[24]. 
For the structure equations, the free-end boundary 
condition is imposed at the trailing edge. At the 
leading edge, both the prescribed plunging and 
pitching motions and the horizontally unrestricted 
condition are enforced simultaneously[6]. The initial 
velocities for the fluid and the filament are set to be 
zero. The initial configuration of the filament is a flat 
plate with the leading edge placed at  and 
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.
    A mesh sensitivity study is conducted by 
simulating a testing case. The control parameters for 
this case are: , , , 

, . Three meshes of different 
resolutions are generated for the study (see Table 1 for 
the detailed information).

Table 1 The information for the meshes used in the mesh 
sensitivity test

Mesh
Mesh resolution Number of grid 

points
Number of 

blocks
C 1/100-4/25 0.43106 5
I 1/300-16/75 3.24106 7
F 1/400-4/25 6.62106 7

Note: CCoarse mesh, IIntermediate mesh, FFinest mesh.

    The time histories of the horizontal velocity at 
the leading edge and the instantaneous lateral and 
horizontal forces, which are obtained by using the 
three meshes, are shown in Figs. 3, 4, respectively. 
From these figures, the mesh convergence can be 
clearly seen. The difference between the results 
obtained with the intermediate and the finest meshes 
is rather small. As a compromise between accuracy 
and computational cost, the intermediate mesh is used 
in the present study.

Fig. 3 (Color online) Time histories of the horizontal velocity 
of the leading-edge that are obtained by using three 
meshes of different resolutions

    From Fig. 4, a high-frequency oscillation of the 
lateral force is seen from the results obtained with the 
coarse mesh. This oscillation is a numerical artifact 
which does not reflect the real physics. Such spurious 
oscillation can be suppressed by either reducing the 
grid width or increasing the width of the interpolation 
kernel (i.e., the discrete function) used in the 
immersed boundary method[27]. It should be 
emphasized here that for the mesh resolution used in 
the simulation, the spurious oscillation is rather small 
and has no important effect on the accuracy of the 
force prediction.

Fig. 4 (Color online) Time histories of the instantaneous lateral 
force (a) and instantaneous horizontal force (b) that are 
obtained by using three meshes of different resolutions

3. Results and discussions

3.1 Parameter space
    The control parameters in this system are: the 
Reynolds number , the dimensionless plunging 

amplitude , the pitching amplitude , the 
mass ratio , and the dimensionless bending 
rigidity . The parameter values used in the 
simulation are listed in Table 2.

Table 2 The physical parameters used in the simulations

300 0.02-0.
22 0-60 0-360 0.01 103-10

3

It is seen that very broad ranges of the 
dimensionless bending rigidity and the phase offset 
are considered in this study. The pitching and 
plunging amplitudes and the mass ratio lie in a 
reasonable range, as is consistent with those in some 
biological and mechanical systems that were studied 
previously. The Reynolds number selected in the 
simulation is of the order of 102. This corresponds to 
the swimming of very small fish, say a fish with the 
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length of 0.01 m cruising at the speed of one body 
length per second. There are two reasons for 
prescribing a relatively low Reynolds number in the 
simulation. First, the simulations at the Reynolds 
numbers comparable to those in the flapping-foil 
experiments or the swimming of large fish require a 
very high mesh resolution. This may render the broad 
parameter sweeps prohibitive. Second, in the range of 
moderate Reynolds numbers, the influence of the 
Reynolds number on the swimming performance is 
presumably to be much smaller than that of the 
kinematics. In view of the two reasons aforemen- 
tioned, the Reynolds numbers considered in most of 
the computational studies fell within the range of 
102-103[5-11, 19-21].

3.2 Quantities for characterizing performance, kine-
matics and wake structure

    We use two dimensionless quantities, namely, 
the dimensionless cruising speed and the propulsive 
parameter to characterize the swimming performance. 
The dimensionless cruising speed is defined as

                                     (8)

where  is the dimensionless flapping period. 
As an efficiency indicator for the self-propelled 
system, the propulsive parameter  is defined as

                                                                  (9)

where  is the (dimensionless) input power that is 
required to produce the oscillation and the free- 
swimming[6]. Mathematically speaking,  can be 
computed as

                                    (10)

    We use two parameters, namely, the 
dimensionless wave number and the slip ratio, to 
characterize the deformation pattern and the 
kinematics. The dimensionless wave number is 
defined as

                                                             (11)

where  is the wave number,  is the wave length. 
The slip ratio is defined as

                                         (12)

where  is the dimensional cruising velocity,  
is the speed of the wave propagation.
    The Strouhal number, as an important parameter 
for characterizing the wake structure, is defined as

                                               (13)

where  is the plunging amplitude of the trailing 
edge. This parameter signifies the ratio of the lateral 
velocity at the trailing edge to the swimming velocity, 
or the ratio of the wake width to the streamwise 
spacing between two adjacent vortices.

3.3 Influences of bending rigidity on performance
    To explore the effects of the bending rigidity on 
the swimming performance and the kinematics, all 
control parameters are fixed, except the dimensionless 
bending rigidity, which is allowed to vary in the range 
of 103-103. Two types of actuation, namely, the 
plunging-pitching actuation and the plunging-only 
actuation, are considered here. The fixed parameter 
values for the plunging-pitching cases are: 

, , . For the 
plunging-only cases,  is set to zero and the rest 
parameters are the same as those for the 
plunging-pitching cases.
    Figure 5(a) shows the dimensionless cruising 
speeds as a function of the dimensionless bending 
rigidity, for both types of actuation. In the curve for 
the plunging-only actuation, three distinct peaks are 
observed at ,  and , 
respectively. These three peaks correspond to the third, 
second and first resonant modes, respectively. In the 
curve for the plunging-pitching actuation, the peaks 
corresponding to the second and third resonant modes 
are still observed. However, the peak corresponding to 
the first resonant mode does not appear and a broad 
plateau is observed instead when the dimensionless 
rigidity exceeds 10. This marked difference between 
the performance characteristics of the two types of 
actuation is consistent with the finding reported by 
Lauder et al.[12]. Figure 5(b) shows the efficiency as a 
function of the dimensionless rigidity, for the two 
types of actuation. It is seen that for the plunging-only 
actuation, three efficiency peaks are observed at the 
rigidities corresponding to the peak cruising speeds. 
For the plunging-pitching actuation, besides the two 
efficiency peaks corresponding to the peak cruising 
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speeds for the second and third resonant modes, 
another efficiency peak is observed at . By 
comparing the efficiencies achieved in the two types 
of actuation, it is found that the plunging-pitching 
actuation is superior to the plunging-only actuation 
across a wide range of rigidity. The only exception is 
found in the narrow rigidity range of .This 
range centers around the rigidity where the peak 
cruising speed for the first resonant mode in the 
plunging-only cases is achieved.

Fig. 5 (Color online) Variations of dimensionless cruising speed 
(a) and efficiency (b) against dimensionless bending 
rigidity

    From the results shown in Fig. 5, the advantages 
of adding the pitching motion to the actuation can be 
summarized as follows. First, a much higher cruising 
speed can be achieved by imparting more energy to 
the filament and the fluid, with the extra benefit of  
efficiency enhancement (except within the narrow 
rigidity range of ). Second, the decrease of 
the cruising speed at a high rigidity can be avoided. It 
should also be noted that within the rigidity range of 

, the plunging-only actuation may be 
preferred if a relatively low cruising speed is tolerable 
and a high efficiency is the priority.

The deformation patterns (the amplitude enve- 
lopes) at some selected rigidities are shown in Fig. 6. 
It is seen that the deformation mode transits from the 
third mode to the second mode and then to the first 

mode, with increased bending rigidity. It is reasonable 
to believe that the transition of the deformation mode 
occurs when the actuation frequency approaches the 
natural frequencies of the specific order. At  
and , the undulatory swimming style is 
observed. The deformation pattern produced by the 
plunging-only actuation is close to a standing-wave, 
while that produced by the plunging-pitching 
actuation is close to a traveling wave. Since a 
traveling wave is the key factor for the effective 
locomotion in the undulatory swimming[18], the 
plunging-pitching actuation always produces a higher 
cruising speed. At , the oscillatory swimming 
style is observed. The higher cruising speed produced 
by the plunging-pitching actuation is mainly due to 
the larger flapping amplitude in the posterior part of 
the filament. At , the filament practically 
behaves like a rigid plate. For the plunging-only 
actuation, the decrease of the cruising speed at such a 
high rigidity (in comparison with the cruising speed 
achieved at ) is caused by the drastic reduction 
of the projected area in the vertical direction. Under 
such circumstances, the projected pressure force in the 
horizontal direction is close to zero. Thus, the pressure 
difference across the upper and lower surfaces cannot 
be effectively utilized to generate the propulsive force. 
In contrast, for the plunging-pitching actuation, the 
cruising speed keeps increasing with increased rigidity 
until a plateau region is reached, because both the 
trailing edge amplitude and the projected area in the 
vertical direction keep increasing with increased 
rigidity.

Here we also quantitatively compare the kine- 
matics of the flexible filaments with those of animal 
swimmers. The variations of the dimensionless wave 
number and the slip ratio against the rigidity are 
shown in Fig. 7. As can be seen, for the plunging-only 
actuation, the dimensionless wave number and the slip 
ratio lie in the ranges of 0.01-9.09 and 0.0002-0.24, 
respectively. For the plunging-pitching actuation, the 
dimensionless wave number and the slip ratio lie in 
the ranges of 1.4-9.35 and 0.08-0.86, respectively. The 
data for the kinematics of animal swimmers were 
collected in several Refs. [28-31]. For anguilliform 
(eel-like) swimmers, the dimensionless wave number 
lies in the range of 6.28-20, while the slip ratio lies in 
the range of 0.5-0.75. For carangiform (mackerel-like) 
swimmers, the dimensionless wave number is close to 
6.28, while the slip ratio is around 0.83. Thus, the 
kinematics produced by the plunging-pitching actua- 
tion are closer to those of animal swimmers, as 
compared with those produced by the plunging-only 
actuation. If the plunging-pitching actuation is used to 
reproduce the kinematics similar to those of animal 
swimmers, the rigidity requirements stem from the 
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Fig. 7 (Color online) Variations of dimensionless wave number 
(a) and slip ratio (b) against dimensionless bending 
rigidity

similarities of the dimensionless wave number and the 
slip ratio are  and , respectively 

(cf. Figs. 7(a), 7(b)). The above conflicting require- 
ments indicate that the kinematics of swimming 
animals cannot be reproduced by a flexible filament 
with any given rigidity.

The unsuccessful results of emulating the kine- 
matics of animal swimmers by the flexible filament 
can be attributed to several fundamental differences 
between the two systems. First, for the filament model 
the actuation is localized, while for animal swimmers 
the muscles are distributed along the body. Second, 
for the filament model the actuation motions are of 
sinusoidal form, while the actuation motions of animal 
swimmers are more complex (not necessarily in 
sinusoidal form). Third, for the filament model the 
material properties (such as the rigidity and the mass) 
are assumed to be homogeneous, while for animal 
swimmers the material properties are nonuniformly 
distributed. However, the results of previous studies 
indicated that the carangiform swimming style can be 
accurately emulated (even with a localized and 
sinusoidal actuation), if homogeneous rigidity and 
mass were permitted[19]. It is not surprising if the 
anguilliform swimming style can also be successfully 
reproduced by tuning the inhomogeneous material 
properties.
    Figure 8 shows the variation of the Strouhal 
number  against the dimensionless rigidity. For 
both types of actuation, a similar trend is observed in 
the variation of  against the increasing rigidity. At 
a low rigidity,  becomes relatively high due to the 
low cruising speed. With increasing rigidity,  
begins to decrease and finally reaches a plateau region 
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Fig. 6 Amplitude envelopes for the filaments with four different dimensionless bending rigidities. In each case, 20 filament 
shapes obtained at a time interval of 0.05 are superimposed on top of each other. (a)-(d): plunging-only actuation with 

, (e)-(h): plunging-pitching actuation with , , / = 0.05A L / = 0.05A L = 20A  = 90 
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when the rigidity is sufficiently high. However, some 
differences between the  curves for the two types 
of actuation can still be seen. For the plunging- 
pitching actuation, the  curve is very smooth and 
only minor fluctuations are observed. For the 
plunging-only actuation, the fluctuations are much 
larger and a distinct local peak is seen near . 
The peak  at this rigidity results from the local 
minimum of the cruising speed (cf. Fig. 5(a)). The 
asymptotic  value at an extremely high rigidity for 
the plunging-pitching actuation is around 0.5, which is 
much higher than the value for the plunging-pitching 
actuation (which is around 0.25).

Fig. 8 (Color online) Variation of Strouhal number against 
dimensionless bending rigidity

    We also compare the  for the plunging- 
pitching actuation with those of some animal 
swimmers (and flyers). Some evidence is found that 

 in the cruising swimming and flight of animals 
converges on a narrow range of 0.2-0.4[32]. This range 
is supposed to be linked with the peak propulsive 
efficiency in rigid foils in the pitching and plunging 
motions[33]. However, some recent studies indicate 
that only non-anguilliform swimmers indeed cruise at 

, while anguilliform swimmers tend to have 
much higher  values[34-37]. In this study, we find 
that for the deformation patterns of second or higher 
bending mode ,  is well above the range 
of 0.2-0.4. This is consistent with the results of a 
numerical study on the undulatory swimming at low 
(cruising) Reynolds numbers[38]. For semi-rigid and 
rigid filaments ,  falls in the narrow range 
of 0.2-0.4 and varies little with the rigidity. By 
comparing Fig. 8 with Fig. 5(b), we can see that the 
results of the present study challenge the suggestion 
that the  range of 0.2-0.4 is associated with the 
high efficiency. In other words, our results suggest 
that the narrowly converged range of  in animal 
swimmers (and flyers) may just be the natural 
outcome of less deformed bodies in self-propelled 
swimming (rather than the result of painstaking 

tuning).

3.4 Influences of actuation parameters on swimming 
performance
In this section, we explore the influences of 

actuation parameters, including the phase offset , 
the dimensionless plunging amplitude  and the 
pitching amplitude , on the swimming perfor- 
mance. Three dimensionless rigidities, namely, 0.005, 
0.1 and 1, are selected in the investigation. These 
three rigidities correspond to the deformation patterns 
of the third, second and first binding mode, 
respectively. For each rigidity, parameter sweeps are 
performed in the 2-D spaces of  and 

. In the space of ,  is fixed to 
20, while in the space of ,  is fixed 
to 0.05. In all cases considered in the investigation, 
the Reynolds number  and the mass ratio  are 
fixed to 300 and 0.01, respectively.

The contours of the dimensionless cruising speed 
and the efficiency in the parameter spaces of 

 and  are shown in Figs. 9-11, 
for the three selected rigidities, respectively. The 
influences of the actuation parameters on the cruising 
speed can be summarized as follows. For the given 
plunging and pitching amplitudes, the maximum and 
minimum cruising speeds are reached approximately 
at  (or ) and , respec- 
tively. For the given phase offset, the cruising speed 
monotonically increases with the increased pitching or 
plunging amplitude. At certain plunging and pitching 
amplitudes, a negative cruising speed can be produced 
if the phase offset is close to 180. A negative cruising 
speed signifies the backward swimming (i.e., 
swimming towards the right), which is usually 
accompanied with a relatively small velocity. This 
abnormal swimming mode was also reported in the 
study of self-propelled rigid foils driven by 
plunging-pitching motions[39].

The influences of the actuation parameters on the 
efficiency are more complex. Generally speaking, the 
in-phase and anti-phase actuations correspond to the 
highest and the lowest efficiencies, respectively. 
Therefore, the aforementioned abnormal swimming 
mode is usually accompanied with a low efficiency. 
However, some exceptions are also observed in the 
second and first bending modes. For example, the 
highest efficiency can be achieved at  (cf. 
Figs. 10(b), 11(b)). As to the influences of the 
flapping amplitudes on the efficiency, the increase of 
the efficiency with the increased plunging or pitching 
amplitude is only found in the third bending mode (cf. 
Figs. 9(b), 9(d)). In the other two bending modes, the 
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Fig. 9 (Color online) Contours of dimensionless cruising speed 
and efficiency in the parameter spaces of 

and , for 

highest efficiency can be achieved at a moderate or 
low flapping amplitude (cf. Figs. 10(d), 11(d)). By 

Fig. 10 (Color online) Contours of dimensionless cruising speed 
and efficiency in the parameter spaces of 

 
and , for 

comparing the efficiency contours in the space of 

 for the three selected rigidities, it is also
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Fig. 11 (Color online) Contours of dimensionless cruising speed 
and efficiency in the parameter spaces of 

 
and , for 

found that the optimal pitching amplitude (for 
achieving the highest efficiency) decreases with in-

crease rigidity.
Here an explanation for the great contrast 

between the performances of the in-phase and 
anti-phase actuations is provided. In Fig. 12, the 
deformation patterns (the amplitude envelopes) under 
the two types of actuation are compared and two 
major differences are found. First, it is seen that for all 
three selected rigidities, the in-phase actuation tends 
to produce a much larger flapping amplitude along the 
entire body, as compared with the anti-phase actuation. 
Second, the deformation form produced by the 
in-phase actuation is close to a traveling wave, while 
that produced by the anti-phase actuation is close to a 
standing wave. As is pointed out in Section 3.3, the 
high flapping amplitude and the formation of a 
traveling wave are the two key factors that can lead to 
a high cruising speed.

A comparison of the present results with the 
findings in other references is also presented here. The 
peak speeds for the self-propelled flexible filaments 
are always achieved at  in the present study. 
This is consistent with the finding by Piñeirua et al.[22]  
In Kim et al.[21], the maximum speed was found to be 
achieved at  (with given rigidity and 
flapping amplitudes). For the self-propelled rigid foils, 
the result of Lin et al.[39] indicated that the phase offset 
of  produced the maximum speed (with 
given flapping amplitudes). As for the efficiency, the 
present result indicates that the highest efficiency is 
obtained in the phase offset range of 0-90, and the 
optimal phase offset depends on the values of the 
flapping amplitudes and the rigidity. In Piñeirua et 
al.[22], Kim et al.[21], the in-phase  and the 
anti-phase  actuations were found to be 
optimal for flexible filaments (with given rigidity and 
flapping amplitudes), respectively. For rigid foils, the 
result by Lin et al.[39] indicated that the optimal phase 
offset (with given flapping amplitudes) was around 
90. Thus, it seems that the present finding is a 
reconciliation of the results reported by Piñeirua et 
al.[22] and Lin et al.[39], but is in a contrast to the result 
by Kim et al.[21].

It should be noted that all results listed above are 
based on the self-propelled model, in which the 
propulsive parameter  is used to quantify the 
efficiency. Some other studies were based on the 
“tethered” model placed in a flow with a prescribed 
speed and the Froude efficiency was used as the 
efficiency indicator. The results for the optimal phase 
offset (for achieving the highest efficiency) based 
such model are also listed here. Quinn et al.[40] found 
that for the flexible filaments the optimal phase offset 
was in the range of 76-96. For the rigid foils, it was 
shown many times that the optimal efficiency was
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achieved at [41-43]. In short, the inconsis- 
tencies regarding how the swimming performance is 
affected by the phase offset are still not fully resolved 
and further investigations are needed.

3.5 Wake structures
The observed wake structures can be classified 

into two categories, namely, “2S” and “2P”, based on 
the number of vortices that are shed in one flapping 
period. Here the term “2S” refers to the situation in 
which two vortices of opposite sign are shed per 
flapping period, while the term “2P” refers to the 
situation in which two pair of vortices are shed per 

flapping period. The wake structures of both types 
were widely reported in the previous studies on the 
rigid[44] and flexible flapping foils[6].
    Figures 13(a), 13(b) show two wake structures of 
the “2S” type. The only difference between them lies 
in the swimming direction. In Fig. 13(a), the foil 
moves towards the left when the actuation is applied 
at the leading edge (the left endpoint). This is the 
forward swimming mode which appears if the phase 
offset  is kept away from 180. In Fig. 13(b), the 
foil swims towards the right when the actuation is 
applied at the leading edge. This is the backward 
swimming mode, which only appears when the phase 

= 270 



Fig. 12 Amplitude envelopes of the filaments produced by in-phase and anti-phase actuations, at three selected bending rigidities. 
In each case, 20 filament shapes obtained at a time interval of 0.05 are superimposed on top of each other. (a)-(c): 
in-phase actuation; (d)-(f): anti-phase actuation

Fig. 13 (Color online) Wake structures of the swimming filament. (a) “2S” type (forward swimming mode): 
, , , , (b) “2S” type (backward swimming mode): , ,

, , (c) “2P” type (two oblique lines of dipoles): , , , , (d) 

“2P” type (two horizontal vortex streets): , , , . The contours of 
dimensionless vorticity (vorticity scaled by ) are used to visualize the vortex structures
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offset  lies in a narrow range very close to 180.
    Figures 13(c), 13(d) show two wake structures of 
the “2P” type. The difference between them lies in the 
spatial organization of the vortices. In Fig. 13(c), the 
vortices are clustered along two oblique lines. Within 
each line, two adjacent vortices with opposite sign 
pair with each other to form dipoles. In Fig. 13(d), the 
vortices are clustered along two horizontally oriented 
parallel lines. Within each line, the vortices with 
opposite sign are positioned alternately in an 
equidistant fashion.
    For the flapping-foil systems, asymmetric wakes 
(with respect to the centerline) were also widely 
reported in the literature[5-6, 8, 11, 44-45]. In some studies, 
the material properties and the flapping amplitudes 
were found to have great influences on the wake 
symmetry property[11, 45]. In the present work, only 
symmetric wakes have been observed. It seems that 
the selected parameter values in this work just happen 
to lie in the range where the wake symmetry breaking 
is suppressed. From Fig. 13, some distortions of the 
vorticity fields are found at the interfaces between 
coarse and fine meshes. The cause of such distortions 
has been explained before in Section 2.

4. Conclusions
    Numerical simulation is conducted to study the 
self-propelled swimming of a flexible filament driven 
at the leading edge by coupled pitching and plunging 
motions. We focus on the influences of the rigidity 
and the actuation parameters on the swimming 
performance.
    We examine the cruising speed and the efficiency 
for both the plunging-pitching and the plunging-only 
actuations across a wide range of rigidity. It is found 
that at an extremely low rigidity, no forward motion 
can be produced. The undulatory swimming mode is 
observed with the increase of rigidity. The swimming 
style gradually transits to the oscillatory mode if the 
rigidity is increased further. The filament behaves like 
a rigid flapping foil at an extremely high rigidity. 
Except for a very narrow range of rigidity, the 
plunging-pitching actuation enjoys a higher efficiency 
than the plunging-only actuation. The plunging- 
pitching actuation can also prevent the decrease of the 
cruising speed at a high rigidity (known as one 
shortcoming of the plunging-only actuation).

The phase offset between the pitching and 
plunging motions and the flapping amplitudes are 
found to have great influences on the swimming 
performance. Generally speaking, the in-phase 
actuation signifies a high speed and a high efficiency, 
whereas the anti-phase actuation signifies a low speed 
and a low efficiency. The cruising speed monotoni- 
cally increases with the increase of plunging or 

pitching amplitude. The relation between the 
efficiency and the flapping amplitudes is found to be 
very complex. The optimal flapping amplitudes for 
achieving the highest efficiency strongly depend on 
the rigidity of the filament.
    Two types of wake structure, namely, “2S” and 
“2P”, are observed. Within the parameter range of the 
present study, the wake symmetry breaking is not 
detected.

Based on the experiences gained on the limited 
cases that are simulated here, the ideal situations for 
the efficiency optimization are summarized as follows. 
First, moderate flexibilities are preferred. At moderate 
flexibilities, the deformation modes of the first or 
second order are produced and the flapping ampli- 
tudes of the tail are much higher than those of the 
head. Second, the ideal actuation motion should have 
a phase difference close to zero, the highest possible 
plunging amplitude (within the range considered here) 
and a pitching amplitude which is not too high (less 
than 40). The best pitching amplitude strongly 
depends on the flexibility and decreases with 
decreasing flexibility.
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