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A B S T R A C T   

Nickel cobalt phosphide (NiCoP) is emerging as a potential electrocatalyst towards oxygen reduction reaction 
(ORR) and oxygen evolution reaction (OER). However, its ORR/OER activities are sluggish. Here, we investi-
gated the roles of iron dopants in the Fe-doped NiCoP (Fe–NiCoP) in order to boost its ORR/OER kinetics. The 
density functional theory (DFT) calculations reveal that the Fe dopant effectively modulates the electron con-
ductivity of NiCoP and reduces binding energies of the reaction intermediates towards rate-determining steps of 
ORR and OER. A binder-free 3D microflowers morphology of the Fe–NiCoP embedded in the amorphous carbon 
layer (Fe–NiCoP@C) catalyst on the nickel foam was prepared as the air cathode for the hybrid sodium-air 
battery (HSAB). The HSAB displays a discharge voltage of 2.74 V at 0.01 mA cm− 2 with excellent round trip 
efficiency of 93.26 % at the 500th cycle and state-of-the-art power density of 621 mW g− 1.   

1. Introduction 

The rapid development of electric vehicles has stimulated the large 
demand for high-performance energy conversion and storage technol-
ogies, tackling the critical problems of climate change and energy crisis. 
Rechargeable metal − air batteries, especially, hybrid sodium-air bat-
teries (HSABs) have attracted increasing attention due to their high 
theoretical energy density (2600 Wh kg− 1), natural abundance, and 
environmentally friendly characteristics [1–5]. In 2016, we are the first 
to show that the HSAB exhibits a large specific capacity of 835 mA h g− 1 

at 50 ◦C (corresponding to 99 % of the theoretical capacity) [2]. 

However, the practical application of HSABs has been largely obstructed 
by the four proton–electron transfer kinetics of oxygen reduction reac-
tion (ORR) and oxygen evolution reaction (OER) due to the thermody-
namically unfavorable process with large overpotential [1,6]. Although 
noble metals, such as platinum (Pt) and ruthenium (Ru) or iridium (Ir), 
have been commonly regarded as efficient electrocatalysts in ORR and 
OER, the high cost, scarcity, and poor chemical stability of these noble 
metal-based electrocatalysts have hindered their large-scale applica-
tions in HSABs [7,8]. Thus, the successful development of low-cost and 
highly efficient bifunctional electrocatalysts towards ORR and OER for 
HSABs has a significant impact on realizing the net-zero carbon society. 
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Recently, transition metal phosphides (TMPs), such as Co2P [9,10], 
CoP [11], Ni2P [12], and MoP [13,14], have been recognized as prom-
ising alternatives to noble metal-free catalysts for the trifunctional 
electrocatalysts of ORR, OER, and hydrogen evolution reaction due to 
their multielectron orbitals, metallic characteristics, and low cost. 
Among these TMPs, NiCoP is particularly attractive because of two 
electrochemically feasible transition metals such as Ni and Co that 
contribute to the ORR and OER [15–18]. However, the critical problem 
of sluggish ORR/OER kinetics remains unaddressed, that is caused by 
the strong binding strength of the absorbed intermediates with the 
surface of Co and Ni atoms [15–18]. According to the Sabatier principle, 
the best catalysts should bond atoms or molecules with an intermediate 
strength: too weak interaction is not conducive to the activation of re-
actants, and too strong interaction is not beneficial for the desorption of 
products [19]. Therefore, there is a pressing need to improve our un-
derstanding of how to tune the adsorption/desorption strength of in-
termediates at the active sites of NiCoP, facilitating the ORR/OER 
kinetics and hence advancing metal-air batteries for large-scale 
applications. 

In this study, through combined density functional theory (DFT) 
calculations and experimental investigations, we aim to understand the 
influence of Fe dopant in Fe-doped NiCoP (Fe-NiCoP) towards ORR/ 
OER, in order to unveil its roles and the origin of improved ORR/OER 
activities. In addition, a layer of carbon coating is further coated onto 
the Fe–NiCoP surface (Fe–NiCoP@C) to facilitate the electron transport 
to and from the catalytic sites and further improve its catalytic perfor-
mance and stability in the ORR and OER. The DFT calculations reveal 
that the Fe dopants in the Fe-NiCoP are the active sites for ORR/OER 
activities. The improved ORR/OER kinetics are facilitated by the 
enhanced electronic property of Fe–NiCoP@C and the reduced free en-
ergies of adsorption of oxygen-containing intermediates. The 
Fe–NiCoP@C catalyst exhibits excellent electrocatalytic performance 
toward ORR and OER with an onset potential of 0.81 V and exceptional 
overpotential of 340 mV at a current density of 50 mA cm− 2, which are 
higher than most of the non-noble metal-based ORR and OER catalysts 
reported to date. A HSAB, utilizing the binder-free 3D microflowers 
morphology of the Fe–NiCoP@C catalyst on the nickel foam as the air 
cathode, displays a discharge voltage of 2.74 V at 0.01 mA cm− 2 with 
excellent round trip efficiency of 93.26 % at the 500th cycle and the 
state-of-the-art power density of 621 mW g− 1. The new understanding 
from this study helps to design new TMPs catalysts for advancements of 
metal-air batteries, realizing the potential of electric vehicles. 

2. Experimental 

2.1. Synthesis of Fe–NiCo LDH 

The Fe-NiCo LDH were prepared by hydrothermal methods. Specif-
ically, Nickle foam (NF) were cleaned with the assistance of sonication 
in HCl, ethanol, and water for 10 min each. Then, Ni(NO3)2⋅6H2O, Fe 
(NO3)3⋅9H2O, and Co(NO3)2⋅6H2O (2:1:1) with 4 mmol NH4F and 10 
mmol urea were dissolved in 40 mL deionized (DI) water. Then, NF 
(2*3) and the solution were transferred into a 50 mL Teflon autoclave, 
sealed, and maintained at 120 ◦C for 9 h. The specific activity of the 
material for the target reaction is usually highly dependent on the 
chemical composition and their electronic structures. It has been 
demonstrated that Ni usually have a great influence on the OER activ-
ities, while Co and Fe ions are believed to be the active center towards 
ORR with specific crystal and electronic structures. To ensure the 
bifunctional catalytic performance of Fe-NiCoP for hybrid sodium-air 
battery, the ratio of Ni:Co and Ni:Co:Fe are about 1:1 and 1:0.5:0.5 for 
NiCoP and Fe-NiCoP, respectively. 

2.2. Synthesis of Fe–NiCoP 

To prepare the Fe–NiCoP@NF, the obtained Fe–NiCo LDH and 2 g 

NaH2PO2⋅H2O were placed in two ceramic boats inside a tube furnace 
and annealed 300 ◦C for 2 h in a static N2 atmosphere. Then, the samples 
were naturally cooled to room temperature in N2 atmosphere. 

2.3. Synthesis of Fe–NiCoP@C 

The leaching of anions from TMP during oxidative reactions is still an 
important issue. Therefore, a layer of carbon was coated onto the 
Fe–NiCoP surface to stabilize the catalyst–electrolyte interface and 
provide additional direct electron transport paths. In the fabrication of 
carbon shell on the obtained Fe–NiCoP microflowers, the sample was 
transferred to a Teflon autoclave with 40 mL glucose solution (0.15 M) 
and then maintained at 180 ◦C for 4 h in an oven. Finally, the sample was 
carbonized at 400 ◦C for 2 h with an accelerating rate of 5 ◦C/min in N2 
atmosphere. 

2.4. Electrochemical measurement 

The electrochemical performance was carried out in a three- 
electrode setup with a CHI760e electrochemical station. Herein, Fe- 
NiCoP@C, Fe-NiCoP, NiCoP, commercial Pt/C, and Ir/C was utilized 
as the working electrode, Ag/AgCl and Pt foil was used as reference 
electrode and counter electrode, respectively. In this study, all potentials 
were calibrated to the reversible hydrogen electrode (RHE): ERHE=

Emeasured + 0.059*pH + 0.197 V. The OER performance was tested in 1 
M KOH without iR-correction. To investigate the ORR performance of 
materials, the active materials were peeled from the NF. 10 mg catalysts 
were added into 980 μl ethanol with 20 μl of 5 wt % Nafion solution to 
make catalyst ink. To prepare working electrode, 40 μl catalyst ink was 
dropped onto the surface of glass carbon electrode (diameter: 5 mm). 
The ORR performance of electrode was recorded in 0.1 M KOH at 1600 
rmp with a sweep rate of 10 mV s− 1. All fresh electrolytes were bubbled 
with nitrogen for 30 min before test. 

2.5. Assembly of the HSAB 

The liquid anode was prepared by dissolving sodium metal into a 
solution of tetra ethylene glycol dimethyl ether. A piece of NASICON 
composed of Na3Zr2Si2PO12 with high ionic conductivity of 1.0 × 10− 3 S 
cm− 1 at room temperature was used as the separator [20,21]. The 
oxygen-saturated 0.1 M NaOH solution, which was used as the aqueous 
electrolyte, was sealed in a tube. A porous electrode containing 0.12 mg 
cm− 2 catalyst was utilized as the air electrode. HSABs were assembled in 
a glove box filled with high-purity argon (O2 and H2O < 0.1 ppm) ac-
cording to the following structure: liquid anode | NASICON | catholyte | 
catalytic cathode. The electrochemical performance of HSAB was tested 
at room temperature. 

2.6. Material characterization 

The crystallographic structure was determined using a Rigaku 
SmartLab XRD equipped with Cu Kα radiation (λ = ~1.54 Å), and the 
data were collected in the Bragg–Brentano mode with a scan rate of 5◦

s− 1. The morphology and structure were characterized using a Zeiss 
Sigma field emission scanning and Talos F200S transmission electron 
microscopes with an EDS probe. The surface chemical states were 
analyzed using a Thermo Scientific ESCALAB Xi+ XPS Microprobe with 
Al–Kα radiation. ICP-AES (Thermo Jarrell Ash) was used to indicate the 
elemental composition of materials. 

2.7. Computational details 

All the calculations based on DFT were performed using the Vienna 
ab-initio Simulation Package in order to optimize the geometry struc-
tures and energies [22,23]. The exchange–correlation interactions of the 
generalized gradient approximation were determined in the scheme of 

Y. Kang et al.                                                                                                                                                                                                                                    



Applied Catalysis B: Environmental 285 (2021) 119786

3

Perdew–Burke–Ernzerhof functional [24,25]. The core electrons was 
described using the Projector Augmented Wave (PAW) potential [26]. 
The cut-off kinetic energies in the plane waves were set to 450 eV for all 
the calculations. The convergence tolerance of energy and force on each 
atom during structure relaxation were less than 10− 4 eV and 0.02 eV/Å, 
respectively. We build the 112 supercell of bulk Co2P (a = b = 5.73 Å, c 
= 3.41 Å; α=β = 90◦, γ = 120◦) to dope Ni and Co atoms and ensure that 
the doping ratio is consistent with the experiment results (Fe:Co:Ni =
1:1:2 (at%)). Then, the cleave surface (111) of NiCoP and Fe-NiCoP are 
used for the subsequent adsorption calculation. The pseudo-potentials of 
Fe, Co and Ni metals all use the pseudo-potentials recommended by the 
VASP official website. We set the Brillouin zone with a Gamma-centered 
k-point grid of 5 × 5 × 1, and a vacuum space of around 20 Å was set 
along the z direction to avoid the interaction between periodical images 
[27]. Moreover, Grimme’s DFT-D3 scheme was used to perform 
dispersion correction and describe the van der Waals (vdW) interactions 
in the systems [28,29]. The Hubbard-U correction method was applied 
to improve the descriptions of the strong localized Ni, Co, and Fe 
d-electrons in Fe–NiCoP with U = 5.3, U = 3.32 and U = 6.45 for Fe, Co, 
and Ni, respectively. These values were taken from previous studies. 
Spin polarization was also considered in all the calculations. 

3. Results and discussion 

3.1. Synthesis of Fe-NiCoP@C 

The synthetic route of Fe–NiCoP@C composites is presented in 
Fig. 1a. Specifically, a hydrothermal method was initially applied, after 
which a yellow film was observed on the surface of the Ni foam, thus 
implying the successful formation of iron nickel cobalt layered double 

hydroxide (Fe–NiCo LDH) [30]. The obtained Fe–NiCo LDH precursor 
was subsequently converted to Fe–NiCoP via low-temperature phos-
phorization by using NaH2PO2 as the P source [31,32].  

2NaH2PO2•H2O → PH3 + Na2HPO4 + 2H2O                                      (1)  

NiCoFeO(OH) + PH3 → Fe–NiCoP + 2H2O                                       (2) 

After phosphorization, a carbon layer was coated onto the hierar-
chical Fe–NiCoP via hydrothermal carbonization of glucose [33]. During 
the process, glucose molecules were first cross-linked through the 
dehydration process to form an organic network surrounding the entire 
hierarchical Fe–NiCoP structure [33]. Finally, Fe–NiCoP@C was formed 
by annealing the cross-linked organic network at 400 ◦C for 2 h under an 
nitrogen atmosphere to form a carbonized layer with abundant oxygen 
functional groups [33]. 

3.2. Characterizations of materials 

The X-ray diffraction (XRD) patterns of NiCoP, Fe–NiCoP, and 
Fe–NiCoP@C are shown in Fig. 1b. Compared to the XRD patterns of 
Fe–NiCo LDH (Fig. S1), the diffraction peaks at 41.0◦, 47.6◦, and 54.5◦

can be indexed to the (111), (210), and (211) crystal planes of NiCoP 
(JCPDS#71 − 2336), respectively, thereby indicating successful Fe 
incorporation without any phase change [34]. The scanning electron 
microscopy (SEM) results revealed that Fe–NiCo LDH, Fe–NiCoP, and 
Fe–NiCoP@C all exhibited a microflower-like morphology with the 
diameter ranging from 5 μm to 7 μm, as shown in Fig. 1c–e, indicating 
that the morphology was not influenced by phosphorization and 
carbonization. In addition, the enlarged SEM images (Fig. S2) showed 
that the surface of Fe–NiCoP was rough, suggesting that abundant active 

Fig. 1. (a) Schematic of the fabrication route of the hierarchical Fe–NiCoP@C and facile channels for electron transfer. (b) XRD patterns of NiCoP, Fe–NiCoP, and 
Fe–NiCoP@C. SEM images of (c) Fe–NiCo LDH, (d) Fe–NiCoP, and (e)− (g) Fe–NiCoP@C. 
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sites were generated after phosphorization. These bumps might be 
created due to the different inward and outward diffusion rates of P and 
OH− during the phosphorization process [35]. The detailed SEM images 
shown in Fig. 1e− g and Fig. S2 showed that the Fe–NiCoP@C surface 
roughened considerably due to the integration of carbon networks in the 
Fe–NiCoP nanosheets. Firstly, the hierarchical carbon shell provides 
facile electron-transfer pathways between the active catalyst and the 
current collector. Secondly, the hierarchical structure also provides 
reactant/product exchange channels between neighboring chambers 
that are constructed by Fe-NiCoP@C nanosheet arrays. Transmission 
electron microscopy (TEM) was performed to gain further insights into 
the morphologies and sizes of the as-prepared materials. The Fe–NiCoP 
nanosheets clearly contained numerous bumps on the surface, which 
can provide extra electroactive sites and further boost their electro-
catalytic performance (Fig. 2a and Fig. S3). As shown in Fig. 2b, the 
carbon layer with an approximate thickness of 5− 15 nm was coated on 
the surface of Fe–NiCoP, and this coating was beneficial to the efficient 
electron transfer to and from the electroactive sites of the catalyst. The 
high-resolution TEM (HRTEM) images (Fig. 2c) of a single nanosheet of 
Fe–NiCoP@C demonstrated appropriately resolved lattice fringe spac-
ings of 0.262 and 0.219 nm, corresponding to the (211) and (111) planes 
of NiCoP, respectively. This finding was also supported by several bright 
discrete spots in the selected area electron diffraction (SAED) pattern 
(insert of Fig. 2c), which could be indexed to the (111), (210), and (211) 
planes of NiCoP. Meanwhile, Fig. 2d− i show the high-angular annular 
dark field scanning TEM (HAADF − STEM); energy dispersive X-ray 
(EDX) mapping was then used to further investigate the element dis-
tribution of Fe–NiCoP@C. The EDX mapping in Fig. 2d− i indicated the 
almost homogeneous distributions of Ni, Co, Fe, P, and C except two rich 
signal of Ni in the EDX mapping, this may be attributed to the Ni region 
that connected Ni foam. 

The surface chemical composition and atom valence states of NiCoP, 
Fe–NiCoP, and Fe–NiCoP@C were further examined by using X-ray 

photoelectron spectroscopy (XPS), as shown in Fig. 3. The XPS survey 
spectra identified the presence of Ni, Co, Fe, P, and C in the Fe–NiCoP@C 
electrode, suggesting the successful doping of Fe atoms and carbon 
coating. Specifically, the high-resolution XPS spectra of the Ni 2p, Co 2p, 
and Fe 2p regions of the catalysts were split into 2p3/2 and 2p1/2 dou-
blets due to the spin–orbit coupling [36]. Fe–NiCoP@C exhibited five 
main peaks in the Ni 2p region. Two fitted peaks had binding energies of 
856.2 (Ni 2p3/2) and 874.1 (Ni 2p1/2) eV, which are related to Ni 2p1/2 
and Ni 2p3/2, whereas the peaks at 861.2 and 879.6 eV could be assigned 
to the satellite peaks of Ni 2p (Fig. 3a) [36–38]. Similarly, in the 
high-resolution Co 2p spectrum of Fe–NiCoP@C (Fig. 3b), the binding 
energies of 782.4 and 798.2 eV in the high-resolution Co 2p spectra were 
due to 2p3/2 and 2p1/2, whereas two peaks at 787.4 and 804.3 eV were 
assigned to the satellites of Co 2p, respectively [39,40]. Compared with 
NiCoP, the binding energies of Ni 2p and Co 2p in Fe–NiCoP and 
Fe–NiCoP@C shifted to higher binding energy, indicating electron 
transfer from Ni and Co to P atoms due to the incorporation of Fe, as 
discussed in the density functional theory (DFT). The high-resolution Fe 
2p spectrum (Fig. 3c) showed four peaks divided into 712.1 eV of Fe 
2p3/2 and 724.4 eV of Fe 2p1/2 with a spin − energy separation of 12.3 
eV. The absence of characteristic FeP peaks in the Fe 2p region suggested 
the successful Fe doping in NiCoP [38]. As shown in Fig. 3d, the P 2p 
spectrum of Fe–NiCoP obtained a binding energy of 129.5 eV in 2p3/2, 
thereby indicating the presence of an M − P bond, whereas the centered 
peaks at 132.8 and 133.5 eV were assigned to the oxidized phosphorus 
species (M − PO) [41]. Compared with NiCoP, a negative shift simul-
taneously occurred in the P 2p3/2 binding energy (129.5 eV) of 
Fe–NiCoP and Fe–NiCoP@C, indicating an modification of the electronic 
structure upon incorporation of Fe atom, as discussed in the DFT [42]. In 
the high-resolution XPS spectrum of C 1s (Fig. S4), the binding energies 
of 283.4, 284.2, and 286.0 eV were assigned to the sp2-hybridized car-
bon atoms (–CC), CC––––, and C(O)O, respectively [33]. Notably, the 
functionals groups, such as C–OC/COH, CO and C–––––OOH were 

Fig. 2. (a)–(b) TEM images of Fe–NiCoP@C. (c) HRTEM images of Fe–NiCoP@C (insert is the SAED pattern of Fe–NiCoP@C). (d)− (i) EDX mapping of various 
elements in the porous Fe–NiCoP@C nanosheet. 
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observed in the C 1s. Such oxygen functional groups in carbonized layer 
facilitate the adsorption of water molecules via hydrogen bonding with 
oxygen functional groups [43]. In addition, these oxygen functional 
groups also provide additional active sites for ORR/OER activity by 
altering the electronic modulation of the adjacent carbon, which pro-
motes the ORR/OER processes [44–46]. 

3.3. ORR and OER electrocatalysis 

To evaluate the ORR performance of the as-prepared catalysts, 
rotating disk electrode measurements in O2-saturated 0.1 M KOH were 
carried out. As indicated by the CV curves in Fig. 4a and Fig. S5, 
Fe–NiCoP@C displayed a reduction peak at the potential of 0.65 V, 
which is more positive than those of Fe–NiCoP (0.55 V), NiCoP (0.45 V), 
FeP@C (0.47 V), and Fe–NiP@C (0.45 V), suggesting the superior ORR 
catalytic performance of Fe–NiCoP@C. Meanwhile, the linear sweep 
voltammetry (LSV) was also investigated to reveal the ORR performance 
of the samples. Fig. 4b shows the LSV curves of Fe–NiCoP@C. Compared 
with Fe–NiCoP (0.80 V) and NiCoP (0.64 V), Fe–NiCoP@C obtained the 
maximum positive onset potential of 0.81 V. In addition, the larger limit 
current density of Fe–NiCoP and Fe–NiCoP@C indicated superior ORR 
performance compared with NiCoP. The LSV curves at different rota-
tions were obtained to explore the electron transfer number (n) of air 

electrodes (Fig. 4c). The calculated n values of Fe–NiCoP@C, Fe–NiCoP, 
and NiCoP air electrodes were 3.75, 3.70, and 2.32, respectively. In the 
case of Fe–NiCoP@C, the calculated n value was almost similar to the 
4e− transfer number in the Pt/C. The ORR stability of Fe-NiCoP@C was 
also investigated in an O2 saturated 0.1 KOH solution. The chro-
nopotentiometry plots in Fig. S6 show the relative current remains 80 % 
after 10000 s, indicating acceptable stability of materials during the 
ORR test. 

To investigate the effect of Fe incorporation and the coating of car-
bon layer on the OER catalytic activity of the Fe–NiCoP@C electrode, a 
series of electrochemical tests were carried out in 1 M KOH using the 
typical three-electrode system with a scan rate of 10 mV s− 1 (Fig. 4d). 
Notably, Fe–NiCoP@C shows the best ORR activity, which need the 
lowest overpotential of 270 mV at the current density of 10 mA cm− 2 

compared to Fe–NiCoP (287 mV), NiCoP (319 mV), and Ir/C (350 mV). 
To achieve a higher current density of 50 mV cm− 2, Fe–NiCoP@C 
retained the lowest overpotential of 340 mV compared with Fe–NiCoP 
(370 mV), NiCoP (420 mV), and Ir/C (480 mV), revealing its high cat-
alytic OER activities. The Tafel slopes (Fig. 4f) further revealed that 
Fe–NiCoP@C exhibited a smaller Tafel slope of 36 mV dec− 1 than Ir/C 
(96 mV cm− 1), NiCoP (65 mV dec− 1), and Fe–NiCoP (62 mV dec− 1), 
signifying a superior OER performance of Fe–NiCoP@C. To further 
investigate the electrode reaction kinetics, electrochemical impedance 

Fig. 3. XPS spectra of (a) Ni 2p, (b) Co 2p, (c) Fe 2p, and (d) P 2p of NiCoP (top), Fe–NiCoP (middle), and Fe–NiCoP@C (bottom), respectively.  
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spectroscopy (EIS) was conducted. The equivalent circuit (inset of 
Fig. S7) comprised an electrolyte resistance (Rs) in series with a parallel 
combination of a constant phase element and a charge transfer resis-
tance (Rct). The Nyquist plot (Fig. S7) showed a smaller Rs of 
Fe–NiCoP@C (3.2 Ω) than those of Fe–NiCoP (3.5 Ω) and NiCoP (4.2 Ω), 
indicating that the Fe–NiCoP@C electrode possesses a low internal and 
interfacial resistances between the Fe–NiCoP@C surface and the elec-
trolyte. Furthermore, Fe–NiCoP@C revealed a significantly smaller 
semicircle in the low-frequency region than the Fe–NiCoP and NiCoP 
electrodes, indicating its smaller charge transfer resistance and faster 
mass transfer kinetics during OER. Electrochemically active surface area 
(ECSA) is another important criterion for evaluating the active sites of 
catalysts wherein capacitance Cdl is determined via a simple CV test with 
different scan rates (10, 20, 30, 40, 50, and 60 mV s− 1). The CV curves of 
Fe–NiCoP and Fe–NiCoP@C (Fig. S8) and the calculated effective Cdl of 
ECSA (Fig. 4g) indicated that Fe–NiCoP@C possessed a significantly 
higher ECSA value of 100.1 m F cm− 2 than Fe–NiCoP (40.0 m F cm− 2) 
and NiCoP (18.6 m F cm− 2). Thus, the incorporation of Fe and the 
coating of carbon layer led to the increase in abundant electroactive 
sites. 

To evaluate the performance of electrocatalysts, electrochemical 
durability is carried out. The LSV curve of Fe–NiCoP@C remained nearly 
identical to the original curve after 1000 cycling tests (Fig. 4h), sug-
gesting its excellent durability during cycling. To evaluate the durability 
of Fe–NiCoP@C, the long-term operation of the Fe–NiCoP@C sample 
was tested at 100, 150, and 200 mA cm− 2 (Fig. 4i). The insignificant 
increase in measured potential indicated the good stability of 
Fe–NiCoP@C. The structural stability of Fe–NiCoP@C was also 
confirmed by the SEM results after long − term cycling test (Fig. S9). The 
SEM image of the cycled Fe–NiCoP@C revealed the good retention of 
porosity and uniformity in the microflowers. The observed stability can 
be partially attributed to the unique electrode structure, which provided 
good gas release ability and avoided the structural collapse caused by 

gas accumulation [33]. The robust mechanical strength between the 
as-grown catalysts and Ni foam substrates also contributed to the 
remarkable stability of Fe–NiCoP@C [33,47]. In addition, previous 
study has demonstrated that Fe-NiCoP would be oxidized during the 
process of OER, which also occurred in this work [34]. It is unavoidable 
to protect the oxidation process during OER even though carbon nano-
flakes were utilized to protect the electrode. According to HRTEM re-
sults, the crystal lattices are disordered, implying that more and more 
amorphous structure of Fe-NiCoP have been formed along with the 
progress of OER. It is known that an amorphous structure has a lot of 
advantages to promote the process of OER. Furthermore, XPS was also 
tested to further explored the surface chemical composition and atom 
valence states after 1000 cycles of the OER test (Fig. S10). As show in the 
Fig. S10, the XPS survey spectra identified the presence of Ni, Co, Fe, P, 
O, and C in the Fe–NiCoP@C electrode. In particular, the Ni 2p spectrum 
shows that the Ni-P peak at a binding energy of 852.6 eV disappeared 
and the intensity of Ni-PO at about 856 eV was increased, indicating that 
the Ni-P on the surface of particles is oxidized. In the Co 2p region, the 
peaks for Co 2p after cycling are shifted toward lower binding energies 
compared with the original ones in Fe–NiCoP@C, which may imply the 
decrement of electron transfer, but it is not particularly noticeable. As 
for the Fe 2p, no significant change in the state of Fe atoms, suggesting 
that electrochemical test have not much influence on the Fe element. It 
is worth noting that the intensity of P 2p at about 129.9 eV was 
decreased and oxidized P species formed at about 134.4 eV, indicating 
the surface oxidation process occurred during the electrochemical test. 
In O 1s XPS spectrum, much oxygen element was observed after test, the 
fitted two peaks at 529.6 and 532.1 eV are ascribed to metal oxide 
(M-O), and metal oxyhydroxides (M-OH), respectively, which indicates 
that phosphides are slightly oxidized to phosphate, and the M-OH and 
M-O were gradually produced during the OER process, signifying the 
stability improvement [34]. These results revealed that Fe–NiCoP@C 
possessed significant durability in 1 M KOH. 

Fig. 4. (a) CV curves of NiCoP, Fe–NiCoP, 
Fe–NiCoP@C, and Pt/C in O2-saturated 0.1 M 
KOH (1600 rpm, 10 mV s− 1). (b) ORR polari-
zation curves of NiCoP, Fe–NiCoP, 
Fe–NiCoP@C, and Pt/C in O2-saturated 0.1 M 
KOH (1600 rpm, 10 mV s− 1). (c) Electron 
transfer number of NiCoP, Fe–NiCoP, 
Fe–NiCoP@C, and Pt/C. (d) OER polarization 
curves of NiCoP, Fe–NiCoP, Fe–NiCoP@C, and 
Ir/C in 1 M KOH (1600 rpm, 10 mV s− 1). (e) 
Overpotentials of NiCoP, Fe–NiCoP, 
Fe–NiCoP@C, and Ir/C at the current density of 
10, 50, and 100 mA cm− 2 in 1 M KOH (10 mV 
s− 1). (f) Relevant Tafel plots of NiCoP, 
Fe–NiCoP, Fe–NiCoP@C, and Ir/C. (g) ECSA of 
NiCoP, Fe–NiCoP, and Fe–NiCoP@C. (h) LSV of 
Fe–NiCoP@C in the 1st and 1000th cycles. (i) 
Chronopotentiometry response of Fe–NiCoP@C 
at the constant current densities of 100, 150, 
and 200 mA cm− 2.   
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To evaluate the catalytic properties of the Fe–NiCoP@C in real-life 
applications, the ORR and OER cycling performances of Fe–NiCoP@C 
was investigated using three electrodes in 0.1 M NaOH. No significant 
degradation was observed during all 45 cycles (Fig. S11). Furthermore, 
XRD was performed to investigate the chemical composition after 
cycling, and the results indicated the absence of an extra peak (Fig. S12) 
and the high structural stability of Fe–NiCoP@C during cycling. 
Notably, the majority of catalysts tend to experience severe erosion at 
high concentrations of the alkaline solution [33]. Therefore, the coating 
of the carbon layer on the Fe–NiCoP surface can provide effective pro-
tection against erosion and significantly improve the structural stability 
and cycling performance of the air electrode by reducing the leaching of 
P element during alkaline OER. 

3.4. Mechanistic study on ORR and OER of materials 

DFT calculations were performed to identify the origin of high cat-
alytic performance and reveal the inherent relationship between the 
selective ORR/OER activity and atomic structure. To express the effect 
of doping clearly, the calculation model ignored the role of the outer 
carbon layer. Fig. S13a shows the top view of the (111) surface of the 
NiCoP structure, in which six-coordinated Co and the adjacent six- 

coordinated Ni atoms were exposed to the surface. In addition, the 
change of Bader charge between NiCoP and Fe-NiCoP (Table S3) in-
dicates that the electrons transfer from Co and Ni atoms to neighbor P 
after the incorporation of Fe, which is consistent with XPS results and 
proves the rationality of the structure. Notably, the relatively lower *OH 
and O2 adsorption energies in the Co active site (− 0.14 and − 1.34 eV) 
than those in the Ni site (0.46 and − 0.46 eV) of NiCoP indicated the 
more favorable OER and ORR processes (Table S4). In the Fe–NiCoP 
structure (Fig. S13b), two different active sites, the Fe atom and its 
adjacent Ni atom, were considered in the simulation of the OER/ORR 
reaction due to the incorporation of Fe on the NiCoP surface. The slightly 
lower *OH and O2 adsorption energies at the Fe site (− 0.25 and − 1.73 
eV) compared with the values at the Ni-top site (0.46 and − 0.42 eV) of 
Fe–NiCoP suggested that the Fe active sites were beneficial to OER and 
ORR. Therefore, the Co- and Fe-top sites were the active sites of the OER 
reaction before and after the incorporation of Fe, respectively. 

The free energy pathways of the OER and ORR processes were also 
investigated through the simulation of the adsorption energies of in-
termediates, as shown in Fig. 5a–d. The adsorption behaviors of essential 
intermediates (including *OH, *O, and *OOH) during the OER process 
were investigated on the surface, implying that both the Co (NiCoP) and 
Fe (Fe–NiCoP) sites were stable in the adsorption of OER intermediates 

Fig. 5. Schematic of the *OH, *O, and *OOH 
intermediates in the Fe active sites of Fe–NiCoP 
for (a) OER and (b) ORR. The symmetric parts 
of the optimized slabs at the bottom excluded 
for clarity. (c)–(d) Calculated OER/ORR energy 
diagram of the NiCoP surface with (green line)/ 
without (orange line) Fe doping. The green, 
orange, dark red, pink, red and white balls 
represent the Fe, Co, Ni, P, O and H atoms, 
respectively. The symmetric parts of the opti-
mized slabs at the bottom are excluded for 
clarity. (e) p-band of P atoms related to OER 
and d-band of all the metal atoms related to 
ORR. (f) Schematic of the orbital changes in 
metal and nonmetal elements.   
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(Fig. 5a–b). Fig. 5c shows the diagram of OER Gibbs free energy (ΔG) in 
the (111) surface of NiCoP and Fe–NiCoP with correlative intermediates 
at the different reaction steps. The free energy profiles of NiCoP and 
Fe–NiCoP revealed how the OER rate-determining step (RDS) reflected 
the formation of *OOH. Moreover, the calculated corresponding theo-
retical overpotentials of 0.81 and 1.01 eV in Fe–NiCoP and NiCoP, 
respectively, suggested a favorable OER process in Fe–NiCoP. In the 
ORR process, the formation of the OH− is the RDS (Fig. 5d). Further-
more, ΔG was calculated to be equivalent to an overpotential of 0.18 and 
0.30 eV in Fe–NiCoP and NiCoP, respectively, suggesting that the Fe 
dopant could enhance the adsorption strength of the *OH and O2 (g) 
intermediates on the surface of the NiCoP structure (Table S3), subse-
quently reducing the overpotential and promoting the ORR catalytic 
activity in the Fe–NiCoP catalyst. 

To further understand the origin of the enhanced OER and ORR 
catalytic activities, the adsorption energies of *OH, *O, and *OOH in 
NiCoP and Fe–NiCoP were calculated. The lower adsorption energies of 
*OH, *O, and *OOH obtained in Fe–NiCoP (− 0.25, 1.09, and 2.70 eV) 
compared with those of NiCoP (− 0.14, 1.24, and 3.04 eV) (Table S4.) 
suggested the more favorable OER and ORR reactions in the Fe–doped 
NiCoP slab. Meanwhile, the adsorption energies of *OH, *O, and *OOH 
also provided insights into the distinct chemical adsorption character-
istics of the Fe–NiCoP surface. The differences in charge density showed 
that electron transfers occurred between the interface of adsorbates 
(*OH, *OOH, *O) and the Fe–NiCoP substrate, which can be considered 
suitable adsorption sites for the intermediates (Fig. S14). The charge 
transfer from the substrate to the adsorbate might lead to effective 
molecule activation which, in turn, can promote the subsequent O2 
evolution [48]. Therefore, the decreased overpotential demonstrates 
that the OER and ORR activities in the catalysts are enhanced after the 
incorporation of Fe, and this finding is consistent with the experimental 
results. 

To further understand the inherent electron variation in the 
enhanced catalytic performance upon Fe incorporation, the total and 
partial density of states (TDOS and PDOS) were calculated, as shown in 
Fig. S15. The TDOS and PDOS plots showed the valence bands of both 
the up- and downspin channels in NiCoP and Fe–NiCoP near the Fermi 
level and the metallic character of materials. Compared with NiCoP 
(Fig. S15), the relatively higher TDOS value of Fe–NiCoP at the Fermi 
level indicated the efficient modulation of electrical conductivity, which 
was induced by the Fe dopant atom. Furthermore, the corresponding p- 
and d-bands in OER and ORR were calculated to illustrate the electron- 
hybridized property of NiCoP and Fe–NiCoP (Fig. 5e). The p- and d-band 
centers are effective descriptors in evaluating the performance of OER 
and ORR, respectively [49–53]. Compared with NiCoP (− 5.18 eV), the 
calculated P p-band centers of Fe–NiCoP (− 4.63 eV) shifted toward the 
Fermi level, which increases the binding strength of *OH, *O, and *OOH 
on the surface sites and results in low reaction barrier of the RDS, thus 
improving OER performance. When the Fe atom was doped on the 
surface of NiCoP, the top valance band of Fe was able to efficiently 
transfer electrons to the P p-band of Fe–NiCoP, thus enhancing the M–P 
hybridization and OER performance [49]. In addition, previous studies 
have demonstrated that ORR activity is related to the d-band center of 
surface transition metals, which is correlated with the ability to form 
chemisorption bonds between oxygen intermediates and active sites 
[51,50–53]. Downshifting of the d-band center in Fe–NiCoP compared 
to that of NiCoP (Fig. 4e) indicates the presence of more antibonding 
state above the Fermi level, signifying the enhanced stability of the 
chemisorption bond between oxygen intermediates and active sites. Our 
results (Fig. 5f) showed that the d-band center of all the metal atoms (Fe, 
Co, Ni) in Fe–NiCoP was shifted away from the Fermi level than that of 
pristine NiCoP, indicating the enhanced electronic interaction between 
the metals and P, and thus increasing the bonding strength between 
active sites and the oxygen intermediates. Hence, the increased catalytic 
activity observed in the Fe–NiCoP can be associated with the modified 
electronic properties induced by the incorporation of Fe dopant in 

NiCoP. 

3.5. Assembly of HSABs 

To evaluate the catalytic properties of Fe–NiCoP@C in real appli-
cations, HSABs were assembled consisting of a liquid anode, a NASICON 
solid electrolyte (Na3Zr2Si2PO12), an aqueous catholyte, and an air 
electrode using Fe–NiCoP@C (Fig. 6a). During discharge, oxygen from 
the air diffused to the catalytic sites and then reduced to form OH− . 
Meanwhile, in the anolyte, the liquid anode was oxidized and Na+ was 
diffused with a NASICON solid electrolyte into the catholyte. Similarly, 
during the charge process, Na+ in the catholyte was transferred back to 
the anolyte through the NASICON for electrodeposition on the anode. 
During the discharge–charge process, the reversible electrode and 
overall battery reactions occur as follows: 

Anode: Na ↔ Na+ + e− +

Cathode: 4OH− ↔ 2H2O + O2 + 4e−

Overall: 4Na + 2H2O + O2 ↔ 4NaOH + 4 

The electrochemical performance of fabricated HSABs was evaluated 
by examining their galvanostatic charge − discharge behaviors, as 
shown in Fig. 6b. In the figure, △V denotes the voltage gap between the 
charge and discharge voltages. The fabricated HSABs with Fe–NiCoP@C 
clearly showed the best battery performance with the lowest △V of 0.14 
V at the current density of 0.01 mA cm− 2, followed by the Fe–NiCoP (0.3 
V) and NiCoP (0.83 V). The initial round trip efficiencies (the charge-to- 
discharge voltage ratio) of the HSABs were 95.1 %, 90.1 %, and 74.7 % 
in Fe–NiCoP@C, Fe–NiCoP, and NiCoP, respectively. Fig. S16 shows the 
rate performance of HSAB with Fe–NiCoP@C electrode, an increased 
voltage gap was observed with increasing current density, which was 
attributed mainly to the high activation energy for the OER and ORR 
during battery operation at high current rates. Given that cycling per-
formance and electrode stability are crucial to the air electrode in real 
applications, the constant current charge − discharge properties of 
HSABs were investigated for 500 cycles. Fig. 6c shows the char-
ge–discharge profiles of HSABs with the Fe–NiCoP@C air electrode. 
Notably, a slight fluctuation in charging-discharging gap in the initial 
cycling process was observed, which is attributed to the surface recon-
struction of materials, however, no significant decrease in potential can 
be observed under the continuous charge–discharge of batteries. To 
demonstrate the reversibility of the battery, the terminal discharge 
voltage and round trip efficiency of HSABs with the Fe–NiCoP@C 
electrode were measured (Fig. 6d). Notably, no significant degradation 
was observed after 500 cycles and the round trip efficiency remained at 
93.26 %, thus revealing the high catalytic performance and excellent 
cycling performance of the Fe–NiCoP@C electrode. Compared with 
other reported materials in HSABs (Table S5), the remarkable fivefold 
enhancement in our results signified the excellence of our unique 
Fe–NiCoP@C electrode in real HSAB applications. The power density of 
HSABs with different air electrodes was also investigated, as shown in 
Fig. 6d. HSABs with the Fe–NiCoP@C air electrode obtained the highest 
power density of 621 mW g− 1 compared with those with Fe–NiCoP (532 
mW g− 1) and NiCoP (473 mW g− 1), thereby indicating the excellent 
ORR performance of the Fe–NiCoP@C air electrode. The capacities of 
the batteries were also investigated, as shown in Fig. S17. The battery 
with 1 M Na-BP-TEGDME displayed a capacity of around 15 Ah L− 1, 
which is comparable with the recently reported Na-aqueous-catholyte 
redox flow battery (17.3 Ah L− 1) [54]. 

4. Conclusion 

In summary, we demonstrate a strategy to prepare binder-free 3D 
microflowers morphology of the Fe–NiCoP@C catalyst on the nickel 
foam as a highly efficient bifunctional air cathode for HSABs. The carbon 
layer effectively stabilizes the Fe–NiCoP electrolyte interface and 
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improves the electron conduction and electrochemical activity. The DFT 
calculations reveal that the Fe dopant not only facilitates the electrical 
property of Fe–NiCoP but also performs as the active site for ORR/OER 
and reduces the free energies of adsorption of the oxygen-containing 
intermediates, thus leading to improved ORR and OER kinetics. This 
study sheds new light into the design and improvement of TMPs cata-
lysts for ORR/OER and the new understanding can be applied to other 
fields in electrocatalysis. 
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