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ABSTRACT

The responses to external excitations in thermocapillary liquid layers are investigated by non-modal stability theory. The maximum amplifi-
cation of input signals is measured by a response function depending on the perturbation velocity and temperature. There can be rather large
amplifications in subcritical flows at both small and large Prandtl numbers (Pr). For small Pr, the response increases significantly with both
the Reynolds number (R) and the Biot number (Bi) but decreases with Pr. The optimal response is achieved when the perturbation is almost
a spanwise wave. The response properties for the linear flow and the return flow are similar. The amplification is caused by a combination of
the lift-up mechanism, Orr mechanism, and external forcing. However, for large Pr, large amplifications could only be found in the return
flow, while the variations of response with Pr and Bi are opposite to those at small Pr. The optimal response propagates in the streamwise
direction. The amplification is caused by the thermocapillary effect.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0039833

I. INTRODUCTION

Thermocapillary convection, also called thermal Marangoni con-
vection, is driven by the temperature-induced surface tension gradient.
It plays an important role in many industrial applications, such as
crystal growth,1 inkjet printing,2 droplet migration,3 and nanofluid
flows.4 It is well known that a steady thermocapillary convection
becomes unstable once the temperature difference exceeds a threshold.
Abundant studies have been devoted to the instability of thermocapil-
lary convection for its great practical importance. The related theoreti-
cal and experimental works have been reviewed by Davis5 and Schatz
and Neitzel,6 respectively.

It has been found that there are two types of instabilities in ther-
mocapillary convections, namely, stationary rolls and traveling
waves.7,8 The instability mechanisms at small and large Prandtl num-
bers are different. For the former, the perturbation energy mainly
comes from the basic flow, and thus, the instability is purely hydrody-
namic.9 However, for the latter, the Marangoni force becomes the
driving force for the perturbation, leading to the hydrothermal insta-
bility.10 In some cases, the surface deformation is also related to
instabilities.11–13

Recently, the investigation of thermocapillary instability has been
extended to some new fields, such as thermocapillary flows in a circu-
lar film,14 non-Newtonian fluid flows,15–18 thermocapillary migration
of droplets,19 sideband thermocapillary instability,20 and bifurcation
routes to chaos.21 It is also worth noting that the space experiment
regarding the instability of thermocapillary convection in an open
annular liquid pool has been carried out on the SJ-10 satellite of
China,22 which shows that the flow transition from the steady state to
the oscillation state is accompanied by directional propagating hydro-
thermal waves with increasing temperature differences.

In the theoretical investigations of flow instabilities, the principal
tool in determining the stability characteristics is the modal analysis,
which assumes a small perturbation varying exponentially with time.
The parameters of unstable hydrothermal waves in some thermocapil-
lary convections obtained by modal analysis are comparable with both
experiments23 and numerical simulations.24 The modal approach can
also predict instability behaviors for other fluid systems, such as
Rayleigh convection and Taylor–Couette flow.25 However, in many
cases, it fails to match most experimental results, especially in channel
flows. For example, the modal analysis suggests that the plane Couette
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flow and the pipe Poiseuille flow are always stable at all Reynolds
numbers,26 which is unrealistic.

For this reason, some authors have turned to the non-modal sta-
bility theory,27 which examines the short-term characteristics and the
effect of background noise in flow transitions. The departure of the
non-modal theory from the standard modal analysis is the fact that
even if all eigenvalues of a linear operator are stable, the disturbance
could be amplified substantially for a non-normal operator, whose
eigenfunctions are non-orthogonal. The extent of non-normality of a
linear operator can be seen from its pseudospectrum,28 which demon-
strates the response to external forcing with complex frequencies and
also assesses the susceptibility of eigenvalues to disturbances.

As some experiments reported that transition scenarios often
highly depend on the level of initial and external disturbances29–32 and
do not emanate from exponential instabilities predicted by modal
analysis, Schmid and Henningson26 have proposed the idea of bypass
transition, which is emanated from non-modal growth mechanisms
and bypasses the exponential instabilities. The amplifications of initial
disturbances and external forcing can be measured in the non-modal
approach by the transient growth and response functions, respectively.

There have been plenty of works on the non-modal stabilities.
Trefethen et al.28 have addressed the concept of non-modal stability in
the study of shear flows. They found that both plane Couette and
Poiseuille flow exhibit strong three-dimensional pseudo-resonance for
a frequency of x ¼ 0, while the magnitude is OðR2Þ(R denotes the
Reynolds number). Nouar et al.33 have examined the receptivity prob-
lem of plane Bingham–Poiseuille flow with respect to weak perturba-
tions. The pseudospectra they plotted demonstrate that the Bingham
terms reduce the degree of non-normality. Liu and Liu34 have investi-
gated the non-modal stability in plane Couette flow of a power-law
fluid and found that the shear thinning increases the amplitude of
response, while the structures of the optimal input and output distur-
bances are similar to the Newtonian case. They have also generalized
the non-modal approach to sliding Couette flow.35 The results show
that the response is sensitive to low-frequency external excitations,
while the maximum response is achieved by non-axisymmetric and
streamwise-independent disturbances when the frequency of external
forcing is zero.

Although the modal analysis is the standard method to investi-
gate thermocapillary instabilities in previous works, there is a need for
the non-modal approach, which can be seen from three aspects. First,
some critical Reynolds numbers Rc obtained by modal analysis are too
high. Table I shows that Rc� Oð104Þ orOð105Þ for some thermocapil-
lary convections, which are much higher than the usual transition
Reynolds numbers. For example, transitions to turbulence are
observed in experiments for plane Poiseuille flow at R � 1000,36 for
plane Couette flow at R � 360,37 for pipe Poiseuille flow at
R � 2000,38 for the flat-plate boundary layer at R � 950, and for
Taylor-Couette flow at R � 95.32 Therefore, it is reasonable to expect
that subcritical instabilities may occur in thermocapillary convections.

Second, some experimental studies demonstrate that there are
many peaks in the frequency spectrum when the thermocapillary con-
vection is just above the onset of instability.40–42 So we should consider
the evolution of a mixture of normal modes rather than just one in iso-
lation. This idea is realized in the non-modal analysis. Third, the effec-
tiveness of the non-modal approach in thermocapillary-driven flows
has been supported by some experiments. For the contact line

instability of thermocapillary spreading films, the experimentally mea-
sured values of transient amplification are comparable with the theo-
retical results obtained by non-modal analysis.43–46 In the transient
Rayleigh–Benard–Marangoni convection due to evaporation, good
agreement was found between the non-normal approach and experi-
mental observations.47

To the best of our knowledge, few works are available in the liter-
ature on the non-modal stability in thermocapillary convections. Our
previous work48 has examined the amplification of initial disturbances
of thermocapillary liquid layers. It has been found that large transient
growth occurs in subcritical flows at small Prandtl numbers, while the
temperature field on the surface has a negative effect on the transient
growth. As both the initial condition and background noise can con-
trol the transition Reynolds numbers, we would like to investigate the
amplification of external forcing for thermocapillary liquid layers in
this paper. The result shows the sensitivity of flow to external distur-
bances and the amplification mechanism, which will be useful to
understand the instabilities and bypass transitions in thermocapillary
convections.

This paper is organized as follows. Section II recalls the model of
thermocapillary liquid layers. The dimensionless governing equations
and boundary conditions are derived. The response function is
defined. Section III is dedicated to the analysis of the maximum
response function, pseudospectrum, and perturbation fields. Section
IV is devoted to the amplification mechanism. Finally, the conclusions
are itemized in Sec. V.

II. MATHEMATICAL FORMULATION

Figure 1 illustrates the physical model of thermocapillary liquid
layers,7 where an infinite fluid layer placed on a rigid plane is subjected
to a constant temperature gradient b ¼ �dT=dx > 0 on the free sur-
face. x, y, and z are the streamwise, spanwise, and wall-normal direc-
tion, respectively. The surface tension r0 decreases with the
temperature T: r0 ¼ r00 � cðT � T0Þ, where c ¼ �dr0=dT . The lin-
ear flow has a uniform velocity gradient, while the return flow has zero
mass flux in the vertical section.

A. Governing equations

The liquid layer is composed of the incompressible Newtonian
fluid, whose viscosity l, density q, thermal diffusivity v, thermal con-
ductivity k̂, and unit thermal surface conductance ĥ are supposed
to be constant. R ¼ qÛ 0d=l, Ma ¼ bcd2=ðlvÞ, Pr ¼ l=ðqvÞ, and
Bi ¼ ĥd=k̂ are the Reynolds number, Marangoni number, Prandtl
number, and Biot number, respectively. Here, Û 0 ¼ bcd=l is the
velocity scale. It can be found thatMa ¼ R � Pr.

TABLE I. Some critical Reynolds numbers Rc of thermocapillary convections
obtained by modal analysis.

Flow Pr Bi Rc � 10�4

Linear flow7 0.001 1 1.7
Return flow7 0.001 1 4.0
Liquid bridge9 0.5 0 1.03
Liquid pool39 0.03 0 3.88

4 0 11.0
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The magnitude of the surface deformation can be measured by the
capillary number: Ca ¼ lÛ 0=r̂ ¼ Ma=ðPr � SÞ, where S ¼ qdr̂=l2 is
the non-dimensional surface-tension number. For liquid silicon,7

Pr¼ 0.023, S ¼ 2:32� 106, Ma � 6:3, and Ca � 1:2� 10�4, while
for silicone oil,23 Pr¼ 13.9, S � 25 000, and Ca � 0.001, which shows
that Ca can be very small at both small and large Prandtl numbers. In
order to study the amplification mechanism that is independent of
the surface deformation, the free surface is assumed to be planar and
non-deformable in the following.

The dimensionless forms of continuity equation, momentum
equation, and energy equation can be expressed as

r � u ¼ 0; (1)

R
@u
@t

þ u � ru

� �
¼ �rpþr � s; (2)

@T
@t

þ u � rT ¼ 1
Ma

r2T: (3)

Here, u, p, and T stand for the velocity, pressure, and temperature,
respectively. s is the stress tensor. For Newtonian fluid,

s ¼ S; (4)

where S ¼ ruþ ðruÞT is the strain-rate tensor.
The boundary conditions on the rigid plane (z¼ 0) and free sur-

face (z¼ 1) are

u ¼ u; v;wð Þ ¼ 0;
@T
@z

¼ 0; z ¼ 0; (5)

s13 þ @T
@x

¼ 0; s23 þ @T
@y

¼ 0; w ¼ 0;

� @T
@z

¼ Bi � T � T1ð Þ þ ~Q; z ¼ 1:

(6)

Here, T1 is the temperature of the bound gas far from the surface and
~Q is the imposed heat flux to the environment.7

The solution of basic flow can be determined as follows:

u ¼ U0 zð Þ; 0; 0ð Þ; T0 x; zð Þ ¼ �x þ Tb zð Þ: (7)

For the linear flow,

U0 zð Þ ¼ z; Tb zð Þ ¼ Ma � 1
6

1� z3ð Þ; ~Q ¼ 1
2
Ma; (8)

while for the return flow,

U0 zð Þ ¼ 3
4
z2 � 1

2
z;

Tb zð Þ ¼ Ma � � 1
16

z4 þ 1
12

z3 � 1
48

� �
; ~Q ¼ 0:

(9)

B. Modal analysis

In the modal analysis, an infinitesimal perturbation in the normal
mode form is added to the basic flow,

u;T;P; sð Þ ¼ u0;T0;P0; s0ð Þ þ ðu_ ; v
_
;w

_
;T

_

;P
_

; s
_Þ

�exp i �xt þ ax þ byð Þ½ �: (10)

Hereafter, the variables without subscript 0 stand for the perturbation.
The mode has a complex frequencyx ¼ xr þ ixi and the wave num-

bers a; b in the x and y directions, respectively. k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
is the

total wave number, and / ¼ tan�1ðb=aÞ is the propagation angle.
The linearized governing equations for the perturbation are the

same as those in Ref. 48, and the boundary conditions have

u
_ ¼ v

_ ¼ w
_ ¼ DT

_ ¼ 0; z ¼ 0; (11)

s_13 þ iaT
_ ¼ 0; s_23 þ ibT

_ ¼ 0; w
_ ¼ 0;

DT
_ þ Bi � T_ ¼ 0; z ¼ 1:

(12)

FIG. 1. Schematic of thermocapillary liquid layers: (a) the linear flow and (b) the
return flow. Here, d is the depth of the layer, Tb is the temperature distribution in
the vertical direction, and U0 is the velocity field.

TABLE II. Some critical parameters of thermocapillary liquid layers. Here, “a” and “b” stand for the results of Smith and Davis7 and the present work, respectively. “…” means
that the data are not available in the reference.

Flow Pr Bi

Ma k w C

a b a b a b a b

Linear flow 0.001 1 16.8 17.0 … 0.82 … 90� … 0.0150
0.001 0 1.44 1.43 0.096 0.095 90� 90� 0.119 0.119
0.01 1 14.6 14.5 … 1.2 … 86� … 0.0101

Return flow 0.001 1 7.2 7.2 … 1.12 … 87� … 0.0048
0.01 1 19.3 19.4 … 1.20 … 82� … 0.0150

100 0 376 375 2.50 2.48 7:6� 7:5� 0.0624 0.0622
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The perturbation can be obtained in the form of W0w
_¼xZ0w

_

,

whereW0;Z0 are two matrices and w
_¼ðu_ ; v

_
;w

_
;T

_ Þ. The eigenvalue
problem is solved by using the Chebyshev collocation method.26

We have computed some critical parameters of thermocapillary
liquid layers in Table II. Here, w ¼ 180� � / and c ¼ jxr j=k is the
wave speed. The results agree well with those in Ref. 7.

C. Non-modal analysis

Now, we would like to check if the liquid layer is sensitive to
external forcing and restrict our attention to the perturbation with the
wave numbers (a; b).

Suppose wðtÞ ¼ ðu; v;w;TÞ is a small perturbation and the flow
is driven by a harmonic signalH with the frequency x in the form

H ¼ exp ið�xt þ ax þ byÞ½ �H_ ðzÞ; (13)

then the evolution equation of wðtÞ is34

@

@t
w ¼ �iL̂wþH: (14)

Here, L̂ ¼ðZ0Þ�1W0. The maximum response can be defined as the
maximum value of amplification,

<ða; b;xÞ ¼ maxH6¼0
kwk
kHk ¼ kðxI� L̂Þ�1k; (15)

where I is the identity matrix. kwk is the norm of vector w, which can
be defined by the “energy” of disturbance as follows:49

E ¼ kwk2 ¼
ð
ðjuj2 þ jvj2 þ jwj2 þ 1jTj2Þdz; (16)

where 1 is a positive coefficient. The numerical method to compute <
has been introduced in Refs. 26 and 48.

In the computation, we choose 1 ¼ k2=100, which is the same as
that in Ref. 48. In Table III, the kinetic energy Ek and temperature
energy ET are displayed for the input and output perturbations, where

Ek ¼
ð
ðjuj2 þ jvj2 þ jwj2Þdz; ET ¼

ð
1jTj2dz: (17)

All values are normalized by the input kinetic energy. For small Pr, the
“energy” of disturbance is mainly a measure of kinetic energy, while
for large Pr, it becomes a measure of temperature. However, there are
always large amplifications for both the velocity and the temperature.
The results are nearly independent of 1 when 1 is the order of
Oðk2=100Þ.

III. NUMERICAL RESULTS
A. Response function

We compute the response function < to external excitations for
subcritical flows, whose Marangoni numberMa is less than the critical
value Mac. The maximum response function with a real frequency is
defined as34

<max a;bð Þ ¼ max
x2R

<ða;b;xÞ; (18)

TABLE III. The kinetic energy Ek and temperature energy ET for the input and out-
put perturbations. Case 1: the linear flow at Pr¼ 0.001, Ma¼ 1, Bi¼ 0, k¼ 1,
/ ¼ 90�, and x ¼ �0:015; case 2: the return flow at Pr¼ 100, Ma¼ 300, Bi¼ 0,
k¼ 2.5, / ¼ 0�, and x ¼ �0:162.

Case 1 Case 2

Input Output Input Output

Ek 1 3:37� 105 1 4:10� 103

ET 2:74� 10�4 2:91� 103 28:8 7:12� 105

ET=Ek 2:74� 10�4 8:64� 10�3 28:8 1:74� 102

FIG. 2. Level lines of the logarithm of maximum response <max in the a� b plane for the linear flow: (a) Pr¼ 0.001, Ma¼ 2, and Bi¼ 1 and (b) Pr ¼0.01, Ma¼ 10, and
Bi¼ 1.
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where R denotes the set of real numbers. The optimal response is
defined as

<opt ¼ max
a;b

<max a;bð Þ; (19)

and xopt is the frequency corresponding to <opt. Due to symmetry, we
shall confine ourselves to the cases a 	 0; b 	 0.

We examine the maximum response <max with various wave
numbers. Figure 2 shows the level lines of <max in the a� b plane for
subcritical linear flows. The critical Marangoni numbers are
Mac¼17.0 for case (a) and Mac¼14.5 for case (b). It can be seen that
for a wide range of wave numbers, <max could be as large as O(100).
When Pr¼ 0.001, the optimal response (Oð<optÞ ¼ 1000) appears in
the spanwise direction (a ¼ 0) with the wave number b � 3, while
the propagation angle corresponding to <opt is close to 90� at Pr
¼0.01. These properties are similar to those of transient growth (Hu

et al. 2020). However, an obvious difference from the latter is that
there are also large responses (Oð<maxÞ ¼ 100) in the streamwise
direction (b ¼ 0) in Fig. 2.

The level lines of <max for subcritical return flows are plotted in
Fig. 3. The critical Marangoni numbers are Mac¼ 7.2 for case(a),
Mac¼ 19.4 for case(b), and Mac¼ 375.3 for case(c). It can be seen
that the level lines at small Pr [Figs. 3(a) and 3(b)] are similar to those
of linear flow (Fig. 2), which indicates that <max is not very sensitive to
the basic flow. However, the structures of the level lines at Pr¼ 100
[see Fig. 3(c)] are quite different from those at small Pr. The optimal
response is achieved in the streamwise direction with the wave number
a � 2:5.

We plot the variation of response function < with real frequen-
cies for the linear flow in Fig. 4. It can be seen that < is relatively large
when x � 0 and then decays quickly when jxj is large enough [see
Figs. 4(a)–4(f)]. In particular, < is symmetric with respect to the line

FIG. 3. Level lines of the logarithm of maximum response <max in the a� b plane for the return flow: (a) Pr ¼0.001, Ma¼ 3, and Bi¼ 1; (b) Pr ¼0.01, Ma¼ 12, and Bi¼ 1;
and (c) Pr ¼100, Ma¼ 300, and Bi¼ 0.
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FIG. 4. The response function < vs the real frequency of the linear flow: (a) at Pr¼ 0.001, Ma¼ 1.2, and Bi ¼0, / ¼ 90� with various wave numbers k; (b) at Pr¼ 0.001,
Ma¼ 1, and Bi ¼0, / ¼ 0� with various wave numbers k; (c) at Pr¼ 0.001, Ma¼ 1, Bi¼ 0, and k¼ 0.5 with various propagation angles /; (d) at Pr¼ 0.001, Bi ¼0, k¼ 3,
and / ¼ 90� with various Reynolds numbers R; (e) at R¼ 400, k¼ 3, Bi ¼0, and / ¼ 90� with various Prandtl numbers Pr; and (f) at Pr¼ 0.001, Ma¼ 1, k¼ 3, and
/ ¼ 90� with various Biot numbers Bi.
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x ¼ 0 at / ¼ 90� [see Figs. 4(a) and 4(d)–(f)]. The maximum
response <max is achieved at a moderate wave number when / ¼ 90�

[see Fig. 4(a)]. By comparing Figs. 4(a), 4(b), and 4(c), we can find that
<max is relatively large for streamwise-independent perturbation and
decreases significantly with the decrease in /. Figure 4(b) shows that
<max decreases with the wave number k when / ¼ 0�. The peak cor-
responding to <max is labeled as “A”, which has xA ¼ 0:259. Another
peak is labeled as “B” withxB ¼ 0:183. The perturbation flow fields at
these two peaks are totally different, which will be discussed in
Subsection III C. < increases significantly with both R [see Fig. 4(d)]
and Bi [see Fig. 4(f)] but decreases with Pr [see Fig. 4(e)].

For the return flow, the properties of the response function at
small Pr are similar to those of linear flow. However, we can still find
large amplifications in the return flow at large Pr. Figure 5 shows the
response function of return flow at / ¼ 0� for large Pr.<max decreases
with Bi [see Fig. 5(b)] but increases significantly with both Pr [see
Fig. 5(a)] and R [see Fig. 5(c)]. The variations of <max with Bi and Pr
are in contrast to the cases of linear flow at small Pr, which can also be

seen from Table IV at different wave numbers. In Fig. 5(d), it can be
seen that <max is achieved at a moderate wave number. The frequency
corresponding to <max is nearly constant when Pr, Bi, and R increase.
In addition, it is always less than 0, which means that the maximum
response wave travels upstream. This agrees with the result of modal

FIG. 5. The response function < vs the real frequency of the return flow at / ¼ 0� for large Pr: (a) at R¼ 3, k¼ 2.5, and Bi ¼0 with various Pr values; (b) at Ma¼ 300,
Pr¼ 100, and k¼ 2.5 with various Bi values; (c) at Pr¼ 100, Bi ¼0, and k¼ 2.5 with various R values; and (d) at Ma¼ 300, Pr¼ 100, and Bi ¼0 with various k values.

TABLE IV. The variations of <max with Bi and Pr at different wave numbers.

k ¼ 1;u ¼ 30� k ¼ 4;u ¼ 60�

Pr 60 80 100 60 80 100
<max

Bi
0 54.0 69.4 84.7 11.6 18.7 28.9
2 49.6 64.0 78.6 11.0 17.3 26.5
4 47.2 60.9 74.9 10.6 16.4 24.8
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analysis,50 where the hydrothermal wave in the streamwise direction
propagates upstream.

B. Pseudospectrum

When the frequencyx is complex, the response function< could
become larger than the maximum value discussed in Subsection IIIA.
For example, kðxI� L̂Þ�1k ! 1 when x equals the eigenvalue in
modal analysis. In order to study the response function with complex
frequency, the “e-pseudospectrum” was introduced by Trefethen
et al.28 as follows:

KeðL̂Þ ¼ fx 2 C : kðxI� L̂Þ�1k 	 e�1g; (20)

where e 	 0.
In Fig. 6, the eigenvalues and level lines of pseudospectra for the

linear flow at Pr¼ 0.001, / ¼ 90�, and Bi¼ 0 with different R values

are displayed, which correspond to the cases in Figs. 4(a) and 4(d).
Most eigenvalues are located in the imaginary axis xr ¼ 0. In Fig. 6
(a), the least stable mode is stationary (xr ¼ 0). When R increases,
two traveling waves (xr 6¼ 0) become the least stable modes, and the
number of eigenvalues in the range xi 2 ½�1; 0� increases signifi-
cantly. However, the variation of R has little influence on the outer
contours of pseudospectra. In Fig. 4(a), the peaks of k¼ 2 are reached
at x ¼ 60:013, which are close to the three least stable eigenvalues
(x ¼ 60:018� 0:012i;�0:022i) in Fig. 6(c). By comparing Fig. 4(d)
with Fig. 6(a), we can find a similar case at R¼ 300 and k¼ 3.
Therefore, the appearance of <max can be attributed to the resonance
effect, which occurs when the frequency of input is close to the natural
frequency of the system.

In Fig. 7, the eigenvalues and the level lines of pseudospectra for
the linear flow at R¼ 400, k¼ 3, / ¼ 90�; and Bi¼ 0 with different Pr
values are displayed, which corresponds to the case in Fig. 4(e). When

FIG. 6. Pseudospectra for the linear flow at Pr¼ 0.001, / ¼ 90�; and Bi¼ 0: (a) R¼ 300 and k¼ 3; (b) R¼ 1200 and k¼ 3; and (c) R¼ 1200 and k¼ 2.�: eigenvalues; −:
contours from outermost to innermost representing levels from e ¼ 10�0:5 to 10�3 (the spacing of the exponent is 0.5).
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Pr increases, the least stable mode changes from the stationary mode
to the traveling wave. The area of inner contours in the upper half-
plane slightly decreases, while there is little change for outer contours.

The eigenvalues and level lines of pseudospectra at / ¼ 0� and
Bi¼ 0 are displayed in Fig. 8. The cases of Figs. 8(a) and 8(b) correspond
to those of Figs. 4(b) and 5(b), respectively. The peaks of the response
function are related to the distribution of eigenvalues. In Fig. 4(b), x ¼
0:259 at Point A and x ¼ 0:183 at Point B. In Fig. 8(a), the least stable
mode has xr � 0:259, and there are many eigenvalues in the range
xi 2 ½�0:2; 0� andxr � 0:183. Therefore, when the frequency of input
is close to 0.183 or 0.259, the resonance would appear to cause large
amplifications. In Fig. 8(b), the least stable modes listed near the line of
xr ¼ �0:162 lead to the resonance at this frequency in Fig. 5(b).

xr < 0 (xr > 0) corresponds to the wave traveling upstream
(downstream). Smith50 has discussed the mechanism of upstream

hydrothermal waves at large Pr, where the interaction of the interior
hot spot with the basic flow is crucial for the propagation direction.
For the return flow, the interior hot spot has U0 < 0 and appears
upstream of the interfacial hot spot, heating the surface by conduction.
Then, the interfacial disturbance propagates upstream. However, we
find that the heat convection on the surface (U0iaT

_

) is the key to the
mechanism for the mode with xr > 0. As U0 > 0 on the surface,
the interfacial hot spot propagates downstream. As the eigenvalue
x � ð1:2� 0:3iÞ is far from the real axis xi ¼ 0 and other eigenval-
ues, this mode has little effect on<max.

C. Input and output fields

In this subsection, we pay attention to the perturbation field cor-
responding to the maximum response.

FIG. 7. Pseudospectra for the linear flow at R¼ 400, k¼ 3, / ¼ 90�; and Bi¼ 0: (a) Pr¼ 0.001 and (b) Pr¼ 0.01.: eigenvalues; −: contours from outermost to innermost
representing levels from e ¼ 10�0:5 to 10�3 (the spacing of the exponent is 0.5).

FIG. 8. Pseudospectra at / ¼ 0� and Bi¼ 0: (a) the linear flow, Pr¼ 0.001, Ma¼ 1, and k¼ 0.3; (b) the return flow, Pr¼ 100, Ma¼ 300, and k¼ 2.5.: eigenvalues; −: con-
tours from outermost to innermost representing levels from e ¼ 10�0:5 to 10�3 (the spacing of the exponent is 0.5).
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The perturbation fields corresponding to the maximum response
for the linear flow are displayed in Fig. 9. The parameters are the same
as those of case 1 in Table III. It can be seen that both the input and
output fields are characterized by counter-rotating vortices and
streamwise streaks (narrow regions where the streamwise velocity is
larger or smaller than the average), which are similar to the flow fields
of the optimal transient growth.48 The magnitudes of output tempera-
ture and velocity are far larger than those of input.

The perturbation fields displayed in Figs. 10 and 11 correspond
to Point B and Point A in Fig. 2(b), respectively. It can be seen that
v ¼ 0 in Fig. 10, while u ¼ w ¼ 0; T ¼ 0 in Fig. 11. Therefore,
these two perturbation fields are similar to the Orr–Sommerfeld (OS)
modes and Squire (SQ) modes in plane shear flows,26 respectively. In
Fig. 10, the amplification of external excitation is mainly caused by the
increase in juj and the vortices are spanwise. In Fig. 11, there is only a
perturbation for the spanwise velocity, whose amplitude appears on
the free surface.

The perturbation fields corresponding to the maximum response
for the return flow at Pr¼ 100 are displayed in Fig. 12. The parameters
are the same as those of case 2 in Table III. We can find that both the
velocity and the temperature are significantly amplified. The input
velocity and temperature mainly distribute in the region near the sur-
face, which differs from the cases at small Pr.

IV. DISCUSSION

In this section, we discuss the amplification mechanism of ther-
mocapillary liquid layers and make comparisons with the cases in
other flows.

The energy mechanism can be seen from the equation for the
output kinetic energy,48

@Ek
@t

¼ � 1
2R

ð
ðs : SÞd3r þ 1

R

ð
u � s � nd2r

�
ð
u � ððu � rÞu0Þd3r þ

ð
u � Find3r

¼ �N þM þ I þW; (21)

where Fin is the input force, N is the viscous dissipation,M is the work
done by Marangoni forces on the surface, I is the energy from the basic
flow, and W is the input energy. In Table V, we list the terms in (21)
normalized by the kinetic energy

Ð juj2d3r ¼ 1:
For small Pr,M is negligible, so

@Ek
@t

� �N �
ð
uw � DU0d

3r þW: (22)

The insensitivity of <max to the basic flow in Figs. 2 and 3 can be
explained by the energy mechanism. It can be seen from (22) that
juw � DU0j is crucial for the amplification of kinetic energy.
However, this term is relatively large in the region z 2 ½0:3; 0:8�, as
juwj becomes very small near the boundaries. Figure 1 shows that
the velocity distributions of two flows are similar at z 2 ½0:3; 0:8�.
Thus, the difference in basic flow has little impact on the level lines
of <max.

The perturbation at / ¼ 90� displayed in Fig. 9 shows that for
the input signal, the magnitude of streamwise velocity is far smaller
than those of normal and spanwise velocities, whereas the opposite is

FIG. 9. The perturbation fields corresponding to the maximum response for the linear flow at Pr¼ 0.001, Ma¼ 1, Bi¼ 0, k¼ 1, and / ¼ 90�: (a) the input velocity field; (b)
the output velocity field; (c) the input temperature field; and (d) the output temperature field. The maximum growth is <max ¼ 583 at x ¼ �0:015. The amplitudes of input are
juj ¼ 0:0873, jvj ¼ 1:1797, jwj ¼ 0:2978, and jT j ¼ 0:1402, while the amplitudes of output are juj ¼ 520:4437, jvj ¼ 53:0067, jwj ¼ 10:4785, and jT j ¼ 392:0727.
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true for the output field. The perturbation equation in the x-direction
can be simplified as

@u
@t

þ w � DU0 � 1
R
r2u ¼ f inx ; (23)

where u and w are the output velocities, 1Rr2u is the viscous force, and
f inx is the input force in the x-direction. The terms of (23) for the per-
turbation in Fig. 9 are listed in Table VI, which suggest that the ampli-
fication of the streamwise velocity u is mainly caused by the vertical
velocity w and the velocity gradient of basic flow DU0, while the input
force is nearly zero. This mechanism has been known as the “lift-up”

effect,34,51 where the streamwise streaks are amplified from streamwise
vortices.

For the perturbation at / ¼ 0� in Fig. 10, the output perturbation
extracts energy from the basic flow and the input force (see case 2 of
Table V). In addition, the spanwise velocity v¼ 0. Thus, the amplifica-
tion is caused by a combination of the external disturbance and the
two-dimensional Reynolds stress mechanism (also called the Orr
mechanism).34 For the perturbation in Fig. 11, M¼ I¼ 0, and so the
amplification is only due to W. In total, we have seen three kinds of
amplification mechanisms, which are more complicated than those in
channel flows.

FIG. 10. The perturbation fields corresponding to the response for the linear flow at Pr¼ 0.001, Ma¼ 1, Bi¼ 0, k¼ 0.3, and / ¼ 0�: (a) the input velocity field; (b) the output
velocity field; (c) the input temperature field; and (d) the output temperature field. The response is < ¼ 45:7 at x ¼ 0:183. The amplitudes of input are juj ¼ 2:8730,
jvj ¼ 0, jwj ¼ 0:2093, and jT j ¼ 9:7319, while the amplitudes of output are juj ¼ 168:4013, jvj ¼ 0, jwj ¼ 14:3955, and jT j ¼ 114:1777.

FIG. 11. The perturbation fields corresponding to the maximum response for the linear flow at Pr¼ 0.001, Ma¼ 1, Bi¼ 0, k¼ 0.3, and / ¼ 0�: (a) the input field and (b) the
output field. The maximum response is <max ¼ 53:7 at x ¼ 0:259. The amplitudes of input are juj ¼ 0, jvj ¼ 5:0585, jwj ¼ 0, and jT j ¼ 0, while the amplitudes of output
are juj ¼ 0, jvj ¼ 271:8655, jwj ¼ 0, and jT j ¼ 0.
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It seems from the energy analysis that the effect of Marangoni
force is only driving the basic flow for small Pr. However, we should
be aware of the particularity of the Marangoni effect on thermocapil-
lary liquid layers. Many free surface flows are susceptible to surface
deformations, while the surface of the thermocapillary liquid layer is
assumed to be non-deformable because of the surface tension. So there
is a restriction on its surface: w¼ 0. On the other hand, the thermoca-
pillary liquid layer has less constraint on the upper boundary than
channel flows, as the former could have horizontal velocity perturba-
tions on its surface. This boundary condition is crucial for the pertur-
bations in Figs. 9–12. We can see that the horizontal velocity near the
surface is amplified significantly, which is very important for <.
Specifically, in Figs. 10–12, the amplitude of output velocity appears
on the surface, which does not exist in channel flows. Therefore, it is
the particularity of the boundary condition in the thermocapillary liq-
uid layer that induces these kinds of perturbations with large
amplifications.

In thermocapillary liquid layers, the temperature field on the sur-
face has a negative effect on the hydrodynamic instability.48 The
increase in Bi reduces the temperature perturbation on the surface,
and so <max increases with the increase in Bi for small Pr in Fig. 4(f).
The amplification for small Pr decreases obviously with Pr in Fig. 4(e).
This can be seen from the following definitions: R ¼ qbcd2=l2,
Pr ¼ l=ðqvÞ. When l ! 0:1l and q ! 0:01q, we have R ! R,
Pr ! 10Pr, and � ¼ l=q ! 10�. This indicates that when R remains
constant, the increase in Pr corresponds to the increase in kinematic
viscosity, which can inhibit the hydrodynamic instability and stabilize
the flow.

For large Pr, the Reynolds numbers are only the order of 1 in
Fig. 5, which suggests that the amplification mechanism is not hydro-
dynamic. It can be seen from Table V that the work done by
Marangoni is far larger than the energy from the basic flow and the
external disturbance at large Pr. In addition, the importance of M
increases with Pr. Thus, the temperature field is crucial and the ampli-
fication is caused by the thermocapillary effect. The increase in Bi

FIG. 12. The perturbation fields corresponding to the maximum response for the return flow at Pr¼ 100, Ma¼ 300, Bi¼ 0, k¼ 2.5, and / ¼ 0�: (a) the input velocity field;
(b) the output velocity field; (c) the input temperature field; and (d) the output temperature field. The maximum response is <max ¼ 154:9 at x ¼ �0:162. The amplitudes of
input are juj ¼ 0:2989, jvj ¼ 0, jwj ¼ 0:0211, and jT j ¼ 3:7687, while the amplitudes of output are juj ¼ 8:9889, jvj ¼ 0, jwj ¼ 2:6798, and jT j ¼ 243:9798.

TABLE V. The terms in (21) for the most amplified disturbances. Cases 1–4 corre-
spond to Figs. 9–12, respectively.

Case 1 Case 2 Case 3 Case 4

Pr 0.001 0.001 0.001 100
N 0.004 957 0.022 860 0.015 860 14.13 579
M 0.000 067 0.000 179 0 14.12 762
I 0.004 636 0.008 825 0 0.003 297
W 0.000 254 0.013 857 0.015 860 0.004 873

TABLE VI. The terms of (23) for the perturbation in Fig. 9 at different positions.

ðy; zÞ
@u
@t w � DU0

� 1
R
r2u f inx

ð2:5; 0:3Þ −1.1416 2.0048 −0.8958 −0.0327
ð2:5; 0:7Þ −2.0137 2.0164 −0.0897 −0.0870
ð5:5; 0:3Þ 1.5112 −2.1983 0.7188 0.0317
ð5:5; 0:7Þ 2.6294 −3.1753 0.6330 0.0871
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reduces the temperature perturbation on the surface and leads to the
decrease in <max in Fig. 5(b). Smith50 found that the thermocapillary
instability in the liquid layer at large Pr is caused by the vertical heat
convection. When Pr increases, the convection becomes more impor-
tant in the heat transfer. Therefore, the amplification increases with Pr
in Fig. 5(a).

In Fig. 12(a), the input velocity and temperature are mainly dis-
tributed in the region near the surface, which makes the input energy
rather small. Meanwhile, the thermocapillary effect caused by input
temperature on the surface induces the counter-rotating vortices and
large temperature perturbations in the layer [see Fig. 12(b)]. Therefore,
the response function could achieve Oð100Þ. However, if the input field
becomes the initial perturbation in the evolution of transient growth,
the velocity gradient is very large near the surface, which leads to high
dissipation. Thus, there is no obvious transient growth at large Pr.48

The results in this paper demonstrate that the amplification of
external forcing is more obvious than that of initial disturbance. As the
transient growth function GðtÞ ¼ supwð0Þ6¼0 kwðtÞk2=kwð0Þk2,48
while the response function <ðxÞ ¼ maxH6¼0kwk=kHk; we should
compare j<ðxÞj2 with GðtÞ. For the linear flow at Pr¼ 0.001, Bi ¼0,
k¼ 3, / ¼ 90�, and Gmax ¼ maxt	0 GðtÞ ¼ 165:8, while j<maxj2
¼ 1:61� 106. Furthermore, <max could reach O(100) for a wide range
of wave numbers, while large transient growths Gmax �Oð100Þmainly
appear at k¼ 3 andu � 90�. In addition, we have shown several kinds
of amplification mechanisms for external excitations at small and large
Pr. On the contrary, the transient growth caused by the hydrodynamic
mechanism only occurs at small Pr.48 It seems that the thermocapillary
liquid layer is more sensitive to the background noise than to the initial
condition.

When the interface deformation is considered, there is less con-
straint on the surface, the flow can be destabilized. In addition, a new
kind of mode, namely, the surface wave, could be excited in the layer.52

As the surface-wave instability is most prominent at small Pr and
hydrodynamic in nature,5 we could expect that this destabilization
effect is more obvious at small Pr.

The heating of a liquid layer may produce evaporation. For a
weak evaporation, the basic flow is not obviously affected by the mass
flux on the surface. The increase in evaporation only leads to the
increase in heat exchange, which corresponds to a larger Bi. Therefore,
the amplification would be increased by the evaporation at small Pr,
while the opposite happens at large Pr. However, in the case of the
rapid evaporation, the experiment53 shows that the vapor recoil can
directly trigger the flow instability.

The liquid layer is similar to many thermocapillary-driven films,
such as the thermocapillary migration of droplet, which is placed on a
unidirectional heated solid surface and flattened by gravity,3,19 and
nanofluid films with flat interfaces.4,54,55 In addition, previous works
suggest that thermocapillary instabilities found in horizontal layers
also appear in cylindrical geometries, such as the liquid bridge of crys-
tal growth9 and the liquid jet of inkjet printing.2 Therefore, the distur-
bance amplification presented may also exist in the above cases. The
understanding of the amplification mechanism is useful for the stabil-
ity control in these applications.

V. CONCLUSION

We examine the responses to external excitations for thermoca-
pillary liquid layers by non-modal stability theory. In order to study

the maximum amplification of input signals, the response function <
is defined by the perturbation velocity and temperature. The results
show that there can be rather large amplifications in subcritical flows
at both small and large Prandtl numbers (Pr). The flow is more sensi-
tive to the external noise than to the initial disturbance.

For small Pr, the maximum response <max increases significantly
with both the Reynolds number R and the Biot number Bi, but
decreases with Pr. The optimal response occurs when the propagation
angle of perturbation / � 90� and the wave number is moderate
(k � 3 � 4). Large responses appear for a wide range of wave num-
bers, including the case of streamwise waves (b ¼ 0). The properties
of<max for the return flow and the linear flow are similar. The amplifi-
cation is due to a combination of the lift-up mechanism, Orr mecha-
nism, and external forcing.

For large Pr, < is very small for the linear flow. However, <max

could be Oð100Þ in subcritical return flows. In contrast to the case at
small Pr, <max increases with Pr but decreases with Bi. The optimal
response is achieved when the perturbation is a streamwise wave. The
variations of the frequency corresponding to <max with Pr, Bi, and R
are negligible. The amplification is attributed to the thermocapillary
effect.

Pseudospectra suggest that the resonance effect occurs when the
frequency of external excitation is close to the eigenvalue of the least
stable modes. The variations of R and Pr have little influence on the
outer contours of pseudospectra. When Pr increases, the least stable
mode changes from the stationary mode to the traveling wave, and the
area of inner contours in the upper half-plane slightly decreases for
small Pr.

For both small and large Pr, there are large amplifications for
both the velocity and the temperature. When / ¼ 90�, the input and
output flow fields are characterized by counter-rotating vortices and
streamwise streaks. When / ¼ 0�, there are two kinds of fields similar
to the Orr-Sommerfeld (OS) modes and Squire (SQ) modes in plane
shear flows.
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