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A B S T R A C T   

With the aim of modelling the energy dissipation phenomenon during the initiation and propa
gation of cracks, a novel cohesive fracture model is proposed in this study based on the multi- 
scale model of rocks and the Lennard-Jones potential between non-bonding molecules. The 
proposed model establishes the corresponding relationship of deformation in the multi-scale 
model of rocks and suggests that the fracture energy is essentially the manifestation of the 
transformation of deformation energy into potential energy between molecules. First, the multi- 
scale model of rocks is established based on the structural characteristics and fracture charac
teristics of rocks, and the corresponding relation of deformation at different scales is analysed. 
Thereafter, the force and potential energy equations of the cohesive fracture model corresponding 
to the tensile and shear processes are established. Finally, the accuracy of the cohesive fracture 
model is verified through three numerical simulations. The results indicate that the cohesive 
fracture model can accurately fit the theoretical values and experimental results in the Mode-I and 
Mode-II tests. In the uniaxial compression test, the cohesive fracture model can accurately 
simulate the uniaxial compressive strength and fracture pattern of rocks.   

1. Introduction 

Rocks, naturally formed by a long-term geological action, may be composed of cementing substances, mineral particles, and pores. 
Because rocks are abundantly found close to tunnels, mines, and slopes, scholars have conducted extensive research on the failure 
process of rocks [1–7]. Laboratory tests, theoretical analysis, and numerical simulation are the main methods to study the failure 
process of rocks. Based on the results of the laboratory tests on rocks, researchers have concluded that rocks exhibit complex 
constitutive characteristics and that the failure process of a rock is progressive under the action of an external load [8–10]. In addition, 
part of the deformation energy is dissipated during the initiation and propagation of cracks. Because acoustic emission (AE) has the 
advantages of dynamic real-time monitoring, non-destructive monitoring, and easy calibration of the damage position, AE has been 
widely used to obtain the crack information (for example: crack position and number of cracks) of rocks in laboratory tests [11–15]. To 
describe the complex constitutive characteristics of rocks more accurately, several scholars have proposed various theoretical 
constitutive models of rocks based on several theories (for example, statistical damage theory) [16–20]. 

With the rapid development of computer technology, many numerical simulation methods have been proposed to study the failure 
process of rocks. Because the basic theories of numerical simulation methods are different, these methods can be categorised into 
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continuum-based methods (such as finite element method (FEM) [21,22], boundary element method (BEM) [23,24], finite volume 
method (FVM) [25,26], cracking elements method (CEM) [27–29], and peridynamics (PD) [30–32]), discontinuum-based methods 
(such as discrete element method (DEM) [33–35], extended finite element method (XFEM) [36,37], and discontinuous deformation 
analysis (DDA) [38,39]), mesh-free methods (for example, smoothed particle hydrodynamics (SPH) [40,41], general particle dynamics 

Nomenclature 

wlj Lennard-Jones (L-J) potential 
r distance between two molecules 
ε0 depth of the L-J potential well 
r0 distance at which the L-J potential is zero 
Fvd van der Waals force 
re distance at which the L-J potential reaches the minimum 
rs distance at which Fvd reaches the maximum 
rd distance at which Fvd is zero 
β thickness ratio 
ω space occupancy ratio 
Sam boundary area occupied by molecules in actual model 
Sa boundary area in actual model 
Stm boundary area occupied by molecules in theoretical model 
St boundary area in theoretical model 
λ contact ratio 
GfI tensile fracture energy 
GfII shear fracture energy 
FL external load 
Nt

f number of molecules between adjacent layers during tensile process 
sm area of a molecule 
Wt tensile potential energy of rupture field 
Ft tensile force of rupture field 
Ws shear potential energy of rupture field 
Fs shear force of rupture field 
Ns

f number of molecules between adjacent layers during shear process 
Δrv increase in the normal distance 
Δru increase in the tangential distance 
σt tensile strength 
α crack ratio 
Sc area of the cracked interface 
Se area of the entire interface 
R specimen radius 
S distance between support points 
a0 initial crack length 
t initial crack width 
σs shear stress 
σn normal stress 
ü(t) acceleration vector 
u̇(t) velocity vector 
u(t) displacement vector 
M mass matrix 
C damping matrix 
K stiffness matrix 
F(t) vector of the external force 
Δσij element stress increment 
Δεij element strain increment 
Δθ element bulk strain increment 
K bulk modulus 
G shear modulus 
δij Kronecker symbol 
σij element trial stress 
σij-old element stress at the last time-step  
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(GPD) [42,43], cracking particle method (CPM) [44,45]) and coupled methods (such as FEM/DEM, FEM/DDA, and FEM/SPH) 
[46–50]. Based on these numerical simulation methods, scholars have conducted extensive analyses of the rock fracture process under 
different conditions [51–54]. 

To describe the initiation and propagation of cracks more accurately as well as characterise the fracture energy via numerical 
simulation, scholars have proposed several fracture models of rocks. Owing to its advantages of comprehensive theoretical knowledge, 
clear mechanical meaning, and convenience of implementation, the cohesive fracture model has attracted the attention of many 
scholars, and has been widely used to simulate the initiation and propagation of cracks in rocks. The cohesive fracture model was first 
proposed by Barenblatt (1959) and Dugdale (1960); Hillerborg et al. (1976) proposed the fictitious crack model that realises the 
simulation of the energy dissipation process during the fracture process [55–57]. In the cohesive fracture model, a rock is regarded as 
the assemblage of solid elements that are connected by the cohesive interface elements at the common boundaries. The cohesive 
interface elements provide the potential space for crack initiation and propagation, and they are assumed to be considerably thin. 
Based on the early theoretical knowledge, scholars have invested extensive efforts into developing the cohesive fracture model. To 
investigate the softening behaviour, several theoretical softening laws have been proposed, including bilinear, linear-parabolic, 
exponential, and trapezoidal [58]. 

Many scholars have studied the fracture process of rocks and rock-like materials based on the cohesive fracture model. Based on the 
cohesive crack propagation, Gálvez et al. [59] developed a numerical procedure for mixed-mode fracture of quasi-brittle materials, and 
found that the numerical results agreed well with the experimental results. To represent the random heterogeneous fracture properties, 
Yang et al. [60] developed a numerical method, wherein the potential cracks are represented by cohesive elements modelled by 
spatially varying the Weibull random fields. Wu et al. [61] established a user-defined material model with stochastic strengths to 
correspond to the cohesive fracture model, and the heterogeneity effect on the dynamic failure process and dynamic strength was 
studied. Zhou et al. [62] proposed the constitutive law of the rate-dependent cohesive model and verified the accuracy of the model by 
comparing the results with the experimental data obtained from the spall tests. Gui et al. [63] proposed a cohesive fracture model that 
could represent the tension, compression, and shear material behaviour, and three numerical simulations were conducted to verify the 
accuracy of the model. By introducing the mixed-mode cohesive traction response, Jiang et al. [64] investigated the rock fracture, 
penetration force, and chip shape during rock breaking using a conical pick. Nguyen et al. [65] established a novel cohesive model 
coupling damage mechanics based on the plasticity theory to characterise the failure mechanism of cement bridges, and they studied 
the influence of specimen geometries on the fracture toughness in a semi-circular bending test. The cohesive fracture model enables 
scholars to understand the fracture process of rocks extensively. 

However, the current research on the rock fracture process has two main limitations. First, the theoretical analysis conducted to 
study the energy dissipation mechanism during the initiation and propagation process of cracks, is insufficient. Second, although 
several cohesive fracture models have been proposed, in the most commonly used model, it is generally considered that the cohesive 
force decreases linearly as the crack opening displacement increases in the softening stage, and the cohesive force increases linearly as 
the crack opening displacement increases before the cohesive force reaches the maximum value. The underlying reason for this 
changing trend is not appropriately discussed. 

Based on the multi-scale model of rocks and the Lennard-Jones potential between non-bonding molecules, this study aims to 
investigate the energy dissipation mechanism during the initiation and propagation process of cracks and establish the force and 
potential energy equations for the novel cohesive fracture model. 

The rest of this paper is organised as follows. In Section 2, the multi-scale model of rocks and the Lennard-Jones potential are 
introduced, and some key parameters are defined. In Section 3, the force and potential energy equations of the novel cohesive fracture 
model in the tensile and shear processes are established. In Section 4, the accuracy of the cohesive fracture model is verified through 
three numerical simulations, namely Mode-I test, Mode-II test, and uniaxial compression test. 

2. Theoretical background 

2.1. Lennard-Jones potential 

The neutral molecules are subjected to two different forces within the short-distance and long- distance ranges: an attractive force 
at a long distance and a repulsive force at a short distance. The Lennard-Jones potential proposed by John Lennard-Jones represents a 
simple mathematical model that describes the potential energy of the interaction between two non-bonding molecules based on the 
separation distance. The formula is shown in Eq. (1), wherein the term (1

r)
12 denotes the repulsive force and the term (1

r)
6 denotes the 

attractive force. 

wlj = 4ε0[(
r0

r
)

12
− (

r0

r
)

6
] (1)  

where wlj denotes the Lennard-Jones potential between two non-bonding molecules, r denotes the separation distance between two 
non-bonding molecules, ε0 denotes the depth of the potential well and a measure of the strength of the attractive force between the two 
molecules, and r0 denotes the finite distance at which the intermolecular potential energy between two non-bonding molecules is zero. 

The van der Waals force is equal to the negative gradient value of the Lennard-Jones potential, and is represented by the following 
equation: 
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Fvd = −
dwlj

dr
=

24ε0

r0
[
2r13

0

r13 −
r7

0

r7] (2) 

The curves corresponding to the change in the Lennard-Jones potential wlj and van der Waals force Fvd are plotted in Fig. 1. It can be 
observed that the repulsive force dominates at a short distance, whereas the attractive force dominates at a long distance. Based on the 
changing trends of wlj and Fvd, it can be observed that there are several eigen values of r. When r = r0, the Lennard-Jones potential wlj is 
equal to zero. When r = re, the van der Waals force Fvd is equal to zero, and the Lennard-Jones potential wlj attains the minimum value 
wmin. When r = rs, the van der Waals force Fvd attains the maximum value Fmax. When r = rd, it is regarded that there is no interaction 
between two non-bonding molecules, and the Lennard-Jones potential wlj and van der Waals force Fvd are equal to zero; re =

̅̅̅
26

√
r0, rs =

̅̅̅̅
26
7

6
√

r0, and rd = 5r0. 

2.2. Multi-scale model 

As an important model in mechanical analysis, the representative volume element (RVE) is characterised by being “infinity small at 
the macro-scale, and infinity large at the micro-scale”. Therefore, it can characterise both the complex mechanical characteristics as 
well as the complex structural characteristics of rocks. The initiation and propagation process of cracks in a rock under an external load 
is plotted in Fig. 2. From Fig. 2(a), it can be observed that the RVE of the rock is composed of mineral particles, cementing substances, 
and pores. Initially, during loading, no crack occurs because the stress is small. As the loading duration increases, the stress gradually 
increases, and some cracks (denoted by the red solid lines) gradually appear at certain regions with a weak bearing strength (as 
depicted in Fig. 2(b)). Because the strength of a mineral particle is considerably stronger than that of a cementing substance, cracks 
mainly occur at the cementing substance between the mineral particles [66]. With the continuous increase in stress, the cracks 
gradually propagate, and eventually, a penetrative crack appears in the RVE (Fig. 2(c)). In the initiation and propagation process of 
cracks, the deformation energy is partially dissipated, which is defined as the fracture energy. 

In comparison with the size of the RVE, the size of the crack is significantly small. Therefore, based on the structural characteristics 
and fracture characteristics of rocks, a multi-scale model of rocks, composed of RVE scale, particle scale, and molecular scale, is 
proposed to study the energy dissipation mechanism. 

RVE scale is the basic scale for describing the complex mechanical characteristics and structural characteristics of rocks. However, 
the initiation and propagation process of cracks and energy dissipation mechanism cannot be studied at this scale. 

Particle scale is the basic scale for describing the initiation and propagation process of cracks. Pores, cementing substances, and 
mineral particles coexist at this scale, and cracks occur at the cementing substance between the mineral particles. The bearing strength 
of the RVE scale can be reflected by this scale; however, the energy dissipation mechanism cannot be studied at this scale. 

Molecular scale is the basic scale for studying the energy dissipation mechanism. It is assumed that the cementing substance be
tween the mineral particles is composed of a large number of non-bonding molecules. The potential energy between the molecules can 
be described as the Lennard-Jones potential, and the force between the molecules can be described as the van der Waals force. 

In the multi-scale model of rocks, each scale represents the different characteristics of rocks. The RVE scale describes the complex 
mechanical characteristics and structural characteristics of rocks. The particle scale describes the initiation and propagation process of 
cracks in the rocks. The molecular scale describes the energy dissipation mechanism in the initiation and propagation process of cracks. 

From Fig. 2, it can be observed that there are no cracks in the rocks initially during loading, implying that some mechanical 
quantities (for example, displacement) are continuously distributed. Therefore, the rock without cracks can be regarded as a 
continuous medium. With the initiation of microcracks and the appearance of penetrative cracks, the rock presents obvious discon
tinuous characteristics, and the rock with cracks can be regarded as the discontinuous medium. Therefore, it can be determined that 
the rock changes from a continuous medium to a discontinuous medium during the initiation and propagation process of cracks. Based 
on the multi-scale model and fracture process of rocks, it is proposed that the study field is composed of continuous and rupture fields. 
There exist no cracks in the continuous field, and the mechanical quantities remain continuous. The space occupied by cracks in the 

Fig. 1. Curves corresponding to the change in the Lennard-Jones potential wlj and van der Waals force Fvd.  
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rock represents the rupture field, and the deformation energy is dissipated in this field. Because the opening displacement of cracks is 
considerably small, the rupture field can be regarded as infinitely small in comparison with the continuous field. 

The schematic diagrams of the continuous and rupture fields are plotted in Fig. 3. In Fig. 3(a), the grey area indicates the continuous 
field, and the blue line indicates the rupture field. The local schematic diagram of the rupture field (that is, the actual model of the 
rupture field) is plotted in Fig. 3(b). It can be observed that there is a crack (denoted by the red line) in the rupture field, and the crack 
opening displacement can be regarded as infinitely small. Based on the microstructure of the rock, it can be determined that the crack 
exists at the cementing substance. Therefore, it is assumed that the rupture field includes crack and cementing substances on both sides 
of the cracks. In addition, it can be observed that the crack in the rupture field is not continuous due to the existence of pores. To 
simplify the theoretical analysis, only the cementing substance within a certain thickness on both sides of the cracks is selected to 
establish the theoretical model of the rupture field, as illustrated in Fig. 3(c). 

Based on the multi-scale model of the rock and the theoretical model of the rupture field, the variations in the force and potential 
energy in the rupture field are studied theoretically. Three basic hypotheses are proposed first.  

(1) The cementing substance of the rupture field at the particle scale is considered to be composed of a large number of neutral 
molecules at the molecular scale. The intermolecular potential energy can be defined as the Lennard-Jones potential, and the 
intermolecular force can be defined as the van der Waals force. In addition, the molecules are not closely arranged at the rupture 
field boundary.  

(2) Based on the characteristic of the Lennard-Jones potential, it is proposed that the breakage between the molecules at the 
molecular scale can be determined based on the intermolecular distance. Once the intermolecular distance reaches rd, a 
breakage between the molecules occurs, and the intermolecular potential energy and force become zero.  

(3) There exists no shear force between the molecules at the molecular scale; therefore, the tensile strength and shear strength 
between the particles at the particle scale are both produced by the van der Waals force between the molecules at the molecular 
scale. 

The corresponding relation of deformation in the multi-scale model of the rock is plotted in Fig. 4. When the external load FL is 
applied at the boundary of the RVE, deformation occurs at any position in the RVE. The deformation at the RVE scale causes an increase 
in the distance between the mineral particles (denoted by the red dotted line in Fig. 4(a)), and it is determined that the increase in the 
distance between the mineral particles is equal to the strain at the RVE scale multiplied by the initial distance between the mineral 
particles. In addition, the bearing strength of the particle contact surface at the particle scale is closely related to the bearing strength at 
the RVE scale. Because there exists a cementing substance between the mineral particles, with the increase in the distance between the 
mineral particles, the cementing substance deforms and prevents the particles from separating. Based on the basic hypothesis 1 
mentioned above, it can be concluded that the separation of mineral particles at the particle scale results in an increase in the 

(a) Intact RVE (b) Gradual occurrence of cracks (c) Penetrative cracks

Fig. 2. Initiation and propagation process of cracks.  

(a) Entire rupture field (b) Actual model (c) Theoretical model 

Fig. 3. Schematic diagram of continuous field and rupture field.  
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intermolecular distance at the molecule scale. Moreover, the increase in the distance between the mineral particles at the particle scale 
is equal to the cumulative value of the increase in the intermolecular distance at the molecular scale. Once the intermolecular distance 
reaches rd, the breakage between the molecules occurs, indicating the occurrence of cracks. As a result, the rupture field is observed, 
and the rock changes from a continuous medium to a discontinuous medium. 

In addition, it is known that the potential energy between the molecules is at its minimum at the initial loading. As the deformation 
of the cementing substance between the mineral particles increases at the particle scale, the intermolecular distance increases at the 
molecular scale, causing an increase in the potential energy between the molecules. When a crack occurs, the potential energy between 
the molecules reaches its maximum. Therefore, based on the multi-scale model of the rock, it can be concluded that the deformation 
energy of the continuous field is partially transformed into the potential energy between the molecules in the rupture field, and the 
increase in the potential energy is equal to the fracture energy. 

Based on the analysis of deformation in the multi-scale model of the rock, three important conclusions are drawn:  

(1) The increase in the distance between the mineral particles is equal to the strain at the RVE scale multiplied by the initial distance 
between the mineral particles.  

(2) The increase in the distance between the mineral particles at the particle scale is equal to the cumulative value of the increase in 
the intermolecular distance at the molecular scale.  

(3) The essence of fracture energy is the transformation of the deformation energy of the continuous field into the potential energy 
between the molecules in the rupture field. 

2.3. Key parameters 

To establish the force expression and potential energy expression of the rupture field, certain key parameters are first defined. 

2.3.1. Thickness ratio β 
In the actual model of the rupture field, it is assumed that the rupture field includes cracks and cementing substances on both sides 

of the cracks. In contrast, in the theoretical model, to simplify the theoretical analysis, it is assumed that the rupture field includes 
cracks and cementing substances within a certain thickness on both sides of the cracks. Therefore, it can be observed that the thickness 
of the cementing substance in the actual model of the rupture field is greater than that in the theoretical model of the rupture field. The 
thickness of the cementing substance in the actual model is defined as Ha, and the thickness of the cementing substance in the 
theoretical model is defined as Ht. According to the Lennard-Jones potential characteristic, it is assumed that the cementing substance 
of the rupture field is composed of 11 molecular layers in the theoretical model. However, the number of molecular layers contained in 
the cementing substance of the rupture field should be larger than 11 in the actual model. To quantify the corresponding relationship 
between Ha and Ht, the thickness ratio β, a dimensionless index, is proposed, and is written as follows: 

β =
Ha

Ht
(3) 

Because it is assumed that the thickness ratio of the cementing substance is equal to the number ratio of molecular layers contained 
in the cementing substance, the number of molecular layers in the actual model of the rupture field is equal to 11β. 

2.3.2. Space occupancy ratio ω 
In both the actual model and theoretical model of the rupture field, the boundary area of the rupture field includes the area of the 

pores and the area of the cementing substance. Because the molecules are not closely arranged at the rupture field boundary, the area 

(a) Deformation at particle scale (b) Deformation at molecular scale
Fig. 4. Corresponding relation of deformation in multi-scale model.  
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actually occupied by the molecules at the rupture field boundary is not equal to the entire boundary area of the rupture field. To 
characterise the boundary area actually occupied by the molecules, the space occupancy ratio ω is proposed, and is expressed as 
follows: 

ω =
Sam

Sa
=

Stm

St
(4)  

where Sam denotes the boundary area occupied by the molecules in the actual model, Stm denotes the boundary area occupied by the 
molecules in the theoretical model, Sa denotes the boundary area of the rupture field in the actual model, and St denotes the boundary 
area of the rupture field in the theoretical model. 

Once the value of ω is known, the boundary area actually occupied by the molecules (Sam and Stm) can be obtained. 

2.3.3. Contact ratio λ 
For two adjacent molecular layers at the molecular scale, it can be determined that the number of molecules possessing inter

molecular force is equal to the number of molecules in the molecular layer during the tensile process. However, owing to the tangential 
change in the spatial position during the shear process, new intermolecular forces may be experienced by the molecules that did not 
originally possess intermolecular forces. Therefore, contact ratio λ is proposed to quantify the increase in the number of molecules 
possessing intermolecular force during the shear process. λ is determined by the shear fracture energy GfII and tensile fracture energy 
GfI, and is defined as follows: 

λ =
GfII

GfI
(5)  

3. Methodology 

In this section, the force and potential energy equations are established during the tensile process and shear process, respectively, 
based on the change in the molecular distance at the molecular scale. 

3.1. Theoretical analysis of tensile process 

3.1.1. Research background 
Based on the multi-scale model of the rock, the change in the position of molecules at the molecular scale during the tensile process 

is plotted in Fig. 5. When the external load FL is applied at the boundary of the RVE, the cementing substance between the mineral 
particles (denoted by the red dotted line in Fig. 5(a)) facilitates tensile deformation. Because the cementing substance is composed of a 
large number of molecules, the initial position of the molecules is depicted in Fig. 5(b). As the cementing substance facilitates tensile 
deformation, the distance between the molecules increases; the current position of the molecules is depicted in Fig. 5(c). Once the 
distance between the molecules becomes equal to rd, cracks gradually begin to appear. Based on the Lennard-Jones potential and van 
der Waals force between the non-bonding molecules, the variations in the potential energy and tensile force in the rupture field, from 
the initial moment of loading to the appearance of cracks, are studied. 

Initially, based on the change in the molecular position during the tensile process, two hypotheses are proposed:  

(1) The intermolecular distance between the adjacent molecular layers is uniformly distributed from rmin to rmax at the initial 
moment of loading, and the increase in the intermolecular distance between the adjacent molecular layers is equal under the 
external load FL. 

noitisoptnerruC)c(noitisoplaitinI)b(EVR)a(

Fig. 5. Change in position of molecules at the molecular scale.  
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(2) The total force between the adjacent molecular layers is equal to the cumulative value of the intermolecular force, which is 
equal to zero at the initial moment of loading. 

3.1.2. Distributed distance 
The number of molecules Nt

f at the rupture field boundary (that is, the number of molecules in each molecular layer) in the 
theoretical model is first determined, and is defined as 

N t
f =

Stω
sm

(6)  

where sm denotes the area occupied by a molecule. 
Because the intermolecular distance between the adjacent molecular layers is uniformly distributed from rmin to rmax at the initial 

moment of loading and the total force between the adjacent molecular layers is equal to zero, it is expressed as follows: 
∫ rmax

rmin

Fvd(r)
Nt

f

rmax − rmin
dr = 0 (7) 

Substituting Eq. (2) and Eq. (6) into Eq. (7) finally yields 

r12
0

r12
min

−
r6

0

r6
min

−
r12

0

r12
max

+
r6

0

r6
max

= 0 (8) 

Assuming r6
0

r6
min

= A and r6
0

r6
max

= B, Eq. (8) can be rewritten as 

A2 − A − (B2 − B) = 0 (9) 

Assuming A2-A = B2-B = c, it can be concluded that A and B are two solutions of x2-x = c: 

A =
1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4c

√

2
and B =

1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4c

√

2
(10) 

Therefore, rmin and rmax are written as 

rmin =

̅̅̅
1
A

6

√

r0 and rmax =

̅̅̅
1
B

6

√

r0 (11) 

The intermolecular distance between the adjacent molecular layers is in the range of [rmin, rmax], and increases under the external 
load FL. It is assumed that the increase in the distance between any pair of molecules is Δrv; therefore, the intermolecular distance 
approximately increases within the range of rmin + Δrv to rmax + Δrv. 

3.1.3. Potential energy equation 
Because it is assumed that the cementing substance is composed of 11 molecular layers in the theoretical model of the rupture field, 

the potential energy of the entire rupture field is composed of the potential energy between any two molecular layers. The two mo
lecular layers may be adjacent or separated by 1–4 molecular layers. The potential energy expression between two molecular layers 
under different conditions is analysed as follows. 

For two molecular layers that are adjacent, the intermolecular distance is uniformly distributed in the range of rmin + Δrv to rmax +

Δrv, and the potential energy Wt0 is expressed as 

Wt0 =

∫ rmax+△rv

rmin+△rv

4ε0(
r12

0

r12 −
r6

0

r6)
N t

f

(rmax + △rv) − (rmin + △rv)
dr

=
4ε0N t

f

rmax − rmin

∫ rmax+△rv

rmin+△rv

(
r12

0

r12 −
r6

0

r6)dr

=
4ε0N t

f

rmax − rmin
[

1
11

(
r12

0

(rmin + △rv)
11 −

r12
0

(rmax + △rv)
11) +

1
5
(

r6
0

(rmax + △rv)
5 −

r6
0

(rmin + △rv)
5)]

(12) 

For two molecular layers that are separated by one molecular layer, the intermolecular distance between the two layers is uniformly 
distributed in the range of re + rmin + 2Δrv to re + rmax + 2Δrv, and the potential energy Wt1 is expressed as 

Q. Lin et al.                                                                                                                                                                                                             
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Wt1 =

∫ re+rmax + 2Δrv

re+rmin + 2Δrv

4ε0(
r12

0

r12 −
r6

0

r6)
N t

f

(re + rmax + 2Δrv) − (re + rmin + 2Δrv)
dr

=
4ε0N t

f

rmax − rmin

∫ re+rmax + 2Δrv

re+rmin + 2Δrv

(
r12

0

r12 −
r6

0

r6)dr

=
4ε0N t

f

rmax − rmin
[

1
11

(
r12

0

(re + rmin + 2Δrv)
11 −

r12
0

(re + rmax + 2Δrv)
11) +

1
5
(

r6
0

(re + rmax + 2Δrv)
5 −

r6
0

(re + rmin + 2Δrv)
5)]

(13) 

For two molecular layers that are separated by two molecular layers in between, the intermolecular distance between these two 
layers is uniformly distributed in the range of 2re + rmin + 3Δrv to 2re + rmax + 3Δrv, and the potential energy Wt2 is expressed as 

Wt2 =

∫ 2re+rmax + 3Δrv

2re+rmin + 3Δrv

4ε0(
r12

0

r12 −
r6

0

r6)
N t

f

(2re + rmax + 3Δrv) − (2re + rmax + 3Δrv)
dr

=
4ε0Nt

f

rmax − rmin

∫ 2re+rmax + 3Δrv

2re+rmin + 3Δrv

(
r12

0

r12 −
r6

0

r6)dr

=
4ε0N t

f

rmax − rmin
[

1
11

(
r12

0

(2re + rmin + 3Δrv)
11 −

r12
0

(2re + rmax + 3Δrv)
11) +

1
5
(

r6
0

(2re + rmax + 3Δrv)
5 −

r6
0

(2re + rmin + 3Δrv)
5)]

(14) 

Similarly, the potential energy Wt3 between two molecular layers that are separated by three molecular layers and the potential 
energy Wt4 between two molecular layers that are separated by four molecular layers are expressed as follows: 

Wt3 =
4ε0N t

f

rmax − rmin
[

1
11

(
r12

0

(3re + rmin + 4Δrv)
11 −

r12
0

(3re + rmax + 4Δrv)
11) +

1
5
(

r6
0

(3re + rmax + 4Δrv)
5 −

r6
0

(3re + rmin + 4Δrv)
5)] (15) 

and 

Wt4 =
4ε0N t

f

rmax − rmin
[

1
11

(
r12

0

(4re + rmin + 5Δrv)
11 −

r12
0

(4re + rmax + 5Δrv)
11) +

1
5
(

r6
0

(4re + rmax + 5Δrv)
5 −

r6
0

(4re + rmin + 5Δrv)
5)] (16) 

Based on Eqs. (12)–(16) and the corresponding relation between the actual and theoretical models of the rupture field, the potential 
energy of the entire rupture field in the actual model is written as 

Wt =
4ε0N t

fβ
rmax − rmin

{10×[
1
11

(
r12

0

(rmin + △rv)
11 −

r12
0

(rmax + △rv)
11) +

1
5
(

r6
0

(rmax + △rv)
5 −

r6
0

(rmin + △rv)
5)]

+9 × [
1
11

(
r12

0

(re + rmin + 2 △ rv)
11 −

r12
0

(re + rmax + 2 △ rv)
11) +

1
5
(

r6
0

(re + rmax + 2 △ rv)
5 −

r6
0

(re + rmin + 2 △ rv)
5)]

+8 × [
1
11

(
r12

0

(2re + rmin + 3 △ rv)
11 −

r12
0

(2re + rmax + 3 △ rv)
11) +

1
5
(

r6
0

(2re + rmax + 3 △ rv)
5 −

r6
0

(2re + rmin + 3 △ rv)
5)]

+7 × [
1
11

(
r12

0

(3re + rmin + 4 △ rv)
11 −

r12
0

(3re + rmax + 4 △ rv)
11) +

1
5
(

r6
0

(3re + rmax + 4 △ rv)
5 −

r6
0

(3re + rmin + 4 △ rv)
5)]

+6 × [
1
11

(
r12

0

(4re + rmin + 5 △ rv)
11 −

r12
0

(4re + rmax + 5 △ rv)
11) +

1
5
(

r6
0

(4re + rmax + 5 △ rv)
5 −

r6
0

(4re + rmin + 5 △ rv)
5)]}

(17) 

With the increase in Δrv, Wt gradually increases, and when Δrv reaches rd-re, the intermolecular potential energy becomes zero. 
Therefore, when Δrv is equal to zero, Wt attains the minimum value, and the absolute value is equal to the tensile fracture energy GfI. 
This relationship is represented by the following equation: 

|Wt| |△rv = 0 = GfI (18)  

3.1.4. Equation of force 
Based on the characteristics of the Lennard-Jones potential and van der Waals force, it can be concluded that the outermost 

molecular layer of the rupture field in the theoretical model bears the intermolecular force from other layers. These two molecular 
layers may be adjacent or separated by 1–4 molecular layers. The force equation between two molecular layers under different 
conditions is analysed as follows. 

For two molecular layers that are adjacent, the intermolecular distance is uniformly distributed from rmin + Δrv to rmax + Δrv, and 
the force Ft0 is expressed as 

Q. Lin et al.                                                                                                                                                                                                             
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Ft0 =

∫ rmax+Δrv

rmin+Δrv

24ε0

r0
(
2r13

0

r13 −
r7

0

r7)
N t

f

(rmax + Δrv) − (rmin + Δrv)
dr

=
24ε0

r0

Nt
f

rmax − rmin

∫ rmax+Δrv

rmin+Δrv

(
2r13

0

r13 −
r7

0

r7)dr

=
4ε0N t

f

rmax − rmin
[(

− r12
0

(rmax + Δrv)
12 +

r12
0

(rmin + Δrv)
12) − (

− r6
0

(rmax + Δrv)
6 +

r6
0

(rmin + Δrv)
6)]

(19) 

For two molecular layers that are separated by one molecular layer, the intermolecular distance between the two layers is uniformly 
distributed from re + rmin + 2Δrv to re + rmax + 2Δrv, and the force Ft1 is expressed as 

Ft1 =

∫ re+rmax+2Δrv

re+rmin+2Δrv

24ε0

r0
(
2r13

0

r13 −
r7

0

r7)
N t

f

(re + rmax + 2Δrv)− (re + rmin + 2Δrv)
dr

=
24ε0

r0

Nt
f

rmax − rmin

∫ re+rmax+2Δrv

re+rmin+2Δrv

(
2r13

0

r13 −
r7

0

r7)dr

=
4ε0N t

f

rmax − rmin
[(

− r12
0

(re + rmax + 2Δrv)
12 +

r12
0

(re + rmin + 2Δrv)
12) − (

− r6
0

(re + rmax + 2Δrv)
6 +

r6
0

(re + rmin + 2Δrv)
6)]

(20) 

For two molecular layers that are separated by two molecular layers in between, the intermolecular distance between the two layers 
is uniformly distributed from 2re + rmin + 3Δrv to 2re + rmax + 3Δrv, and the force Ft2 is expressed as 

Ft2 =

∫ 2re+rmax+3Δrv

2re+rmin+3Δrv

24ε0

r0
(
2r13

0

r13 −
r7

0

r7)
N t

f

(2re + rmax + 3Δrv) − (2re + rmin + 3Δrv)
dr

=
24ε0

r0

N t
f

rmax − rmin

∫ 2re+rmax+3Δrv

2re+rmin+3Δrv

(
2r13

0

r13 −
r7

0

r7)dr

=
4ε0N t

f

rmax − rmin
[(

− r12
0

(2re + rmax + 3Δrv)
12 +

r12
0

(2re + rmin + 3Δrv)
12) − (

− r6
0

(2re + rmax + 3Δrv)
6 +

r6
0

(2re + rmin + 3Δrv)
6)]

(21) 

Similarly, the force Ft3 between two molecular layers that are separated by three molecular layers and the force Ft4 between two 
molecular layers that are separated by four molecular layers are expressed as 

Ft3 =
4ε0N t

f

rmax − rmin
[(

− r12
0

(3re + rmax + 4Δrv)
12 +

r12
0

(3re + rmin + 4Δrv)
12) − (

− r6
0

(3re + rmax + 4Δrv)
6 +

r6
0

(3re + rmin + 4Δrv)
6)] (22) 

and 

Ft4 =
4ε0N t

f

rmax − rmin
[(

− r12
0

(4re + rmax + 5Δrv)
12 +

r12
0

(4re + rmin + 5Δrv)
12) − (

− r6
0

(4re + rmax + 5Δrv)
6 +

r6
0

(4re + rmin + 5Δrv)
6)] (23) 

Based on Eqs. (19)–(23) and the corresponding relation between the actual and theoretical models of the rupture field, the force of 
the entire rupture field in the actual model is expressed as 

Ft =
4ε0N t

f

rmax − rmin
{[(

− r12
0

(rmax + Δrv)
12 +

r12
0

(rmin + Δrv)
12) − (

− r6
0

(rmax + Δrv)
6 +

r6
0

(rmin + Δrv)
6)]

+[(
− r12

0

(re + rmax + 2Δrv)
12 +

r12
0

(re + rmin + 2Δrv)
12) − (

− r6
0

(re + rmax + 2Δrv)
6 +

r6
0

(re + rmin + 2Δrv)
6)]

+[(
− r12

0

(2re + rmax + 3Δrv)
12 +

r12
0

(2re + rmin + 3Δrv)
12) − (

− r6
0

(2re + rmax + 3Δrv)
6 +

r6
0

(2re + rmin + 3Δrv)
6)]

+[(
− r12

0

(3re + rmax + 4Δrv)
12 +

r12
0

(3re + rmin + 4Δrv)
12) − (

− r6
0

(3re + rmax + 4Δrv)
6 +

r6
0

(3re + rmin + 4Δrv)
6)]

+[(
− r12

0

(4re + rmax + 5Δrv)
12 +

r12
0

(4re + rmin + 5Δrv)
12) − (

− r6
0

(4re + rmax + 5Δrv)
6 +

r6
0

(4re + rmin + 5Δrv)
6)]}

(24) 

Ft is negative and positive for tensile force and compressive force, respectively. When Δrv gradually increases from zero, the ab
solute value of Ft increases initially and subsequently decreases. When Δrv = rs-re, the absolute value of Ft attains the maximum value, 
and it is equal to the value of the tensile strength σt. Therefore, Ft is expressed as 

|Ft| |△rv=rs − re
= σt (25) 
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3.2. Theoretical analysis of shear 

3.2.1. Research background 
Based on the multi-scale model of the rock, the change in the position of molecules at the molecular scale during the shear process is 

plotted in Fig. 6. When the external load FL is applied at the boundary of the RVE, the cementing substance between the mineral 
particles (denoted by the red dotted line in Fig. 6(a)) facilitates shear deformation. The cementing substance is composed of a large 
number of molecules, and the initial position of the molecules is depicted in Fig. 6(b). As the cementing substance facilitates shear 
deformation, the tangential distance between the molecules increases; the current position of the molecules is depicted in Fig. 6(c). 
Once the distance between the molecules reaches rd, cracks gradually begin to appear. Based on the Lennard-Jones potential and van 
der Waals force, the changes in the potential energy and shear force in the rupture field from the initial moment of loading to the 
appearance of cracks, are studied. 

Based on the change in the molecular position during the shear process, two hypotheses are proposed:  

(1) During the shear process, the tangential increase in the intermolecular distance between the adjacent molecular layers is equal 
under the external load FL.  

(2) The total force between the adjacent molecular layers is equal to the cumulative value of the intermolecular force, which is 
equal to zero at the initial moment of loading. 

3.2.2. Distributed distance 
For two adjacent molecular layers at the molecular scale, new intermolecular forces may be experienced by the molecules that 

originally did not possess intermolecular forces because of the tangential change in the spatial position during the shear process. 
Therefore, the contact ratio λ is proposed to quantify the increase in the number of molecules possessing the intermolecular force 
during the shear process. Based on the number of molecules at the rupture field boundary and contact ratio λ, the number of molecules 
Ns

f possessing intermolecular force between the adjacent molecular layers during the shear process is defined as 

Ns
f =

Stωλ
sm

(26) 

It is assumed that the intermolecular distance between the adjacent molecular layers is uniformly distributed from rmin to rmax at the 
initial moment of loading in Section 3.1.2. However, to simplify the force and potential energy equations during the shear process, it is 
assumed that the intermolecular distance between the adjacent molecular layers is equal to re at the initial moment of loading. Under 
this distribution condition, the total force between the adjacent molecular layers is still zero, which is consistent with the value when 
the intermolecular distance is uniformly distributed from rmin to rmax. However, once the intermolecular distance becomes equal to re, 
the potential energy between the adjacent molecular layers becomes greater than that under the uniform distribution of rmin–rmax. 
Therefore, a dimensionless coefficient η is proposed, and is defined as 

η =
wlj(re)Ns

f
∫ rmax

rmin
wlj(r)

Ns
f

rmax − rmin
dr

≈ 1.2566 (27) 

When the expressions of the potential energy and force are obtained under the condition wherein the intermolecular distance is re, 
the potential energy and force should be divided by η. 

The change in the spatial position of two molecules in adjacent molecular layers during the shear process is plotted in Fig. 7. Fig. 7 
(a) illustrates the initial position of two molecules, and it can be observed that the vertical position difference is re and the tangential 
position difference is zero. When shear deformation occurs, the current position of the two molecules is plotted in Fig. 7(b). It can be 
observed that the vertical position difference is still re, and the tangential position difference is Δru. The distance r between molecule A′

and molecule B′ is equal to 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
e + (△ru)

2
√

. 

(a) RVE (b) Initial position (c) Current position

Fig. 6. Change in the position of molecules at the molecular scale.  
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3.2.3. Potential energy expression 
Because it is assumed that the cementing substance is composed of 11 molecular layers in the theoretical model of the rupture field, 

the potential energy of the entire rupture field is composed of the potential energy between any two molecular layers. The two mo
lecular layers may be adjacent or separated by 1–4 molecular layers. The potential energy relationship between two molecular layers 
under different conditions is analysed as follows. 

For two molecular layers that are adjacent, the vertical intermolecular distance is re, and the potential energy Ws0 is expressed as 

Ws0 =
4ε0Ns

f

1.2566
[(

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
e + (△ru)

2
√ )

12
− (

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
e + (△ru)

2
√ )

6
] (28) 

For two molecular layers that are separated by one molecular layer, the vertical intermolecular distance is 2re, and the potential 
energy Ws1 is expressed as 

Ws1 =
4ε0Ns

f

1.2566
[(

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2re)
2
+ (2 △ ru)

2
√ )

12
− (

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2re)
2
+ (2 △ ru)

2
√ )

6
] (29) 

For two molecular layers that are separated by two molecular layers, the vertical intermolecular distance is 3re, and the potential 
energy Ws2 is expressed as 

Ws2 =
4ε0Ns

f

1.2566
[(

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(3re)
2
+ (3 △ ru)

2
√ )

12
− (

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(3re)
2
+ (3 △ ru)

2
√ )

6
] (30) 

Similarly, the potential energy Ws3 between two molecular layers that are separated by three molecular layers and the potential 
energy Ws4 between two molecular layers that are separated by four molecular layers are expressed as 

Ws3 =
4ε0Ns

f

1.2566
[(

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(4re)
2
+ (4 △ ru)

2
√ )

12
− (

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(4re)
2
+ (4 △ ru)

2
√ )

6
] (31) 

and 

Ws4 =
4ε0Ns

f

1.2566
[(

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(5re)
2
+ (5 △ ru)

2
√ )

12
− (

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(5re)
2
+ (5 △ ru)

2
√ )

6
] (32) 

Based on Eqs. (28)–(32) and the corresponding relationship between the actual and theoretical models of the rupture field, the 
potential energy of the entire rupture field in the actual model is expressed as 

Ws =
4ε0Ns

f β
1.2566

{10×[(
r0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
e + (△ru)

2
√ )

12
− (

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
e + (△ru)

2
√ )

6
]

+9 × [(
r0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2re)
2
+ (2 △ ru)

2
√ )

12
− (

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2re)
2
+ (2 △ ru)

2
√ )

6
] + 8 × [(

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(3re)
2
+ (3 △ ru)

2
√ )

12
− (

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(3re)
2
+ (3 △ ru)

2
√ )

6
]

+7 × [(
r0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(4re)
2
+ (4 △ ru)

2
√ )

12
− (

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(4re)
2
+ (4 △ ru)

2
√ )

6
] + 6 × [(

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(5re)
2
+ (5 △ ru)

2
√ )

12
− (

r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(5re)
2
+ (5 △ ru)

2
√ )

6
]}

(33) 

When Δru is equal to zero, Ws attains the minimum value, and the absolute value is equal to the shear fracture energy GfII. This 
relationship is expressed as 

(a) Initial position (b) Current position

Fig. 7. Change in the spatial position of two molecules during the shear process.  
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|Ws| |△ru = 0 = GfII (34)  

3.2.4. Equation of force 
Based on the characteristics of the Lennard-Jones potential and van der Waals force, it can be concluded that the outermost 

molecular layer in the theoretical model bears the intermolecular force from the other layers. These two molecular layers may be 
adjacent or separated by 1–4 molecular layers. The force relationship between two molecular layers under different conditions is 
analysed. 

For two molecular layers that are adjacent, the vertical intermolecular distance is re, and the force Fs0 is expressed as 

Fs0 =
24ε0 △ ruNs

f

1.2566r0r
[

2r13
0

(r2
e + (△ru)

2
)

13
2
−

r7
0

(r2
e + (△ru)

2
)

7
2
] (35) 

For two molecular layers that are separated by one molecular layer, the vertical intermolecular distance is 2re, and the force Fs1 is 
expressed as 

Fs1 =
24ε0 △ ruNs

f

1.2566r0r
[

2r13
0

((2re)
2
+ (2 △ ru)

2
)

13
2
−

r7
0

((2re)
2
+ (2 △ ru)

2
)

7
2
] (36) 

For two molecular layers that are separated by two molecular layers, the vertical intermolecular distance is 3re, and the force Fs2 is 
expressed as 

Fs2 =
24ε0 △ ruNs

f

1.2566r0r
[

2r13
0

((3re)
2
+ (3 △ ru)

2
)

13
2
−

r7
0

((3re)
2
+ (3 △ ru)

2
)

7
2
] (37) 

Similarly, the force Fs3 between two molecular layers that are separated by three molecular layers and the force Fs4 between two 
molecular layers that are separated by four molecular layers are expressed as 

Fs3 =
24ε0 △ ruNs

f

1.2566r0r
[

2r13
0

((4re)
2
+ (4 △ ru)

2
)

13
2
−

r7
0

((4re)
2
+ (4 △ ru)

2
)

7
2
] (38) 

and 

Fs4 =
24ε0 △ ruNs

f

1.2566r0r
[

2r13
0

((5re)
2
+ (5 △ ru)

2
)

13
2
−

r7
0

((5re)
2
+ (5 △ ru)

2
)

7
2
] (39) 

Based on Eqs. (35)–(39) and the corresponding relation between the actual and theoretical models of the rupture field, the shear 
force of the entire rupture field in the actual model is expressed as 
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(40) 

Based on the multi-scale model of the rock and Lennard-Jones potential, the force and potential energy equations in the novel 
cohesive fracture model during the tensile and shear processes are obtained. 

(a) Blocks and interfaces (b) Virtual interface (c) Numerical springs

Fig. 8. Schematic of blocks and interfaces.  
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4. Numerical results 

To study the accuracy of the novel cohesive fracture model in simulating the rock fracture process, numerical simulations are 
conducted for three cases by introducing the novel cohesive fracture model into the continuum-discontinuum element method 
(CDEM). 

4.1. Basic concept of CDEM 

4.1.1. Numerical model of CDEM 
The continuum-discontinuum element method (CDEM) is a dynamic explicit algorithm, and it can simulate the entire process from 

continuous deformation to crack formation and propagation [67,68]. The numerical model of CDEM is composed of blocks and in
terfaces (as shown in Fig. 8). A block includes one or more elements, and it is used to characterise the continuous features of the 
material. The common boundary between the blocks is defined as the interface that is used to characterise the discontinuous features. 
The interface includes the real interface (denoted by the black solid lines in Fig. 8(a)) and the virtual interface (denoted by the red 
dotted lines in Fig. 8(a)). The real interface represents the real discontinuous features of the material. The virtual interface has two 
main functionalities: to connect blocks and transfer mechanical information and to provide the potential space for crack initiation and 
propagation. To accurately calculate the contact force and failure state between the blocks, a semi-spring and semi-edge combined 
contact model is introduced by the CDEM at the interface (the green line BB′, JJ′, and KK′ in Fig. 8(c)) [69]. Because the mechanical 
behaviour of the interface is realised by numerical springs, the cohesive fracture model is adopted as the constitutive model of nu
merical springs at the interface. 

The governing equation of CDEM is established through the Langrage energy system, and the governing equation can finally be 
written as 

Mü(t) + Cu̇(t) + Ku(t) = F(t) (41)  

where ü(t), u̇(t), and u(t) denote the acceleration vector, velocity vector, and displacement vector, respectively. M, C, and K denote the 
mass, damping, and stiffness matrices, respectively. F(t) is the vector of the external force. 

Solving the governing Eq. (41) is the most important aspect of the CDEM calculation, which uses the explicit Eulerian precession 
method based on an incremental method to solve the problem. For the iterative solution in each time-step, the calculation is divided 
into two parts: the first step is to loop each element to calculate the continuous deformation; the second step is to calculate the force at 
the interface. 

4.1.2. Constitutive model of element 
In the numerical model of CDEM, the block is used to characterise the continuous features of the material, and includes one or more 

elements. CDEM provides many constitutive models for elements, including the linear elastic constitutive model, Mohr-Coulomb 
elastoplastic constitutive model, and Drucker-Prager elastoplastic constitutive model. In this study, the linear elastic constitutive 
model is adopted as the constitutive model of the element, which can simulate the elastic deformation of the material. 

In the linear elastic constitutive model, the element stress increment Δσij at time-step t is first calculated using the incremental form 
of the finite element method; the corresponding equation is as follows: 

Δσij = 2GΔεij + (K −
2
3

G)Δθδij (42)  

where Δσij is the element stress increment at time-step t, Δεij is the element strain increment at time-step t, Δθ is the element bulk strain 
increment at time-step t, K is the bulk modulus, G is the shear modulus, and δij is the Kronecker symbol. 

Subsequently, the trial stress of the element at time-step t is calculated using the following equation: 

σij = Δσij + σij - old (43)  

where σij is the element trial stress at time-step t, and σij-old is the element stress at the last time-step. 
In the linear elastic constitutive model, σij is considered as the real stress of the element for the mechanical calculation. In other 

constitutive models, such as the Mohr-Coulomb elastoplastic constitutive model, element trial stress σij will be analyzed. If σij satisfies 
the Mohr-Coulomb criterion, it will be modified. If not, it will be directly adopted as the real stress of the element to participate in the 
mechanical calculation. 

4.1.3. Constitutive model of interface 
In Section 3, a new cohesive fracture model based on the multi-scale model and Lennard-Jones potential is proposed, and is adopted 

as the constitutive model of interfaces. In the numerical calculation of interfaces, the nodal space position of the elements on both sides 
of the interface is first obtained; subsequently, the deformation of the interface is calculated. It may be noted that the deformation of 
the interface is reflected at the particle scale. Thereafter, based on the corresponding relation of deformation at the particle scale and 
molecular scale, the change in the intermolecular distance at the molecular scale is calculated. Finally, the force applied to the ele
ments by numerical springs is obtained; the energy of the elements and interface changes during this process. Once the interface 
breaks, the change in the potential energy of the interface is equal to the value of the fracture energy. 
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To reduce the computational complexity, the equation of force (Eq. (24) and Eq. (40)) are simplified. The equation of force during 
the tensile process is written as Eq. (44), and the equation of force during the shear process is written as Eq. (45). As the intermolecular 
displacement increases, the changing curves of the force are plotted in Fig. 9, and the area under the changing curves denotes the 
tensile fracture energy GfI (Fig. 9(a)) and shear fracture energy GfII (Fig. 9(b)). 

To obtain the value of the force applied to the elements by numerical springs based on Eq. (44) and Eq. (45), the value of the key 
parameters (thickness ratio β, space occupancy ratio ω and contact ratio λ) should be calculated first. Therefore, the tensile strength σt, 
tensile fracture energy GfI and shear fracture energy GfII should be obtained first, and the value of β, ω and λ are calculated based on Eq. 
(18), Eq. (25) and Eq. (34). 

Ft ≈
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4.2. Numerical cases 

To study the accuracy of the cohesive fracture model in simulating the fracture process of rocks, numerical simulations corre
sponding to three cases (that is, Mode-I test, Mode-II test and uniaxial compression test) are conducted. 

4.2.1. Mode-I test 
The numerical simulation of Mode-I test mainly studies whether the cohesive fracture model can accurately characterise the tensile 

strength and tensile fracture energy of rocks during the tensile process. The Mode-I test is conducted on a rectangular model with a 
dimension of 10 cm × 20 cm, and the numerical model is plotted in Fig. 10. It can be observed that there is a virtual interface (the 
dotted line in Fig. 10) in the middle of the numerical model. The linear elastic model is adopted as the constitutive model of the 
element, and the cohesive fracture model is adopted as the constitutive model of the virtual interface. A tensile velocity is applied at the 
top and bottom boundaries of the numerical model, and the velocity is vy = 1 × 10− 8 m/s. In the CDEM-based simulation of the Mode-I 
test, the mechanical parameters that need to be input include the mechanical parameters of the element as well as the interface. 
Because the constitutive model of element is the linear elastic model, the density, Young’s modulus and Poisson’s ratio must be 
provided as inputs to the model. For the interface, the tensile strength, tensile fracture energy and shear fracture energy must be 
provided as inputs to calculate the value of the thickness ratio β, space occupancy ratio ω and contact ratio λ. The mechanical pa
rameters are shown in Table 1, and the parameters in the table are the generalised values of rocks. 

The displacement-force curves of the top and bottom boundaries are plotted in Fig. 11; the x-axis represents the displacement of the 
boundary, and the y-axis represents the force of the boundary. The curves evidently exhibit a three-stage characteristic. In the OA 
range, the force increases rapidly with the increase in the displacement. In the AB range, the force decreases rapidly with the increase 
in the displacement. In the BC range, the force is close to zero, and finally it reduces to zero with the increase in the displacement. Once 
the intermolecular distance reaches rd, tensile failure occurs at the interface, and the force becomes zero. Based on the numerical result, 
it is concluded that the tensile force at point A is 102.0 kN, and the corresponding tensile stress is 1.02 MPa. Compared with the tensile 
strength σt = 1 MPa in Table 1, the error is 2.0%. Therefore, it is determined that the cohesive fracture model can accurately char
acterise the tensile strength of rocks during the tensile process. 

To quantify the degree of crack and obtain the changing trend of the cracks, a dimensionless index, crack ratio α, is introduced, and 
it is expressed as 

α =
Sc

Se
(46)  

Fig. 9. Intermolecular displacement-force curves.  
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where Sc denotes the area of the cracked interface, and Se denotes the area of the entire interface. It can be observed that the value 
range of α is [0, 1]. 

The curve corresponding to the change in the crack ratio α during the tensile process is plotted in Fig. 12; x-axis represents the 
displacement of the boundary, and y-axis represents the crack ratio α. The curve evidently exhibits a three-stage characteristic, as can 
be observed in Fig. 12(a). In the OD range, the crack ratio α does not change with the increase in the displacement. In the DE range, the 
crack ratio α increase sharply from 0 to 1 with the increase in the displacement. In the EC range, the crack ratio does not change, and it 
is always 1. 

Based on Fig. 11 and Fig. 12(a), it can be seen that when the boundary displacement reaches point B, the boundary force is close to 
zero; however, the interface is still not broken at the moment. As the boundary displacement increases, the interface begins to break 
when the boundary displacement increases to point D. Once the boundary displacement increases to point E, the entire interface 
breaks, and the boundary force reduces to zero. 

To more accurately obtain the changing trend of the crack ratio α, the boundary displacement-crack ratio curve in the DE range is 
plotted in Fig. 12(b). It can be observed that the crack ratio α increases linearly from 0 to 1 with the increase in the displacement in the 
DE range. 

Fig. 10. Numerical model of Mode-I test.  

Table 1 
Mechanical parameters in Mode-I test.  

Density (kg/ 
m3) 

Young’s modulus 
(GPa) 

Poisson’s 
ratio 

Tensile strength 
(MPa) 

Tensile fracture energy (J/ 
m2) 

Shear fracture energy (J/ 
m2) 

2500 10  0.25 1 100 1000  

Fig. 11. Displacement-force curves.  
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Fig. 13 plots the intermolecular displacement-force curve corresponding to ID = 50 for the numerical spring (in the middle of the 
interface). It can be observed that the curve exhibits a three-stage characteristic, and the area under the changing curves denotes the 
tensile fracture energy. To obtain the tensile fracture energy, the value of the area under the curve is first obtained by integration which 
represents only the value of the tensile fracture energy at the molecular scale. Subsequently, the tensile fracture energy at the particle 
scale is obtained based on the corresponding relation of the deformation at the molecular scale and particle scale; the numerical value 
of the spring tensile fracture energy is calculated to be 0.05 J. Because the area represented by the numerical spring is 5 × 10-4 m2, it is 
concluded that the theoretical value of the spring tensile fracture energy is 0.05 J under the premise that the tensile fracture energy GfI 
= 100 J/m2. It can be concluded that the numerical value and theoretical value of the tensile fracture energy are equal. In addition, the 
peak tensile strength corresponding to point A is 1.01 MPa, and the error is 1%, compared with the theoretical value of 1 MPa. 

To further evaluate the novel cohesive fracture model, the experimental results of the semi-circular bend are used for comparison. 
Wei et al. [70] conducted the laboratory experiment of sandstone, quarried from Dazhou, Sichuan province of China. The schematic of 
the SCB numerical model is shown in Fig. 14, and Table 2 lists the details of the basic notations. The tensile strength is 4.6 MPa, the 
Young’s modulus is 16.5 GPa and the Poisson’s ratio is 0.22. The linear elastic model is adopted as the constitutive model of the 
element, and the cohesive fracture model is adopted as the constitutive model of the interface. A vertical velocity vy = 2 × 10-8 m/s is 
applied at the top boundary, and the bottom boundary is sustained by two supporting rolls. 

A comparison of the numerical and experimental load point displacement-force curves in the SCB test is plotted in Fig. 15. It can be 
observed that the changing trends of the curves are similar. Before the load point displacement reaches the peak value, with the in
crease in the displacement, the force gradually increases. Once the displacement reaches the peak value, the force decreases rapidly. 
The values of the peak displacement and peak force in the laboratory test and numerical simulation are similar. In the laboratory test, 
when the displacement reaches 0.25 mm, the force reaches the maximum value of 1176 N. In the numerical simulation, when the 
displacement reaches 0.265 mm, the force reaches the maximum value of 1188 N. Therefore, it can be concluded that the cohesive 
fracture model can accurately characterise the peak displacement and peak force of rocks during the SCB test. 

Fig. 16 shows the numerically simulated positive stress in the distribution along the x-direction at the peak force. According to 

Fig. 12. Boundary displacement-crack ratio α curve.  

Fig. 13. Intermolecular displacement-tensile force curve.  
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Fig. 16, it can be concluded that the length Δa of the fracture process zone (FPZ) in the numerical simulation is 5.9 mm. Compared with 
the experimental value 8.5 mm, the error is 30.6%. Fig. 17 shows the numerically simulated displacement in the distribution along the 
x-direction after loading. It can be observed that the primary crack initiates from the notch tip because of the high stress concentration, 

Fig. 14. Schematic of the SCB numerical model.  

Table 2 
Description of the basic notations.  

Basic notation Description Value (mm) 

R specimen radius 37 
S distance between support points 59.2 
a0 initial crack length 14.8 
t0 initial crack width 0.3  

Fig. 15. Experimental and numerical displacement-force curve for SCB test.  

Fig. 16. Numerical simulated positive stress in the distribution along the x-direction.  
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and subsequently, grows almost up to the symmetrical plane of the model. The propagation path of the primary crack is consistent with 
that concluded from the experimental results. 

The accuracy of the cohesive fracture model for Mode-I test is verified based on the above numerical results. 

4.2.2. Mode-II test 
Numerical simulation of the Mode-II test is conducted to mainly confirm whether the cohesive fracture model can accurately 

characterise the shear fracture energy of rocks during the shear process. The Mode-II test is conducted on a square model with a 
dimension of 20 cm × 20 cm, and the numerical model is plotted in Fig. 18. It can be observed that there is a virtual interface (the 
dotted line in Fig. 18) in the middle of the numerical model. The linear elastic model is adopted as the constitutive model of the 
element, and the cohesive fracture model is adopted as the constitutive model of the virtual interface. The numerical simulation in
cludes two stages. In the first stage, a vertical velocity, vy = 1 × 10-8 m/s is applied at the top boundary, and the bottom boundary is 
fixed. In the second stage, initially, the vertical velocity vy at the top boundary is reduced to zero, and the top boundary is fixed. 
Thereafter, a horizontal velocity vx = 1 × 10-8 m/s is applied at the upper half of the left boundary, and the lower half of the right 
boundary is fixed. In the CDEM-based simulation of the Mode-II test, the mechanical parameters that must be provided as inputs 
include the mechanical parameters of the element and interface. Because the constitutive model of the element is the linear elastic 
model, the density, Young’s modulus and Poisson’s ratio are required as inputs to the model. For the interface, the tensile strength, 
tensile fracture energy and shear fracture energy need to be input to calculate the values of the thickness ratio β, space occupancy ratio 
ω and contact ratio λ. In addition, when the interface undergoes shear failure, the model experiences sliding friction. Because the 
sliding friction force in CDEM is calculated based on the Mohr-Coulomb criterion, the friction angle needs to be input to calculate the 
sliding friction force. The mechanical parameters are shown in Table 3, and the parameters in the table are the generalised values of 
rocks. 

In the first stage, the entire model produces a compressive deformation under the action of the vertical velocity vy, and no crack is 
observed to have appeared at the interface. In the second stage, with the increase in the horizontal shear displacement, the curve 
corresponding to the change in the crack ratio α is plotted in Fig. 19. The curve of the crack ratio α exhibits a three-stage characteristic, 
as shown in Fig. 19(a). In the OA range, the crack ratio α is always zero with the increase in the horizontal shear displacement. In the 
AB range, the crack ratio α increases sharply from 0 to 1 with the increase in the horizontal shear displacement. In the BC range, the 

Fig. 17. Numerical simulated displacement in the distribution along the x-direction.  

Fig. 18. Numerical model of Mode-II test.  
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crack ratio α does not change, and it remains as 1. To more accurately obtain the changing trend of the crack ratio α, the shear 
displacement-crack ratio α curve in the AB range is plotted in Fig. 19(b). It can be observed that the crack ratio α increases nonlinearly 
from 0 to 1 with the increase in the shear displacement, and the increase rate gets accelerated. 

To obtain the shear fracture energy, Fig. 20 plots the shear force curve corresponding to ID = 100 for the numerical spring (in the 
middle of interface) with the increase in the intermolecular shear displacement at the molecular scale. The curve exhibits an evident 
three-stage characteristic, and the area under the changing curves denotes the shear fracture energy. To obtain the shear fracture 
energy, the value of the area under the curve is first obtained by integration which represents only the value of the shear fracture 
energy at the molecular scale. Subsequently, the shear fracture energy at the particle scale is obtained based on the corresponding 
relation of the deformation at the molecular scale and particle scale; the numerical value of the spring shear fracture energy is 
calculated to be 0.5 J. Because the area represented by the numerical spring is 5 × 10-4 m2, it can be concluded that the theoretical 
value of the shear fracture energy is 0.5 J under the premise that the shear fracture energy is 1000 J/m2, and the numerical value is 
equal to the theoretical value. 

To further evaluate the accuracy of the cohesive fracture model for the Mode-II test, the experimental results of the direct shear test 
conducted by Cho et al. [71] are adopted for a comparative analysis. The direct shear test is conducted on a cube with a dimension of 5 
cm × 5 cm × 5 cm, and the numerical model is plotted in Fig. 21. The linear elastic model is adopted as the constitutive model of the 
element, and the cohesive fracture model is adopted as the constitutive model of the virtual interface. The numerical simulation in
cludes two stages. In the first stage, a normal force Fy is applied at the top boundary, and the bottom boundary is fixed. In the second 
stage, a horizontal velocity vx = 1 × 10-8 m/s is applied at the upper half of the left boundary, and the lower half of the right boundary is 
fixed. Based on the laboratory experiment, Cho et al. obtained the mechanical parameters. The density is 2630 kg/m3, the Young’s 
modulus is 2.5 GPa, the tensile strength is 2.6 MPa, the shear strength is 2.95 MPa and the friction angle is 39◦. 

In the direct shear test, a total of 11 samples were tested with the normal stress ranging from 1.0 kPa to 2.1 MPa. The experimental 
and numerical results are plotted in Fig. 22. It can be seen that the changing trends of the experimental and numerical results are 
consistent: with the increase in the normal stress, the shear stress gradually increases. The linear regression function is used to fit the 
experimental and numerical data; the fitting curve of numerical data is the green dotted line in Fig. 22, and the fitting curve of the 
experimental data is the blue dotted line in Fig. 22. The fitting function of the numerical data is given by 

σs = 0.70σn + 2.58 (47) 

The fitting function of experimental data is given by 

σs = 0.80σn + 2.81 (48) 

Based on the fitting curve of the numerical data, it can be concluded that the friction angle is 35◦, and the cohesive strength is 2.58 
MPa. Based on the fitting curve of the experimental data, it can be concluded that the friction angle is 38.8◦, and the cohesive strength 
is 2.81 MPa. The error of the friction angle is 9.79%, and the error of the cohesive strength is 8.19%. The errors of the friction angle and 
cohesive strength are all less than 10%, indicating the accuracy of the new cohesive fracture model corresponding to the Mode-II test. 

The accuracy of the cohesive fracture model for Mode-II test is verified based on the above numerical results. 

Table 3 
Mechanical parameters in Mode-II test.  

Density (kg/ 
m3) 

Young’s modulus 
(GPa) 

Poisson’s 
ratio 

Tensile strength 
(MPa) 

Tensile fracture energy 
(J/m2) 

Shear fracture energy 
(J/m2) 

Friction angle 
(◦) 

2500 10  0.25 1 100 1000 35  

Fig. 19. Shear displacement-crack ratio α curve.  
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Fig. 20. Intermolecular shear displacement-shear force curve.  

Fig. 21. Numerical model of the direct shear test [71].  

Fig. 22. Normal stress-shear stress curve of direct shear test.  
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4.2.3. Uniaxial compression test 
To further study the accuracy of the novel cohesive fracture model, the numerical simulation of rock uniaxial compression test is 

conducted. Kazerani conducted the uniaxial compression laboratory test of the Transjurane sandstone, and the stress-strain curve and 
the related mechanical parameters were obtained [72]. The 3D numerical model of the transjurane sandstone are represented in 
Fig. 23, illustrating a cylinder with a dimension of 8 cm × 16 cm. A vertical velocity vy = 2 × 10-8 m/s is applied at the top boundary, 
and the bottom boundary is fixed. The numerical model is discretised into a series of tetrahedral elements, and the common boundary 
of the elements is set as the virtual interface. The linear elastic model is adopted as the constitutive model of the element, and the 
cohesive fracture model is adopted as the constitutive model of the virtual interface. The mechanical parameters of the transjurane 
sandstone are shown in Table 4, and the value of the fracture energy is quoted from the laboratory test of the transjurane sandstone. 
Kazerani conducted a wide range of experimental investigations on the transjurane sandstone in the rock mechanics laboratory of the 
Swiss Federal Institute of Technology, and the average standard mechanical properties (for example, Young’s modulus, fracture 
toughness in Mode-I and fracture toughness in Mode-II) are obtained. Jiang et al. calculated the Mode-I fracture energy GfI and Mode-II 
fracture energy GfII of the transjurane sandstone based on the experimental results, and the values of the GfI and GfII are adopted for 
numerical simulation of the uniaxial compression test. 

The accuracy of the cohesive fracture model in simulating the rock fracture process is analysed by comparing the stress-strain curve 
and fracture pattern obtained by the laboratory test and numerical simulation. 

A comparison of the numerical and experimental axial strain-compressive stress relationship in the uniaxial compression test is 
plotted in Fig. 24. It can be observed that the changing trends of the curves are similar. Before the axial strain of the rock reaches the 
peak strain, with the increase in the axial strain, the compressive stress gradually increases. Once the axial strain reaches the peak 
strain, the compressive stress decreases rapidly. The values of the peak compressive stress and peak axial strain in the laboratory test 
and numerical simulation are similar. In the laboratory test, when the axial strain reaches 4.05%, the compressive stress reaches the 
maximum value of 40.0 MPa. In the numerical simulation, when the axial strain reaches 4.30%, the compressive stress reaches the 
maximum value of 39.2 MPa. Therefore, it can be concluded that the cohesive fracture model can accurately characterise the peak 
strain and peak stress of the rock in the uniaxial compression test. 

The rock fracture patterns obtained by numerical simulation and laboratory test are plotted in Fig. 25. It can be observed that the 
rock specimen has an obvious oblique fracture plane in the laboratory test, as shown in Fig. 25(a), and the numerical model also has an 
obvious oblique fracture plane in the numerical simulation, as shown in Fig. 25(b). In addition, the angles of the oblique fracture plane 
in the numerical simulation and laboratory test are similar. Because the oblique main fracture plane in the laboratory test is captured in 
the numerical simulation, it can be concluded that the main fracture pattern of the laboratory test is the same as that in the numerical 
simulation. 

To evaluate the influence of the mesh on the numerical results and the proposed model, the numerical model in Fig. 23 is divided by 
tetrahedral elements of different sizes (6 mm, 7 mm, 8 mm, 9 mm and 10 mm), and the variation of the numerical results for different 
cases of the mesh division are studied. The element number at different mesh sizes is shown in Table 5, and it can be observed that the 
element number for a mesh size of 6 mm is almost 4.2 times than that for a mesh size of 10 mm. 

The peak stress calculated for different element numbers is plotted in Fig. 26. It can be observed that with the increase in the 
element number, the peak stress does not increase or decrease significantly which is basically consistent with the experimental result. 
In the five mesh cases, the maximum peak stress obtained by numerical simulation is 41.61 MPa, the corresponding element number 
being 14851, and the minimum peak stress obtained by numerical simulation is 39.17 MPa, the corresponding element number being 
4765. Compared with the experimental result 40.03 MPa, the error is approximately in the range of − 2.15% to 3.97%. When the model 

Fig. 23. 3D numerical model of transjurane sandstone.  
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enters the post-peak stage, the vertical displacement nephograms for the different element numbers are plotted in Fig. 27. It can be 
seen that the fracture patterns of the model are basically the same: there is a main fracture surface, and the inclination angle of the 
fracture surface is similar. Based on the analysis of the peak stress and fracture patterns for the different element numbers, it can be 
concluded that the mesh has negligible influences on the numerical results and proposed model. 

Based on the numerical results of Mode-I test, Mode-II test and uniaxial compression test, it can be concluded that the cohesive 
fracture model can appropriately simulate the complex fracture process of rocks. 

5. Conclusions 

This study proposed a novel cohesive fracture model based on the multi-scale model of rocks and Lennard-Jones potential to 

Table 4 
Mechanical parameters of transjurane sandstone.  

Density (kg/ 
m3) 

Young’s modulus 
(GPa) 

Tensile strength 
(MPa) 

Friction angle 
(◦) 

Tensile fracture energy (J/ 
m2) 

Shear fracture energy (J/ 
m2) 

2500  12.5  2.8 41 50 150  

Fig. 24. Axial strain-compressive stress curve.  

Fig. 25. Fracture pattern of rock in the laboratory test and numerical simulation.  

Table 5 
Number of elements.   

Element size (mm)  

6 7 8 9 10 

Number of elements 14,851 9190 6512 4765 3550  
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investigate the energy dissipation phenomenon of rocks. First, the multi-scale model of rocks and several key parameters were pro
posed. Thereafter, the force and potential energy equations of the cohesive fracture model were established. Finally, the accuracy of 
cohesive fracture model was studied based on three numerical simulations. The following conclusions can be drawn:  

(1) In the multi-scale model of the rock, the increase in distance between mineral particles at the particle scale is equal to the strain 
at the RVE scale multiplied by the initial distance between the mineral particles. In addition, the increase in the distance be
tween the mineral particles at the particle scale is equal to the cumulative value of the increase in the intermolecular distance at 
the molecular scale.  

(2) The rock changes from continuous medium to discontinuous medium during the initiation and propagation process of cracks, 
and the underlying mechanism of the fracture energy is represented by the transformation of a portion of the deformation 
energy of the continuous field into the potential energy between molecules in the rupture field.  

(3) Based on the numerical results of the Mode-I and Mode-II tests, it can be determined that the cohesive fracture model can fit 
both the theoretical values as well as the experimental results. Based on the numerical results of the uniaxial compression test, it 
can be concluded that the cohesive fracture model can accurately simulate the uniaxial compressive strength and fracture 
pattern of rocks. 
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Fig. 26. Peak stress for different element numbers.  

Fig. 27. Vertical displacement nephograms for different element numbers.  
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