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A B S T R A C T   

Wave-induced sediment transport is an important issue in coastal engineering. It is of fundamental significance to 
manifest the boundary layer behavior of nonlinear waves to accurately describe sediment transport in coastal 
areas, where wave forms are typically cnoidal or forward leaning rather than sinusoidal or symmetrical. In the 
present work, a novel expression of the near bed orbital velocity beneath forward-leaning waves is worked out. It 
is a series in which the coefficients are invariable for arbitrarily forward-leaning waves and just depend on the 
order of expansion. Based on this new expression, a theoretical solution of the laminar boundary layer beneath 
forward-leaning waves is derived by solving the governing equation via the method of variable separation. With 
this theoretical solution, it is convenient to acquire the velocity and shear stress (especially at the bottom) of the 
boundary layer beneath forward-leaning waves, which are different from those beneath sinusoidal waves as the 
degree of forward leaning increases. The phase lag between the bottom shear stress and the free-stream velocity 
is also analyzed, as well as the boundary layer thickness. In addition, the applicability of the present theory is 
discussed by comparing theoretical results with numerical results of different flow regimes.   

1. Introduction 

Wave-induced sediment transport is an important issue in coastal 
engineering. The flow characteristics, such as turbulence, velocity and 
bottom shear stress, in the boundary layer beneath waves are respon
sible for sediment suspension from the bed into the water. Therefore, it is 
a prerequisite to understand the behavior of the boundary layer flow 
beneath waves prior to addressing wave-induced sediment transport. 

In the ocean, the nonlinearity of waves increases as the waves 
propagate towards the shore, thereby causing wave velocity and accel
eration to become more and more asymmetrical, and the free surface is 
mostly in the form of a forward-leaning shape before breaking (Wata
nabe and Sato, 2004). Unlike those of linear or symmetrical waves, the 
profile, velocity and acceleration of forward-leaning waves are asym
metrical within one wave period, although the wave amplitudes are 
equal at wave crest and trough. Previously, most of the theoretical so
lutions for wave motion are obtained under the assumption of potential 
flow and linear waves or symmetrical waves. Thus, these theoretical 
solutions cannot be applied for nonlinear waves. In addition, it is 
necessary to investigate the boundary layer of waves from the level of 

mechanism, where the viscosity of water should be considered, in order 
to study wave-induced sediment transport thoroughly. Therefore, 
theoretical investigation of boundary layer flow beneath nonlinear or 
asymmetrical waves is of great practical implications for sediment 
transport in coastal areas, even if the flow is laminar. 

According to wave theory of shallow water, the vertical velocity of 
water particles decreases as the depth increases, and the vertical velocity 
can be ignored when the water particles are located near the bottom. 
Thus, the flow of wave-induced boundary layer is almost same as that 
generated in the oscillatory boundary layer (the layer near a plate that 
oscillates horizontally in a quiescent water). This near bed oscillation is 
simply sinusoidal for linear waves and non-sinusoidal for nonlinear 
waves. Therefore, it is necessary to properly express the near bed orbital 
velocity of the oscillation motion of water so as to investigate the 
boundary layer beneath nonlinear waves. Correspondingly, related 
works have been reported since last century. Stokes (1847) first pre
sented the skewed wave velocity prior to wave breaking. Larson (1996) 
used a velocity given by stream function theory as the near bed orbital 
velocity when investigating wave boundary layers. Drake and Calantoni 
(2001) considered a near bed orbital velocity in terms of a sine series as 

* Corresponding author. Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, 
China. 

E-mail address: zhoujf@imech.ac.cn (J. Zhou).  

Contents lists available at ScienceDirect 

Coastal Engineering 

journal homepage: http://www.elsevier.com/locate/coastaleng 

https://doi.org/10.1016/j.coastaleng.2021.103852 
Received 27 February 2020; Received in revised form 10 November 2020; Accepted 10 January 2021   

mailto:zhoujf@imech.ac.cn
www.sciencedirect.com/science/journal/03783839
https://http://www.elsevier.com/locate/coastaleng
https://doi.org/10.1016/j.coastaleng.2021.103852
https://doi.org/10.1016/j.coastaleng.2021.103852
https://doi.org/10.1016/j.coastaleng.2021.103852
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coastaleng.2021.103852&domain=pdf


Coastal Engineering 165 (2021) 103852

2

being representative of a wide range of shoaling and broken waves. 
Similarly, van der A et al. (2011) also applied a sine series to conduct 
experimental investigation on the effects of acceleration asymmetry on 
the oscillatory boundary layer. Elfrink et al. (2006) proposed a method 
to express time varying near bed orbital velocity by using a set of simple 
sinusoidal functions for each segment between the maximum velocities 
and the zero crossings. Almost all these researches about the near bed 
orbital velocity induced by nonlinear waves are based on superposition 
of sinusoidal functions. However, this kind of expressions inevitably 
leads to velocity asymmetry, which has a large influence on the bottom 
shear stress. As a result, the near bed orbital velocity induced by a 
forward-leaning wave with equal velocity amplitudes at its crest and 
trough cannot be accurately described by these expressions. To alleviate 
this problem, Silva et al. (2007) proposed a formula for the near bed 
orbital velocity of forward-leaning waves, which is derived from the 
acceleration time series that is just similar to the velocity profile of a 
first-order cnoidal wave. Then, Abreu et al. (2010) provided an analyt
ical expression for arbitrarily varying free-stream velocity, which is a 
proper choice for discussing forward-leaning waves. 

Once the near bed orbital velocity is determined, model can be 
developed to analyze the characteristics of the boundary layer beneath 
nonlinear waves, such as the velocity and shear stress. Kondo (1956) 
derived an analytical solution for the laminar boundary layer of arbi
trarily varying free-stream velocity by means of Laplace transformation 
(Nadaoka et al., 1996), which is given in an integral form and is 
inconvenient to be used. Tanaka et al. (1998) derived a Fourier series 
expansion for the solution of the laminar boundary layer beneath 
cnoidal waves, which are different from forward-leaning waves in their 
processes of free surface elevation, velocity and acceleration. Foster 
et al. (1999) also gave an analytical solution for the bottom boundary 
layer under an arbitrarily varying free-stream wave, but the parameters 
in it are difficult to verify. There are also some models for calculating the 
bottom shear stress by means of empirical analysis or analogy approach. 
Nielsen (2002) and Nielsen and Callaghan (2003) suggested a method 
for calculating the bottom shear stress of laminar flow beneath waves of 
arbitrary shape and extended it to turbulent flows by analogy to sinu
soidal waves. Suntoyo et al. (2008) also presented a calculation method 
for bottom shear stress of turbulent boundary layers beneath 
forward-leaning waves, which is an analogy of the solution for harmonic 
laminar boundary layer flows to turbulent flows. 

Except for a few theoretical researches as stated above, most of these 
previous studies for the boundary layers of forward-leaning waves are 
performed by numerical or experimental simulations. For example, Hsu 
and Hanes (2004) analyzed the effects of wave shape of forward-leaning 
waves on sediment transport by a two-phase model, in which a 4-term 
sine series is used as wave forcing. Scandura et al. (2016) discussed 

the characteristics of bottom shear stress and velocity of 
acceleration-skewed oscillating flows by direct numerical simulations. 
Watanabe and Sato (2004) proposed a formula of sheet-flow transport 
rate for forward-leaning waves by the experiment of 
acceleration-asymmetric oscillatory flow. Yuan and Madsen (2014) 
studied turbulent oscillatory boundary layers induced by 
forward-leaning waves in an oscillating wave tunnel. They generated 
forward-leaning waves by a full-scale experiment to investigate the 
acceleration-skewness-induced net sediment transport rate, in which the 
free-stream velocity is given by the superposition of two harmonics. 
These experimental and numerical investigations can deal with turbu
lent boundary layer flows. However, these methods are more 
time-consuming compared with the theoretical method. In addition, it is 
generally more effective and explicit to delineate the law in a theoretical 
way. Therefore, it is important to develop theoretical model for the 
boundary layer beneath forward-leaning waves. Even if the theory is 
developed for laminar flows, it may be extended to turbulent flows as 
was done by Nielsen (2002), Nielsen and Callaghan (2003) and Suntoyo 
et al. (2008). 

The objective of the present work is to derive an analytical solution 
for laminar boundary layer beneath forward-leaning waves. To begin 
with, a novel expression of the near bed orbital velocity beneath 
forward-leaning waves is worked out, which is further used as the 
boundary condition of the governing equation of the boundary layer 
beneath the forward-leaning waves. Then, the analytical solution of the 
laminar boundary layer beneath forward-leaning waves is derived by 
solving the governing equation via the method of variable separation. 
The coefficients of the series are invariable for arbitrarily forward- 
leaning waves. Consequently, the fundamental characteristics of the 
laminar boundary layer beneath forward-leaning waves are thoroughly 
studied and understood based on the analytical solution obtained here. 
Finally, the applicability of the present theory is discussed by quanti
tatively analyzing errors of velocity and bottom shear stress between the 
results calculated by the present theory and the numerical results of 
different flow regimes. 

2. Theory and numerical model description 

2.1. Theory 

As stated in the introduction, the wave-induced boundary layer can 
be considered as the oscillatory boundary layer. For incompressible 
fluid, the boundary layer of laminar flow can be described by 

∂u
∂t

= ν ∂2u
∂z2 , (1)  

where u is the horizontal velocity, ν the kinematic viscosity of the fluid, t 
the time and z the vertical coordinate. 

Since only the motion of water near the boundary is considered, the 
boundary layer of the oscillatory flow induced by waves can be equiv
alent to the boundary layer caused by an oscillating plate. So the 
boundary conditions are given by 

u|z→∞ = U(t), u|z=0 = 0 , (2)  

where U(t) is the free-stream velocity outside the boundary layer, 
namely the near bed orbital velocity induced by waves. For the purpose 
of investigation of the boundary layer beneath forward leaning waves, 
the near bed orbital velocity can be expressed as follows (Abreu et al., 
2010) 

U(t)=Uc
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2

√ sin ωt
1 − r cos ωt

, (3)  

where Uc is the maximum velocity at the wave crest, ω the angular 
frequency, and r the waveform parameter(0≤ r< 1), which describes 
the wave acceleration asymmetry. The waveform parameter r depends 

Fig. 1. Schematic diagram of free-stream velocity of forward-leaning waves.  
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on the degree of forward leaning β, which is defined as follows (Wata
nabe and Sato, 2004) 

β= 1 −
2Tcu

T
, (4)  

where T represents the wave period, Tcu the time for the velocity to 
increase from zero to the maximum as shown in Fig. 1. According to this 
definition of β, r can be expressed as (Abreu et al., 2010) 

r = − cos(πβ). (5) 

It is obvious that β equals to 0.5 for sinusoidal waves. Then, r equals 
to 0 and Eq. (3) reduces to a harmonic function. As r closes to 0.8 for 
broken waves (Silva et al., 2007), β is generally less than 0.8. 

It should be stressed that Eq. (3) is a particular solution of the 
analytical formulation of Abreu et al. (2010) for pure forward-leaning 
waves and can represent the near bed orbital velocities of 
forward-leaning waves in nature. Abreu et al. (2010) proposed the 
formulation for the orbital velocity of shallow water waves with both 
velocity and acceleration asymmetries and concluded that their 
analytical formulation can represent the time varying near bed orbital 
velocities measured in the near shore region and under breaking and 
non-breaking waves by validating against field and laboratory experi
ment data. Therefore, it is evident that Eq. (3) can describe the near bed 
orbital velocities of forward-leaning waves in nature. 

To solve the problem analytically, Eq. (3) is expanded into a Taylor 
series, which reads 

sin ωt
1 − r cos ωt

= sin ωt + (r cos ωt)sin ωt + (r cos ωt)2 sin ωt⋅⋅⋅

+ (r cos ωt)k sin ωt + ⋅⋅⋅. (6) 

In Eq. (6), the trigonometric relation can be expressed as 

(r cos ωt)k sin ωt=
(r

2

)k
[
∑k+1

m=1
ak,m sin(mωt)

]

, (7)  

where the coefficients ak,m satisfy the rules as follows 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a0,1 = 1
a1,1 = 0
ak,m = 0,m > k + 1
ak,m = 1,m = k + 1

ak,m =
∑m

n=1
ak− n,m− n+2, k ≥ 2, 2 ≤ m < k + 1

ak,m = ak− 1,m+1, m = 1, k ≥ 2

, (8) 

It is nicely noted that these coefficients are invariable for arbitrarily 
forward-leaning waves and just depend on the order of expansion. All 
the values of ak,m can be intuitively displayed by a lower triangular 
matrix as shown in Table 1. The coefficients on the diagonal are equal to 
1 and those on the dashed lines are 0. The red and black arrows 
demonstrate the law of the values of the coefficients, similar to the law 
of Yang Hui’s Triangle to some extent. 

Substituting Eq. (7) into Eq. (6) and considering Eq. (3), the 
following series expansion can be acquired 

U(t)=Uc

∑N

m=1
Am sin(mωt), (9)  

where the coefficients are 

Am =
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2

√ ∑N− 1

k=m− 1
ak,m

(r
2

)k
. (10) 

Based on Eq. (9) and applying the method of variable separation to 
Eqs. (1) and (2), a solution for velocity and shear stress (especially at the 
bottom) in the laminar boundary layer can be obtained as follows 

u(z, t) =
∑N

m=1
Am

⎧
⎪⎨

⎪⎩
Uc sin(mωt) − e

− z̅̅̅̅̅̅̅̅̅
2ν/(mω)

√
⋅Uc sin

(

mωt −
z

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ν/(mω)

√

)
⎫
⎪⎬

⎪⎭
,

(11)  

and 

τ*(z, t) =
τ

ρUc
̅̅̅̅̅̅
ων

√ =
∑N

m=1
Am

̅̅̅̅
m

√
⋅ e

− z̅̅̅̅̅̅̅̅̅
2ν/(mω)

√
sin

(

mωt+
π
4
−

z
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ν/(mω)

√

)

,

(12)  

where τ is the shear stress and τ* is the dimensionless shear stress. Thus, 
the bottom shear stress reads 

Table 1 
Value of.ak,m. 
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τ*
0(t) =

τ0

ρUc
̅̅̅̅̅̅
ων

√ =
∑N

m=1
Am

̅̅̅̅
m

√
⋅ sin

(
mωt+

π
4

)
, (13)  

where τ0 is the bottom shear stress and τ*
0 is the dimensionless bottom 

shear stress. 

2.2. Numerical model 

A numerical model has been developed to simulate the wave 
boundary layer flow of different flow regimes. The wave boundary layer 
flow is modeled by oscillating an infinite plate in a quiescent water with 
the near bed orbital velocity induced by waves. In the model, large eddy 
simulation is used to solve the spatially filtered time-dependent 3-D 
Navier–Stokes equations with Smagorinsky subgrid model (Lohman 
et al., 2006). 

The boundary conditions in the streamwise and spanwise directions 
are periodic boundary conditions since turbulence in these directions is 
homogeneous. In the vertical direction, a non-slip boundary condition is 
enforced at the bottom wall, and a free-slip condition is used at the top 
boundary, as expressed by Eq. (2). 

Uniform grids are adopted in the streamwise and spanwise di
rections, and non-uniform staggered grids are used in the vertical di
rection. The resolution of the near bed grids is fine enough for wall 
turbulence modeling. The mixed spectral and finite difference algorithm 
is used in the simulations. Derivatives in the streamwise and spanwise 
directions are treated with a pseudo-spectral method. Derivatives in the 
vertical direction are computed with second-order center difference in 
the vertical staggered grids. The second-order Adams-Bashforth method 
is adopted for time-marching (Zhang et al., 2005; Li et al., 2016). 

The model has been verified based on the experimental data of the 
laminar flow (Reδ = 392,As = 0.69), intermittent turbulent flow (Reδ =

936, As = 0.62), and fully turbulent flow (Reδ = 3464, As = 0.5) 
beneath cnoidal waves, where the flow regime is divided by the 
boundary layer Reynolds number Reδ = Ucδ/ν and As is the degree of 
asymmetry, referring to Tanaka et al. (1998) for details. The experi
mental data are from the literature of Sana et al. (2006) and Tanaka et al. 
(1998). Refer to Li et al. (2016) for details of the validation of this model. 

This numerical model is used here to simulate the velocity and bot
tom shear stress of forward-leaning waves and to investigate the appli
cability of Eqs. (11) and (13). 

3. Discussion of near bed orbital velocity 

As already stated above, the properties of the boundary layer 
induced by a forward-leaning wave can be obtained analytically when 
Eq. (9) is taken as the free stream boundary condition of Eq. (1). Tanaka 
et al. (1998) pointed out that the bottom shear stress is very sensitive to 
the free stream boundary condition, so the agreement between Eq. (9) 
and Eq. (3), the exact expression of the near bed orbital velocity beneath 
forward-leaning waves, has a great effect on the bottom shear stress. 
Therefore, it is very important to address the accuracy of Eq. (9) to 
model Eq. (3). 

3.1. Appropriateness of Eq. (9) to represent Eq. (3) 

The appropriateness of Eq. (9) to represent Eq. (3) is examined as 
shown in Fig. 2, which demonstrates the performance of Eq. (9) with 
different N to reproduce the exact processes of the near bed orbital ve
locity induced by forward-leaning waves for β = 0.55 and β = 0.8. It 
should be noted that β = 0.55 and β = 0.8 respectively represent the two 
extreme cases of forward-leaning waves. The former case is close to the 
sinusoidal waves and the latter one represents the forward-leaning wave 
that is nearly broken (Silva et al., 2007). 

As shown in Fig. 2, the results obtained from Eq. (9) is accurate 
enough for β = 0.55 when N = 1, and forβ = 0.8 when N = 4. In order 
to analyze quantitatively the truncation error of Eq. (9), the periodic 
averaged Error is introduced (Tanaka et al., 1998) 

Error=

[
∑M

i=1

(
Ui(ex)

Uc
−

Ui(ap)

Uc

)2/

M

]1/2

, (14)  

where the i is the time index in a wave cycle, and the subscripts (ex) and 
(ap) denote the exact expression (Eq. (3)) and the series expansion (Eq. 
(9)), respectively. Fig. 3 presents the errors between the series expansion 
and the exact solution, where M is equal to 2000. It is seen that the errors 
decrease with an increase in N and increase with an increase in β. When 
N = 7, the error is less than 0.0058 for β < 0.8. As a matter of fact, the 
velocity-leaning index of non-breaking forward-leaning waves is 
generally less than 0.8 as already stated in Section 2.1. Therefore, it is 
accurate enough to use Eq. (9) instead of Eq. (3) to delineate the 
boundary layer behavior beneath forward-leaning waves. 

3.2. Comparison between Eq. (9) and other models 

Apart from the error analysis above, results from Eq. (9) are further 
compared with those based on other similar models of asymmetric 
orbital velocity in this section. 

Based on the error analysis in Section 3.1, it can be concluded that 
Eq. (9) can also represent the near bed orbital velocities of the real waves 
accurately instead of Eq. (3). In order to further examine the accuracy of 

Fig. 2. Near bed orbital velocity process expressed by Eq. (3) and Eq. (9) with different number of the series terms. Left for β = 0.55 and right for β = 0.8.  

Fig. 3. Errors between series expression (Eq. (9)) and exact solution (Eq. (3)).  
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Eq. (9), the comparisons between Eq. (9) and other models are then 
conducted. 

As stated, Eq. (9) is equivalent to Eq. (3). Since Eq. (3) has been 
proved available to describe the pure forward-leaning waves more 
appropriately based on the comparison with the other models proposed 
by Drake and Calantoni (2001), Elfrink et al. (2006) and Silva et al. 
(2007) as conducted by Abreu et al. (2010), Eq. (9) also has the same 

advantages as Eq. (3). Therefore, comparison between Eq. (9) and these 
previous models is not performed here again. However, the expressions 
of the near bed orbital velocity beneath forward-leaning waves pre
sented by van der A et al. (2011) and Wang and Yuan (2020) are chosen 
here. Then the superiority of Eq. (9) is examined by comparing with 
these two formulations. 

van der A et al. (2011) employed a total of six sinusoidal flows as the 
free-stream velocity to conduct experimental investigation of the effects 
of acceleration asymmetry on the oscillatory boundary layer, which is 
given by 

U(t) = αUc

∑6

i=1

(2ξ − 1)i− 1

i
sin(iωt), (15)  

where α is a multiplier that lets the maximum value of U(t) equal to Uc; ξ 
is a parameter to describe the acceleration skewness defined as 

ξ=
amax

amax − amin
, (16)  

where a is the acceleration of free-stream velocity. 
Now, the summation of N-term sinusoidal flows of Eq. (15) is 

analyzed. By computing the forward-leaning degree from Eqs. (9) and 
(15), it is found that N = 7 is enough to get a stable and sufficient ac
curate waveform by Eq. (9) for most of β, whereas the value of N should 
be larger than 20 by Eq. (15). Fig. 4 (a) and 5(a) represent the dimen
sionless U(t) obtained from Eqs. (3), Eq. (9) and Eq. (15) respectively, for 
β = 0.75. The corresponding dimensionless a(t), which can be readily 
obtained by dU/dt, are displayed in Figs. 4(b) and 5(b), respectively. It is 
evident that both Eqs. (9) and (15) present an oscillatory acceleration 
time series when N = 7, but Eq. (15) presents unstable results with small 
fluctuations. When N = 20, the results calculated by both Eqs. (9) and 
(15) are stable. Here, the small fluctuations shown in Fig. 4(b) are 
induced by the truncation of Eq. (15) and these fluctuations are defi
nitely not the real case of acceleration in nature. Both Abreu et al. (2010) 
and Ruessink et al. (2009) considered that these fluctuations should 
disappear. They took this disappearance as a rule to judge whether a 
theoretical expression of the orbital velocity is good or bad. The results 
for a(t) demonstrate that 18 terms are required for Eq. (15) to make 
these fluctuations disappear, while only 5 terms are enough for Eq. (9). 
From this point of view, it can be concluded that it is more accurate to 
use Eq. (9) rather than Eq. (15) to describe the near bed orbital velocity 
beneath forward-leaning waves. 

Wang and Yuan (2020) adopted a simple approximation for the 
free-stream velocity of forward-leaning waves, which reads 

U(t)=Uc sin(ωt) + ζUc sin(2ωt), (17)  

where ζ is a coefficient. The coefficient can adjust the degree of forward 
leaning of velocity. For instance, when ζ = 1/3, the degree of forward 
leaning can be calculated by Eq. (17), equal to 0.638. Fig. 6 presents the 
time series of orbital velocity and acceleration calculated using Eq. (17) 
with ζ = 1/3. Also shown in Fig. 6 for comparison are the time series of 
orbital velocity and the corresponding acceleration calculated using Eq. 
(9) with N = 2 and N = 3. The degree of forward leaning calculated by 
Eq. (9) is equal to that obtained by Eq. (17). It is evident from Fig. 6 that 
the acceleration time series of Eq. (17) near the zero down-crossing of 
velocity is more concave or convex than that of Eq. (9). According to the 
consideration of Abreu et al. (2010) and Ruessink et al. (2009) as stated 
above, Eq. (9) is obviously more reasonable than Eq. (17) to describe the 
near bed orbital velocity beneath forward-leaning waves. In addition, 
Eq. (9) with N = 3 presents much better results as shown in Fig. 6, where 
the velocity time series of N = 3 almost totally overlaps that of N = 2 and 
the acceleration time series of N = 3 is almost same as the theoretical 
one, i.e. a cnoidal wave shape. 

The forgoing analyses demonstrate that Eq. (9) can describe the near 
bed orbital velocity beneath forward-leaning waves with enough 

Fig. 4. Comparison of free-stream velocity and acceleration time series 
computed by Eqs. (3), (9) and (15) for N = 7. 

Fig. 5. Comparison of free-stream velocity and acceleration time series 
computed by Eqs. (3), (9) and (15) for N = 20. 

Fig. 6. Comparison of near bed orbital velocity and acceleration time series 
computed by Eqs. (9) and (17). 
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accuracy. By using Eq. (9) instead of Eq. (3) as the boundary condition of 
Eq. (1), one can conveniently obtain the analytical solution of the 
laminar boundary layer beneath forward-leaning waves. 

4. Results of boundary layer solution and discussion 

4.1. Velocity, bottom shear stress and boundary layer thickness 

The theoretical results displayed hereafter for the velocity, bottom 

shear stress and boundary layer thickness are acquired by 10-term series 
of Eqs. (11) and (13), namely N = 10, to achieve sufficient accuracy for a 
wide range of waves from sinusoidal waves to near breaking waves (β =
0.5–0.8). The periodic variation of bottom shear stress and the velocity 
for different β are plotted in Fig. 7. As Fig. 7 shows, the nonlinearity of 
the forward-leaning wave gets stronger and the waveform of the velocity 
process becomes steeper as β increases. The bottom shear stress follows 
the same rule, as shown in the lower panel of Fig. 7. Fig. 8 demonstrates 
the maximum and minimum bottom shear stress. The maximum and 
minimum bottom shear stress grow and decrease respectively with β, 
and the changing rate of the maximum is larger than that of the mini
mum. Fig. 9 presents the phase lag between the free-stream velocity and 
bottom shear stress. It can be seen that the phase lag decreases obviously 
from 45◦ for the sinusoidal wave with increasing β. And the phase lag at 
the crest is larger than that at the trough because of the acceleration 
asymmetry. 

The dimensionless boundary layer thickness, which is normalized by 

the Stokes layer thickness δ =

̅̅̅̅
2ν
ω

√

, is plotted in Fig. 10, where δc and δt 

are the boundary layer thickness at the wave crest and trough as defined 
in Jensen et al. (1989). δc and δt , respectively, decreases and increases 
almost linearly as β increases. Both δc and δt approach to 3π

4 , the coun
terpart values of sinusoidal waves (Jensen et al., 1989; Tanaka et al., 
1998) when β decreases to 0.5. In addition, δc is always smaller than δt 
because of the shorter time for the increase of velocity to the maximum 
at crest than that at the trough. 

4.2. Comparison with numerical results 

Now let us discuss the applicability of Eqs (11) and (13) by 
comparing the theoretical results with numerical results obtained based 
on the numerical model described in Section 2. The numerical simula
tions are carried out for different flow regimes. The flow regime is 
divided into four stages based on the Reynolds number according to 
Jensen et al. (1989): laminar flow (Reδ ≤ 100), disturbing laminar flow 
(100 < Reδ ≤ 550), intermittent turbulent flow (550 < Reδ ≤ 3500), 
and fully developed turbulence (Reδ > 3500). 

4.2.1. Bottom shear stress 
The left panels in Figs. 11 and 12 show the theoretical (dots calcu

lated by Eq. (13)) and numerical (curves) periodic variation of dimen
sionless bottom shear stress at different Reynolds number for β = 0.55 
and β = 0.8, respectively. The right panels are enlargements of the pink 
rectangles in the left panels with the curves for Reδ over 1500 omitted. 

As the left panel of Fig. 11 shows, the bottom shear stress increases 
with Reδ. In particular, the increase is notable in the flow regime of fully 
developed turbulence. The theoretical results of dimensionless bottom 
shear stress show a perfect agreement with the numerical calculations 

Fig. 7. Periodic variation of velocity (upper) and bottom shear stress (below) 
for different β. 

Fig. 8. The change of maximum and minimum bottom shear stress with β.  

Fig. 9. The change of phase lag between free-stream velocity and bottom shear 
stress with β. 

Fig. 10. The change of boundary layer thickness with β.  
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when Reδ ≤ 200. In addition, the theoretical results agree with the nu
merical results very well when 200 < Reδ ≤ 550. Even if Reδ = 800, the 
theory can roughly predict the numerical results with reasonable 
discrepancy near the maximum velocity under wave crest and the 

minimum under wave trough, which is mainly attributed to stronger 
turbulence. A similar conclusion can be drawn from Fig. 12 for β = 0.8, 
although the difference between the theoretical and numerical results 
near the wave crest is more evident than compared with that in Fig. 11. 

Fig. 11. The periodic variation of bottom shear stress for β = 0.55. The right panel is enlargement of the pink rectangle in the left panel with the curves for Reδ over 
1500 omitted. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 12. The periodic variation of bottom shear stress for β = 0.8. The right panel is enlargement of the pink rectangle in the left panel with the curves for Reδ over 
1500 omitted. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Periodic averaged error of bottom shear stress.   

Reδ = 100 Reδ = 200 Reδ = 400 Reδ = 550 Reδ = 800 Reδ = 1500 Reδ = 4000 

β = 0.55 0.027 0.024 0.047 0.063 0.29 0.91 2.28 
β = 0.8 0.015 0.020 0.055 0.076 0.11 0.69 1.90  

Table 3 
Maximum error of bottom shear stress.   

Reδ = 100 Reδ = 200 Reδ = 400 Reδ = 550 Reδ = 800 Reδ = 1500 Reδ = 4000 

β = 0.55 0.042 0.040 0.078 0.11 0.57 1.60 3.82 
β = 0.8 0.057 0.070 0.15 0.20 0.27 1.56 4.11  

Table 4 
Distribution of error for β = 0.55 (unit: %).   

≤0.01 >0.01 
≤0.05 

>0.05 
≤0.1 

>0.1 
≤0.2 

>0.2 
≤0.5 

>0.5 

Reδ = 100 28.8 71.2 0 0 0 0 
Reδ = 200 25.7 74.3 0 0 0 0 
Reδ = 400 15.1 50.1 34.8 0 0 0 
Reδ = 550 10.1 43.2 40.9 5.8 0 0 
Reδ = 800 2.0 8.1 10.3 28.9 44.2 6.5 
Reδ = 1500 1.3 4.8 5.3 10.0 22.8 55.8 
Reδ = 4000 0.5 1.7 2.3 4.8 11.7 79.0  

Table 5 
Distribution of error for β = 0.8 (unit: %).   

≤0.01 >0.01 
≤0.05 

>0.05 
≤0.1 

>0.1 
≤0.2 

>0.2 
≤0.5 

>0.5 

Reδ = 100 75.5 21.8 2.7 0 0 0 
Reδ = 200 52.2 42.5 5.3 0 0 0 
Reδ = 400 10.8 67.7 13.1 8.4 0 0 
Reδ = 550 5.8 62.7 20.9 10.6 0 0 
Reδ = 800 3.2 57.2 22.2 10.5 6.9 0 
Reδ = 1500 2.1 10.9 12.1 14.1 19.4 41.4 
Reδ = 4000 1.0 9.3 3.3 5.4 15.5 65.5  
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To further make quantitative consideration on the applicability of 
Eq. (13), the periodic averaged error and the maximum error between 
calculations from Eq. (13) and the numerical results are computed. The 
periodic averaged error is obtained based on Eq. (14), by replacing the 
velocity with bottom shear stress and Uc by ρUc(ων)0.5, the maximum 
bottom shear stress of sinusoidal oscillatory flow in laminar condition. 
And the error at different phase is the ratio of the difference between the 

numerical and theoretical bottom shear stresses to ρUc(ων)0.5. The 
maximum error is the maximum of the errors at all phases. 

As shown in Table 2, the periodic averaged errors are less than 0.08 
when Reδ≤550, and less than 0.3 when Reδ = 800. When Reδ≥1500, the 
errors are greater than 0.5. The maximum errors, given in Table 3, are 
about twice as much as the corresponding periodic averaged errors. 
Table 4 and Table 5 present the phase proportion in a wave cycle for 

Fig. 13. Comparison between theoretical and numerical velocity profiles for β = 0.55. The lines and circles show the theoretical results of Eq. (11) and the numerical 
results, respectively. Different colors represent different phases. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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different error ranges for β = 0.55 and β = 0.8, respectively. The dis
tribution of the errors in these two tables further demonstrate that Eq. 
(13) is able to provide accurate prediction of bottom shear stress when 
Reδ≤550. When Reδ = 800, the phase proportion of the errors less than 
0.1 is more than 80% for β = 0.8, but it is about 20% for β = 0.55. The 
discrepancies in some phases may be partly due to the development of 
turbulence, because for the Reynolds number from disturbing laminar to 
intermittent turbulent flow, the increase of the degree of forward 

leaning of the wave shape tends to inhibit the development of turbulence 
to some extent due to less time of fluid acceleration (Scandura et al., 
2016). Overall, Eq. (13) is capable of accurately predicting the bottom 
shear stress in laminar and disturbing laminar flow regimes, and can be 
roughly extended to the intermittent turbulent flows for Reδ ≤ 800. 

4.2.2. Velocity profile in the boundary layer 
Comparisons of the velocity in the boundary layer at different Rey

Fig. 14. Comparison between theoretical and numerical velocity profiles for β = 0.8. The lines and circles show the theoretical results of Eq. (11) and the numerical 
results, respectively. Different colors represent different phases. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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nolds numbers between the numerical and theoretical (obtained by Eq. 
(11)) results for β = 0.55 and β = 0.8 respectively are provided in 
Figs. 13 and 14. For Reδ ≤ 800, the agreement between the theoretical 
and numerical results is perfectly good for both cases of β = 0.55 and 
β = 0.8, except for some discrepancy found near the phases of flow 
reversal in the case of Reδ = 800 and β = 0.8. For the cases of Reδ =

1500 and Reδ = 4000, the comparison shows distinct differences because 
of the stronger turbulence. 

Similarly, to further perform quantitative analysis on the applica
bility of Eq. (11), the periodic averaged errors at different vertical po
sitions and the maximum errors at different phases between results 
calculated by Eq. (11) and the numerical results are calculated. Here, the 
periodic averaged error is obtained similarly as that by Eq. (14) and the 
maximum errors at different phases are the maximum ratio of the dif
ference between the numerical and theoretical velocity to Uc in the 
vertical direction. 

As shown in Tables 6 and 7, the periodic averaged errors are lower 
than 0.03 when Reδ≤550 and around 0.15 when Reδ≥1500. When Reδ =

800, the errors are lower than 0.04 for β = 0.8 and lower than 0.12 for β 
= 0.55. The maximum errors, given in Tables 8 and 9, are lower than 
0.07 when Reδ≤550 and higher than 0.2 for most of phases when 
Reδ≥1500. When Reδ = 800, the maximum errors are lower than 0.09 for 
β = 0.8 and around 0.2 for β = 0.55. It is demonstrated that when Reδ =

800, accurate results can be obtained with the application of Eq. (11) as 
β increase, and one of the possible reasons is the shortening of acceler
ation stage. In summary, it is evident that the prediction of the velocity 
of the boundary layers in laminar and disturbing laminar flow regimes 
can be performed accurately by Eq. (11) and Eq. (11) can also be roughly 
applied to the intermittent turbulent flows for Reδ≤800. 

5. Conclusions 

A novel expression of the near bed orbital velocity beneath forward- 
leaning waves is worked out. It is a series in which the coefficients are 
invariable for arbitrarily forward-leaning waves and just depend on the 
order of expansion. While a few terms for this series are considered, 
accurate results can be obtained for the degree of forward leaning up to 
0.8, covering almost all forward-leaning waves in practice. Comparison 
with other series expressions evidently demonstrates that the conver
gence of the present formula can be achieved easily, and this formula 
can be readily utilized as wave forcing in laboratory experiment and 
numerical simulation of forward leaning waves. 

This new expression is then used as the boundary condition of the 
governing equation of the boundary layer beneath forward-leaning 
waves. Consequently, a theoretical solution of the laminar boundary 
layer beneath forward-leaning waves is derived by solving the governing 
equation via the method of variable separation. And the velocity and 
bottom shear stress of the laminar boundary layer beneath forward- 
leaning waves are readily obtained. Based on these theoretical results, 
the velocity, the bottom shear stress, the boundary layer thickness, and 
the phase lag between the free-stream velocity and bottom shear stress 
are analyzed and discussed. The waveforms of the periodic velocity and 
bottom shear stress become more asymmetrical as the degree of forward 
leaning increases. The maximum and minimum bottom shear stresses 
grow and decrease respectively with the increase of the degree of for
ward leaning. The phase lag between the free-stream velocity and bot
tom shear stress decreases obviously from 45◦ for sinusoidal waves with 
increasing degree of forward leaning. And the phase lag at the crest is 
larger than that at the trough because of the acceleration asymmetry. 
The boundary layer thickness at the wave crest and trough increases and 
decreases almost linearly with decreasing degree of forward leaning, 
respectively. Besides, both of them are approaching to the counterpart 
value of sinusoidal waves when the degree of forward leaning decreases 
to 0.5. The boundary layer thickness at the wave crest is always smaller 
than that at the trough because of the shorter time for the increase of 
velocity from zero to the maximum at the crest than that at the trough. 
These results may serve as some theoretical references for further 

Table 6 
Periodic averaged error of velocity at different heights for β = 0.55   

3/10 δ 5/10 δ 7/10 δ δ 2δ 4δ 6δ 

Reδ = 100 0.005 0.005 0.006 0.012 0.015 0.011 0.011 
Reδ = 400 0.003 0.008 0.012 0.019 0.017 0.005 0.004 
Reδ = 550 0.003 0.012 0.018 0.026 0.023 0.006 0.004 
Reδ = 800 0.078 0.11 0.12 0.11 0.079 0.077 0.051 
Reδ = 1500 0.16 0.17 0.17 0.14 0.15 0.13 0.099 
Reδ = 4000 0.18 0.14 0.11 0.11 0.20 0.19 0.16  

Table 7 
Periodic averaged error of velocity at different heights for β = 0.8   

3/10 δ 5/10 δ 7/10 δ δ 2δ 4δ 6δ 

Reδ = 100 0.003 0.003 0.004 0.004 0.004 0.006 0.007 
Reδ = 400 0.004 0.014 0.018 0.028 0.016 0.009 0.008 
Reδ = 550 0.005 0.018 0.024 0.029 0.021 0.011 0.009 
Reδ = 800 0.008 0.024 0.032 0.038 0.032 0.027 0.026 
Reδ = 1500 0.13 0.14 0.14 0.11 0.11 0.12 0.091 
Reδ = 4000 0.16 0.15 0.14 0.13 0.18 0.16 0.12  

Table 8 
Maximum error of velocity at different phases for β = 0.55   

0 π
5  

2π
5  

3π
5  

4π
5  

π 6π
5  

7π
5  

8π
5  

9π
5  

Reδ = 100 0.014 0.016 0.027 0.031 0.027 0.023 0.019 0.016 0.019 0.016 
Reδ = 400 0.019 0.018 0.033 0.035 0.029 0.021 0.016 0.022 0.029 0.026 
Reδ = 550 0.026 0.025 0.044 0.046 0.038 0.027 0.021 0.030 0.039 0.036 
Reδ = 800 0.29 0.17 0.084 0.20 0.29 0.21 0.13 0.10 0.20 0.25 
Reδ = 1500 0.24 0.19 0.21 0.24 0.21 0.15 0.12 0.31 0.25 0.19 
Reδ = 4000 0.22 0.21 0.27 0.35 0.26 0.20 0.14 0.26 0.27 0.29  

Table 9 
Maximum error of velocity at different phases for β = 0.8   

0 π
5  

2π
5  

3π
5  

4π
5  

π 6π
5  

7π
5  

8π
5  

9π
5  

Reδ = 100 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 
Reδ = 400 0.02 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.02 0.02 
Reδ = 550 0.02 0.07 0.06 0.04 0.03 0.02 0.02 0.02 0.01 0.02 
Reδ = 800 0.03 0.09 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 
Reδ = 1500 0.22 0.21 0.25 0.18 0.14 0.12 0.09 0.12 0.19 0.17 
Reδ = 4000 0.23 0.40 0.30 0.19 0.15 0.15 0.12 0.13 0.23 0.31  
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experimental and numerical investigation. 
Comparisons with detailed quantitative error analysis of velocity and 

bottom shear stress between the present theory and the numerical re
sults with increasing Reynolds numbers demonstrate that the theoretical 
solution is capable of accurately predicting the properties of the 
boundary layer in laminar and disturbing laminar flow regimes, and can 
be roughly extended to cover part of the intermittent turbulent flow 
regimes, although it is obtained for laminar flow. 
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Glossary 

a: Acceleration of free-stream velocity 
ak,m, Am: Coefficients of series expansion, k, m is the subscripts 
As: Degree of asymmetry 
N: Order of series expansion 
r: Waveform parameter 
Reδ: Reynolds number 
t: Time 
T: Wave period 
Tcu: Time duration for free-stream velocity increasing from zero to the maximum 
u: Horizontal velocity 
U, Ui(ex), Ui(ap): Free-stream velocity outside the boundary layer with the subscript i rep

resenting time index, and the subscripts (ex) and (ap) denoting the results of Eq. (3) 
and Eq. (9), respectively 

Uc: Velocity amplitudes 
z: Vertical coordinate 
α: A multiplier 
β: Degree of forward leaning 
δ: Stokes layer thickness 
δc: Boundary layer thickness at wave crest 
δt: Boundary layer thickness at wave trough 
ϕ: Phase lag between free-stream velocity and bottom shear stress 
ν: Kinematic viscosity of fluid 
τ: Shear stress 
τ*: Dimensionless shear stress 
τ0: Bottom shear stress 
τ*

0: Dimensionless bottom shear stress 
ω: Angular velocity 
ξ: Parameter to describe the acceleration skewness 
ζ: A coefficient adjust the degree of forward leaning of velocity 
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