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b Lab. MSSMat, CentraleSupélec, Université de Paris-Saclay, Gif sur Yvette, 91190, France 
c School of Aeronautics Sciences and Engineering, Beihang University, Beijing, 100191, China 
d University of Chinese Academy of Sciences,Beijing, 100049, China   

A R T I C L E  I N F O   

Keywords: 
Fluid-conveying pipe 
Axially-varying tension 
Dynamic characteristics and response 
Fluid-solid coupling 
WKB 

A B S T R A C T   

As oil and gas industry is developing towards deeper ocean area, the length and flexibility of ocean pipes become 
larger, which may induce larger-amplitude displacement of flexible pipe response due to lower structural stiff
ness against environmental and operational loads. Moreover, these pipes also convey internal flow. In other 
words, the dynamic characteristics and response of the flow-conveying pipe face great challenge, such as bucking 
and flutter. 

In this study, the dynamic characteristics and response of a flexible pipe, under internal flow and, particularly, 
axially-varying tension, are examined through our FEM numerical simulations. First, the governing equations 
and FEM models of a flexible pipe with axially-varying tension and internal flow are developed. Then the dy
namic characteristics, including the coupled frequency and modal shape, are presented. At last, the dynamic 
response and corresponding stability behaviors are discussed and compared with the cases of pipe with uniform 
tension. Our FEM results show that the stability and response are quite different from pipe with uniform tension. 
And, the time-spatial evolution of pipe displacement exhibits a profound wave propagation effect, e.g. the wave 
length and peak value/position significantly change along structural length and the mechanism is discussed 
based on the WKB solutions.   

1. Introduction 

The pipes with internal flow were widely used in marine engineer
ing, nuclear industry and oil exploitation. The dynamics of them is a 
typical fluid-solid coupling issue. The stability and response of them 
principally depends on the properties of internal flow and pipe structure, 
such as internal flow velocity, structural bending stiffness, axial tension 
and mass density. By now, there have been a large number of studies on 
the stability issue of the pipes with internal flow (Bourrières et al., 1939; 
Benjamin, 1961; Holmes, 1978; Gregory and Païdoussis, 1966a, 1966b), 
where the structural parameters are mostly uniform distributing along 
pipe length, or pipe tension keeps axially-constant. However, for a 
flexible pipe in deep water, the influence of the structural weight could 
not be negligible with the increasing structural length. Therefore, 
structure parameter, e.g. axial tension, would be no longer uniform 
along axial length. We may say that it is more challenging to study the 

stability and even dynamic response of a flexible pipe with 
axially-varying structural parameters. 

The dynamic behaviors of the pipes, considered as Euler or Timo
shenko beam, with internal flow have been studied fine in history. Early 
in 1855, Brillouin observed the self-excited vibrations of cantilever 
pipes. The first published study of dynamic behaviors of the pipes with 
internal flow was given by Bourrières (Bourrières et al., 1939), where 
the equation of motion was obtained and analysed carefully to come to a 
famous conclusion of stability. Considering a pipe conveying fluid is not 
“closed” systems but “open” systems, Benjamin (Benjamin, 1961) stud
ied a matter of pipe with internal flow via Lagrange method and ob
tained a formula that express energy transfer from fluid to pipe. By using 
this formula, the stability is divided into two kinds of stability. One is 
bucking instability; another is flutter instability. Holmes (Holmes, 1978) 
used a development of Liapunov’s second method to prove that the pipes 
supported at both ends do not have the flutter instability. Gregory and 
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Païdoussis (Gregory and Païdoussis, 1966a, 1966b) established firstly 
the equation of motion by using the element body, then verified the 
flutter instability of cantilever pipe via theoretical and numerical cal
culations and experiment. Their work found a phenomenon that the 
system appears unstable, regain stability and instability again with 

increasing the velocity of fluid in some specific mass ratio. Païdoussis 
and Issid (Païdoussis. M P, Issid N T, 1974) established the motion 
equation of normal pipes with internal flow considering the effect of 
Kelvin-Voigt constitutive law, tension, and gravity, etc. They considered 

Fig. 1. (a) Fluid element and (b) Pipe element.  

Fig. 2. Schematic of the pipe conveying fluid.  

Table 1 
Parameters of the pipe.  

Appendix A. Parameter Appendix B. Value 

Outside diameter 205.0 mm 
Inner diameter 150.0 mm 
Length 400.0 m 
Mass of pipe per unit length 30.0 kg/m 
Tensile stiffness 1.536e9N 
Mass of fluid per unit length 17.67 kg/m 
Bending stiffness 6.19e5Nm2 

Pretension T0 1, 0000.0 N  

Table 2 
Comparison of the pipe frequencies.  

Appendix C. 
Dimensionless tension 

Appendix D. 
Numerical 

Appendix E. 
Theoretical 

Appendix F. 
Differences (%) 

0.00 9.870 9.870 0.000 
0.20 8.829 8.828 0.015 
0.40 7.648 7.645 0.037 
0.60 6.247 6.242 0.068 
0.80 
0.90 
0.95 
1.00 

4.423 
3.132 
2.223 
0.273 

4.414 
3.121 
2.207 
0.000 

0.163 
0.353 
0.731  
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two cases of flow velocity that one was mean flow, the other was 
harmonically perturbed and obtained some conclusions that include the 
effect of viscous and viscoelastic dissipation diminish the extent of 
instability regions, etc. Païdoussis and Laithier (M, P, Païdoussis, et al., 
1976) studied the vibration question of the pipes with internal flow by 
using Timoshenko beam model and the element body and they solved 
the equation of motion by using the variational method and the finite 
element method. It was found that the transverse shear effect reduces 
the eigenfrequencies and critical flow velocities of the cantilever pipe. 
Païdoussis and Laithier (Laithier, B. E., and M. P. Païdoussis, 1981) 
utilized two kinds of considerations to derive the equation of motion. 
One was to think of the system as an “open” system that exist open 
surface that can transport momentum, which corresponding to the 
modified Hamilton’s principle; another was action of fluid that be 
viewed as external force, which corresponding to Hamilton’s principle. 
Based on these two considerations, two kinds of Hamiltonian expres
sions of the Timoshenko beam for transportation fluid were established. 
Païdoussis, Luu and Laithier (Païdoussis. M P et al., 1986), for short pipe, 
used means of the Timeoshenko beam theory and refined fluid me
chanics model that is based on potential flow theory to derive equation 
of motion. They obtained the non-dimensional critical velocity of a 
cantilever pipe as a function of the slenderness ratio by calculation and 
found that in contrast to plug-flow model, the eigenfrequencies and 
critical velocity increase for short pipes champed at both ends. The 
experimental results shown that refined fluid mechanics model is better 
than plug-flow theory. Pramila and Laukkanen (Pramila A et al., 1991) 
studied the pipes conveying fluid by using finite element method and 
Timoshenko beam element. The calculation results shown that a few 
elements are needed to obtain the critical velocities which is differ less 
than 1% from the ref (Païdoussis. M P et al., 1986). in undamped cases. 
Chen established the equation of motion of circular pipes by using 
Halmiton’s principle in (Chen S S, 1972a) and the element body in (Chen 
S S, 1972b). The results shown that the critical velocity decrease with 
increasing total angle and the mechanism of instabilities is same as 
straight pipes in (Chen S S, 1972a). When there is no displacement at the 
end, the system is conservative system that subject to buckling-type 
instability. When the pipes are allowed to move at the ends, the sys
tem is non-conservative system that subject to buckling-type and 
flutter-type instability. Chen (Chen, S S, 1973) used Hamilton’s principle 
to derive equation of space motion, which found that in-plane motion 
and out-of-plane motion is no coupling. Dai (Dai et al., 2013) studied 
fluid-conveying cantilevered pipe consisting of two segments made 
different materials by using the finite element method. For a hybrid pipe 
consisting of two segments with in identical lengths, it is easier to lose 

Fig. 3. Comparison of the numerical and theoretical results of the first- 
order frequency. 
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stability for soft pipe segment at the clamped end than for hard pipe 
segment at clamped end. When two segments with in identical length, 
they calculated first four modes and found the flutter instability may 
occur in any of first four natural modes with the position or material of 
segment changed. When a material with greater stiffness is located at the 
fixed end, its characteristic frequency is greater than when the material 
with less stiffness is located at the fixed end. Meng (Meng et al., 2017) 
studied the dynamic behaviors of marine pipe undergoing both internal 
and external flow by using the Euler-Bernoulli beam theory and the 
finite element method. The critical internal flow velocity increases with 
the increase of internal flow velocity. When Montoya-Hernández 
(Montoya-Hernandez et al., 2014) studied the dynamic behaviors of 
multiphase flow with solid, liquid and gas in marine pipe transportation, 
multiphase flow model simplified to a homogenous model by using the 
weights method. Dai (Dai et al., 2014) derived the nonlinear dynamic 
equation of a pipe with both ends under the action of internal and 
external flow based on the Hamilton’s principle and the Galerkin dis
cretization. Reza(Reza Bahaadini, et,al. 2018) used the extended 
Galerkin approach to study a stability of a composite thin-walled 
cantilever pipe conveying fluid and supported at free end by linear 
translational and rotational springs. Geng(Geng Peng, et,al. 2018) 
investigated axial and transverse non-linear vibrations of a simply sup
ported pipe conveying fluid by using the Galerkin’s method. A pipe 
conveying fluid problem with a linear ramp distribution of the density 
along the pipe was studied by B.Giacobbi(B.Giacobbi, et al. 2020). The 
CFD-FEA simulations and the Galerkin’s method were often adopted. 

It is noted that most of the current researches focus on structures 
with axially-uniform properties. In practice, for a flexible pipe in deep 
water, its structure parameter, e.g. axial tension, is no longer uniform 
along pipe length. And, by now, few reports have been seen on dynamic 
response, rather than stability problem, of a pipe with internal flow. In 
this study, the dynamic characteristics, i.e. the natural modal shape and 
frequency along with the dynamic response of a pipe with axially- 
varying tension are examined. As a comparison, the results of a 
simplified model, a uniform pipe, are also calculated. Our numerical 
results show that the dynamic behaviors, i.e. the modal shapes and 
dynamic responses, are significantly different from the pipe with uni
form tension. 

2. Models 

2.1. Governing equation 

The equation of motion of a vertical pipe conveying fluid is derived 
by using the element body and the Newton’s second law. 

For the fluid element in Fig. 1(a), we can obtain the equilibrium 
equation by using the Newton’s second law: 

− A
∂p
∂x

− qs + mf g + F
∂y
∂x

= 0 (1)  

F +A
∂
∂x

(

p
∂y
∂x

)

+ qs
∂y
∂x

+mf

(
∂
∂t
+ V

∂
∂x

)2

y= 0 (2)  

where y is the transverse displacement, V is the flow velocity, qis the 
shear stress on the internal surface of the pipe, s is the inner perimeter of 
the pipe, and mf is the mass of the internal fluid per unit length. Simi
larly, for the pipe element (Fig. 1(b)) we have 

∂T
∂x

+ qs + mPg − F
∂y
∂x

= 0 (3)  

∂Q
∂x

+F +
∂
∂x

(

T
∂y
∂x

)

+ qs
∂y
∂x

− mP
∂2y
∂x2 = 0 (4)  

Q= −
∂M

∂x
= − EI

∂3y
∂x3 (5)  

where Fis the transverse force per unit length between pipe wall and 
fluid, M is the bending moment, EIis the bending stiffness, and mpis the 
mass of pipe per unit length. Then we can get the governing equation of 
fluid-solid dynamics of a vertical pipe conveying fluid as 

EI
∂4y
∂x4 +

[
mf V2 −

(
mf +mp

)
g(L − x)

] ∂2y
∂x2 + 2mf V

∂2y
∂x∂t

+
(
mf +mp

)
g

∂y
∂x

+
(
mf +mp

) ∂2y
∂t2 = 0

(6)  

where g is the gravitational acceleration. By comparison with the 
equation of motion of a beam with variable tension: 

EI
∂4y
∂x4 +

∂
∂x

(

T(x)
∂y
∂x

)

+mp
∂2y
∂t2 = 0 (7) 

Here, the second and the fourth term on the left side of Eq. (1), which 
essentially describe the effect of fluid centrifugal force and fluid
&structure gravity respectively, can be expressed in terms of a axially- 
varying tension as follow 

T(x)=mf V2 −
(
mf +mp

)
g(L − x) (8)  

where T(x) represents a compressive effect when it is plus, while it 
represents tension effect when it is minus. We can see that the axial 
tension T(x) is linearly-varying along the pipe length as shown in Fig. 2. 

Defining the dimensionless quantities: 

ξ=
x
L
, η= y

L
, τ=

(
EI

mf + mp

)1
2 t
L2, u=

(mf

EI

)1
2
LV, β=

mf

mf + mp
,

γ =
(
mf + mp

)
L3

EI
, ζ=

TL2

π2EI
(9) 

Equation (6) can be rewritten in the dimensionless form: 

Table 3 
Comparison of the pipe frequencies.  

Appendix G. u  Appendix H. Case 1(ω)  Appendix I. Case 2(ω)  

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

0 425.361 868.446 1314.352 513.537 1027.604 1542.729 
5 424.744 867.300 1312.677 513.185 1026.898 1541.847 
10 422.892 863.685 1307.563 512.215 1024.959 1538.849 
15 419.806 857.600 1298.922 510.539 1021.696 1533.911 
20 415.309 849.047 1286.665 508.247 1017.023 1527.033 
25 409.313 837.673 1270.617 505.249 1011.027 1518.127 
30 401.730 823.212 1250.337 501.545 1003.708 1507.194  
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∂4η
∂ξ4 +

[
u2 − γ(1 − ξ)

] ∂2η
∂ξ2 + 2β

1
2u

∂2η
∂ξ∂τ+ γ

∂η
∂ξ

+
∂2η
∂τ2 = 0 (10) 

Regarding the motion of the pipe is a periodic vibration, motions of 
the form η = Y(ξ)eiωτ are considered. The dimensionless frequency ω can 
be expressed by the dimensional radian frequency Ω as 

ω=
(mf + mp

EI

)1
2L2Ω (11)  

2.2. FEM approach 

The pipe is uniformly divided into n two-node Euler beam elements. 
For representativeness and simplicity, only the translation displace
ments in x-y plane [ui, vi] and one rotation degree θiaround zaxis, of per 
node, are considered. Then the governing equation of the pipe with 
many DOFs (degrees of freedom) can be written as follow: 

Fig. 5. Comparison of the first three modal shapes (a) the first mode at u = 0 (b) the first mode at u = 10 (c) the first mode at u = 64 (d) the second mode at u = 0 (e) 
the second mode at u = 10 (f) the second mode at u = 64 (g) the third mode at u = 0 (h) the third mode at u = 10 (i) the third mode at u = 64. 
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MÜ +CU̇ + KU = 0 (12)  

where M is the mass matrix including the fluid mass and the structure 
mass, C is the damping matrix considering the interaction between fluid 
and structure, and Kis the stiffness matrix. Uis the displacement vector. 
The displacement vector of the beam element is: 

Ui = [ui, vi, θi, ui+1, vi+1, θi+1], i= 1, ..., n (13) 

In Eq. (1), the third term of the left-side represents the Coriolis force 
which is usually considered as damping effect to system. The damping 
matrix of the element is calculated as follows: 

Ce = 2mf V⋅NT ⋅
∂N
∂x

(14)  

where N is the shape function matrix of the beam element, and the 
damping matrix C of the whole structure can be obtained by assembling 
the damping matrix Ce of all elements. 

To solve governing equation (12) of the pipe, an in-house code was 
implemented (Laithier and Païdoussis, 1981; Guo et al., 2018; Li et al., 
2020), and the Newmark method is employed here to adjust the distri
bution of the structural acceleration and velocity in the code. The 
interpolation functions of the displacement and acceleration are written 
as: 

U̇t+Δt = U̇t +

[

(1 − ϕ)Üt + ϕÜt+Δt

]

Δt

Ut+Δt = Ut + U̇tΔt +
[(

1
2
− α

)

Üt + αÜt+Δt

]

Δt2

(15)  

2.3. Model parameters 

In this study the dynamic characteristics, i.e. the natural modal shape 
and frequency along with the dynamic response of a vertical pipe with 
axially-varying tension, are examined under different internal flow ve
locities. The results of the simplified model (pipe with uniform tension) 
are also calculated as a comparison. The two analysed models, with 
different axial tension conditions, are shown in Fig. 1. Ttop represents the 
top tension and Tbottom represents the bottom tension. The pipes are 
simply supported at top and bottom ends, and its main structural and 
fluid parameters are presented in Table 1. 

Regarding the axial tension of the vertical pipe, one is composed of 
pre-tension T0 and the other is tension caused by the structural gravity. 
In Case 1, the actual gravity distribution along pipe length is considered, 
and the axial tension component caused by the pipe gravity gradually 
decreases along the length (x-axis direction) of the pipe, as shown in Eq. 
(8). In Case 2, as a simplified model, the part of the axial tension caused 
by the gravity is assumed as a uniform tension, which equal to the 
average value the structural gravity, i.e.0.5G And, Gis the gravity of the 
pipe (including internal flow, G = (mf + mp)gL). 

3. Numerical results and discussions 

The dynamic characteristics of a vertical pipe with different internal 
flow velocities are calculated through our model and the influence of the 
axially-varying tension on the modal shape of the pipe will be analysed. 
Furthermore, the responses of the vertical pipe caused by the periodic 
motion of the top-end point are presented and the influences of the flow 
velocity and axial tension variation on the displacement response and its 
temporal-spatial evolution of the pipe will be studied. 

Fig. 6. The RMS curve of pipe displacement at u = 0, 21, 43, 60, 64 and 65 (a) Case 1 (b) Case 2.  

Fig. 7. The response of pipe displacement with dimensionless parameterξ = 0.1 and 0.93 at u = 10 (a) Case 1 (b) Case 2.  
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3.1. Model verification 

To verify our numerical model, the first-order frequencies of the pipe 
under different axial compressive force are calculated and compared 
with the theoretical results. The pipe frequencies are shown in Table 2 
and Fig. 3. The velocities and frequencies are all dimensionless. It can be 
seen that the calculated frequencies agree well with the theoretical ones 
(the difference is less than 1.0%). 

3.2. Inherent dynamic characteristics 

Fig. 4 shows the plots of the natural frequency versus the internal 
flow velocity. It is seen that, owing to the axially-varying tension, the 
frequency becomes smaller than the pipe with uniform tension, e.g. by 
20.7% and 18.7% for the first two frequencies as u = 0. The frequency 
difference increases with increasing flow velocity. With the increase of 
the internal flow velocity, the frequency gradually decreases. And the 
first-order frequency drops very close to zero, or the pipe losses its sta
bility when the dimensionless velocity u approaches to about 68. But the 
frequencies of the uniform axial tension model do not change obviously, 
see Table 3. This is mainly because that, with increasing flow velocity, 
the tension at the bottom end of the pipe in Case 1 becomes much 
smaller than in Case 2. In other words, the critical velocity of the pipe 
with axially-varying tension gets smaller, that should be paid careful 
attention during stability analysis of a pipe in deep water. 

The comparisons of the first three modal shapes, at different flow 
velocities, are shown in Fig. 5. Interestingly, the modal shape is no 
longer symmetric/anti-symmetric about the midpoint of the pipe. In 
other words, the modal wave length gets smaller while the wave 
amplitude gets larger, owing to the axially-varying tension. And, the 

maximum modal amplitude moves toward the position with smaller 
axial tension. 

3.3. Dynamic responses 

In this section, the dynamic response of the pipe caused by top-end 
motion is analysed at different flow velocities. The top-end frequency 
is selected as the 3rd bending frequency of the pipe, and the motion 
amplitude is 10 m. 

For the pipe with axially-varying tension, the root mean square 
(RMS) of displacements under different internal flow velocities is pre
sented in Fig. 6(a). It can be seen that with the increase of velocity, the 
displacement response of the pipe increases gradually, because the axial 
compression caused by internal flow results in a decrease of the pipe 
stiffness. In addition, it can be seen that the maximum displacement 
occurs near the area close to the bottom-end where the tension is 
smaller, which lead to the curvature of bottom-end to be larger than in 
Case 2. Therefore, we may say if simplified model in Case 2 is used to 
simulate a pipe with axially-varying tension, it will underestimate the 
bending moment at the pipe bottom and increase the risk of structure 
safety in practice. And, owing to the decreasing tension, the displace
ment response of the top-end could be amplified during its propagating 
along pipe length. However, as shown in Fig. 6(b), the displacement 
response of the top-end is reduced during its propagating along pipe 
length. This is mainly due to the Coriolis force, which is corresponding 
to damping effect. 

As a comparison, the response of the pipe under uniform axial ten
sion is shown in Fig. 7(b). On the contrary, the response of the pipe with 
uniform axial tension gradually decreases along the length of the pipe. 

Considering axially-varying tension, the temporal and spatial 

Fig. 8. Temporal-spatial evolution of riser displacement for Case 1 (a) u = 0 (b) u = 10 (c) u = 43(d) u = 64.  
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evolutions of the pipe displacement are presented in Fig. 8. Obvious 
wave propagation characteristics can be seen in Fig. 8. Generally, there 
exists three standing waves over the whole length, and the wavelength 
gets significantly smaller during propagation along the pipe length. With 
the increase of internal flow velocity, the wavelength of the first 
standing wave increases, and the peak position of the third wave moves 
down to the bottom-end. This phenomenon is consistent with the RMS 
result shown in Fig. 6(a). 

As a comparison, the wavelength and peak position have no obvious 
change for case of the pipe with uniform tension, as shown in Fig. 9. It is 

also noted that the displacement amplitude is larger, up to 19.7%, than 
the uniform tension pipe owing to the axially-varying tension. 

3.4. Discussions 

To theoretically explain the changes of the amplitude and wave
length along the axis, firstly, we consider the case of constant tension, 
namelyT = mf V2. The governing equation is 

EI
∂4y
∂x4 +mf V2∂2y

∂x2 + 2mf V
∂2y
∂x∂t

+
(
mf +mp

) ∂2y
∂t2 = 0 (16) 

Fig. 9. Temporal-spatial evolution of riser displacement for Case 2 (a) u = 0 (b) u = 10 (c) u = 43(d) u = 64.  

Fig. 10. Modal shapes and tension along the pipeline.  Fig. 11. Wavelength changes along the pipeline.  
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Assuming the solution of Eq. (16) isy = ei(kx− Ωt), kis wave number and 
Ωis frequency. Substitute y = ei(kx− Ωt)[fx] into Eq. (16), the dispersion 
equation can be got as 

EIk4 − mf V2k2 + 2mf VkΩ −
(
mf +mp

)
Ω2 = 0 (17) 

In general, the solution kof Eq. (17) is a function of Ω, then we can 
solve the Ω by using the boundary conditions. Here, we firstly solve the 
Ω by using finite element method and then substitute the Ω into Eq. (17). 
Accordingly, the solution of Eq. (16) can be got and k1, k2, k3 and k4 are 
obtained by solving Eq. (17). The general solution is 

y= α1ei(k1x− Ωt) + α2ei(k2x− Ωt) + α3ei(k3x− Ωt) + α4ei(k4x− Ωt) (18)  

whereα1, α2, α3 and α4 are constant. The boundary conditions are 
{

y(0, t) = 0
y(L, t) = 0 ​

{
y′′(0, t) = 0
y′′(L, t) = 0 (19) 

The prime represents the derivative with respect to x. Substitute (18) 
into (19), we can obtain 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α1 + α2 + α3 + α4 = 0
k2

1α1 + k2
2α2 + k2

3α3 + k2
4α4 = 0

eik1Lα1 + eik2Lα2 + eik3Lα3 + eik4Lα4 = 0
k2

1eik1Lα1 + k2
2eik2Lα2 + k2

3eik3Lα3 + k2
4eik4Lα4 = 0

(20) 

Simplifying Eq. (20), we get 

y=
(
Aeik1x +Beik2x +Ceik3x + eik4x)α4e− iΩt (21)  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A=

(
k2

2 − k2
1

)(
k2

3 − k2
4

)
eik2L +

(
k2

3 − k2
1

)(
k2

4 − k2
2

)
eik3L +

(
k2

4 − k2
1

)(
k2

2 − k2
3

)
eik4L

(
k2

2 − k2
1

)(
k2

3 − k2
1

)
(eik3L − eik2L)

B=

(
k2

4 − k2
1

)
(eik4L − eik3L)

(
k2

2 − k2
1

)
(eik3L − eik2L)

C=

(
k2

4 − k2
1

)
(eik4L − eik2L)

(
k2

3 − k2
1

)
(eik3L − eik2L)

(22) 

So the function of modal shape Y(x)can be written as 

Y(x)=Re
(
Aeik1x +Beik2x +Ceik3x + eik4x) (23) 

Because we only consider the variation of modal shape along the 
axis, α4 is neglectable. For the case of variable tension, replacingT =

mf V2 with T(x) = mf V2 − (mf + mp)g(L − x). When the dimensionless 
velocity u is 10, we can get the variation of modal shape along the axis as 
shown in Fig. 10. 

Fig. 10 shows that the amplitude of each point on the beam increases 
along the axial direction as the tension decreases from the top end to 
bottom end. The axial force changes from tension to compressive force 
when it is closer to the bottom end, which cause the amplitude of the 
points on the bottom of the beam increases sharply. 

As for wavelength changes along the pipe length, we firstly consider 
the case that T′ is infinitesimal. If the tension is constant, the amplitude 
and wavelength is constant. Accordingly, we can assume that the vari
ation of amplitude of modal shape and wavelength is infinitesimal 
whenT′ is infinitesimal. Based on this assumption, the WKB solution is 
employed. 

The Wentzel-Kramers-Brillouin (WKB) approximation method is 
used to obtain the approximate solution of the one-dimensional sta
tionary Schrödinger equation. It is assumed that a particle with energy E 
passes through the region of potential energy V(x), where V(x) is a 
constant, when E > V, the form of the wave function is: 

ψ(x)=Ae±ikx, k=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2m(E − V)/ℏ

√
(24) 

A being positive means the particle moves to the right, while 

negative means it moves to the left. The wave function is an oscillating 
function, with a fixed wavelength (λ = 2π/k) and a constant amplitude 
A. If V(x) is not a constant, but the change is very slow compared to λ, 
Consequently, in the regions that contain many full-wavelength, po
tential energy can be considered basically constant. In this way, in 
addition to the slow change of wavelength and amplitude with x, it is 
reasonable to think that ψ actually still maintains a sinusoidal form. That 
is, one can assume: 

ψ(x)=A(x)e±iϕ(x) (25) 

The governing equation is 

EI
∂4y
∂x4 +

∂
∂x

(

T
∂y
∂x

)

+ 2mf V
∂2y
∂x∂t

+
(
mf +mp

) ∂2y
∂t2 = 0 (26) 

Assuming the solution of Eq. (24) is 

y = Y(x)eiΩt,Y(x) = a(x)eiθ(x) (27)  

and 

dθ(x)
dx

= k(x) =
2π

λ(x)
(28)  

where a(x), k(x) and λ(x) are amplitude of modal shape, wave number 
and wavelength, respectively. Substituting Eq. (27) and Eq. (28) into Eq. 
(26) and neglecting infinitesimal, we can obtain the equation as 

EI
(
k4a − 6ik′ k2a − 4ik3a′)

+ T
(
ik′a − k2a+ 2ika′)

+ T ′

(ika+ a
′

)

− 2mf V2Ωi(ika+ a′

) −
(
mf +mp

)
Ω2a= 0 (29) 

Neglecting the infinitesimal terms, the dispersion equation can be 
written as 

EIk4 − Tk2 + 2mf VkΩ −
(
mf +mp

)
Ω2 = 0 (30) 

Substituting Eq. (30) into Eq. (29), Eq. (29) can be simplified to the 
following form 

a
(
− 6EIik′ k2 + iTk′

+ iT ′ k
)
+ 2a′

(

− 2EIik3 + ikT +
1
2

T ′

− mf VΩi
)

= 0

(31) 

Multiplying both sides of Eq. (31) by a(x) and considering that the 
tension T varies linearly along the axis, Eq. (31) is transformed into 
following form 
(

2EIk3 − kT +mf VΩ+
1
2

T ′ i
)

a2 = constant (32) 

When velocity of flow is small, the frequency ω is a real number. 
Retaining the real part of Eq. (32), we have 
(
2EIk3 − kT +mf VΩ

)
a2 = constant (33) 

It is noted that when T′ is not infinitesimal, Eq. (33) still may be used 
to qualitatively explain the relationship between tension and wave
length. Combining Eq. (23) and Eq. (33), the relationship between 
tension and wavelength can be shown in Fig. 11, which dimensionless 
velocity u is 10. The figure shows that the wavelength decreases when 
the tension decreases along the axial direction. The small fluctuation in 
the curve at the bottom end is mainly due to the numerical calculation, 
where the value of wave length is very close to zero. 

4. Conclusions 

In this study the dynamic characteristics, stability and response of a 
fluid conveying pipe, under consideration of non-uniform axial tension, 
are examined through our FEM numerical simulations. The influences of 
axially-varying tension on the frequency, modal shape and dynamic 
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response are presented. Our numerical results show that: 
31. The non-uniform tension has significant impacts on the dynamic 

characteristics and response of the pipe. Owing to the axially-varying 
tension, the frequency is smaller than the pipe with uniform tension, 
e.g. by 20.7% and 18.7% for the first two frequencies as u = 0. The 
modal wave length gets smaller while the wave amplitude gets larger, 
and the maximum modal amplitude moves toward the position with 
smaller axial tension. The critical velocity of the pipe with axially- 
varying tension gets smaller, that should be paid careful attention dur
ing stability analysis of a pipe in deep water. The displacement response 
of the top-end could be amplified during its propagating along pipe 
length. The maximum displacement occurs near the area close to the 
bottom-end, and the displacement amplitude is larger, up to 19.7%, than 
the uniform tension model. 
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