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ABSTRACT

A new one-equation eddy-viscosity model based on subgrid-scale (SGS) helicity is introduced in this paper for large-eddy simulation (LES)
of turbulent flows. First, the governing equation of SGS helicity is deduced from the incompressible Navier–Stokes equations, and it reflects
the transfer of the small-scale helicity that has been filtered out. We deduce a certain functional relation between the eddy viscosity and SGS
helicity based on the kinetic energy and helicity spectra in the homogeneous and isotropic helical turbulence. For improving the accuracy,
each unclosed term in the governing equation of SGS helicity is modeled independently, and the coefficients of these unclosed terms are
constants or are determined dynamically. The new one-equation eddy-viscosity model is first tested and validated in the simulation of the
homogeneous and isotropic helical turbulence. The a priori tests from the direct numerical simulation of forced homogeneous and isotropic
turbulence show that the energy and helicity fluxes exhibit scale invariance in the inertial subrange. Additionally, the a posteriori tests
demonstrate that the constant-coefficient and dynamic SGS helicity equation models can predict both the energy and helicity spectra more
precisely than the common SGS models. For the LES of channel flow, the SGS helicity equation model can accurately predict the mean
velocity, the turbulent stress, and the viscous shear stress and supply more abundant flow structures than the compared SGS model under
the same grid resolution.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0038165

I. INTRODUCTION

Large-eddy simulation (LES) plays an important role in the numer-
ical simulation of turbulent flows, specifically in high Reynolds number
turbulence. Through low-pass filtering of the Navier–Stokes equations,
the small-scale field is filtered out, and the filtered Navier–Stokes equa-
tions exhibit an unclosed term, which is the subgrid-scale (SGS) stress.

In the current LES, a commonly used SGS stress model is the
eddy-viscosity model. The constant-coefficient Smagorinsky model
(SM) is the first SGS eddy-viscosity model proposed by Smagorinsky1

and Lilly.2 Chollet3 suggested the spectral eddy-viscosity model based
on eddy-damped quasi-normal Markovian theory (EDQNM). Then,
the Germano identity4 was introduced to dynamically calculate the
coefficient of the Smagorinsky model, resulting in the current dynamic
Smagorinsky model (DSM). By modifying the eddy viscosity of SM to
satisfy the near-wall scaling behavior, Nicoud and Ducros5 proposed a
wall-adapting local eddy viscosity (WALE) model, which can improve
the prediction of the wall stress rate.

Vreman6 proposed an eddy-viscosity model (Vreman model). Its
eddy viscosity can vanish when the SGS dissipation trends to zero,

which guarantees to predict turbulence and transitional flow ade-
quately. The SGS kinetic energy transport equation was introduced by
Schumann7 to solve the eddy viscosity of the SGS stress model (k-
equation model), and it succeeded in predicting turbulent channel
flow. With the aid of the statistical results obtained from the two-scale
direct interaction approximation (DIA), Yoshizawa8 constructed an
SGS kinetic energy model and determined the experiential coefficients
of the modeled terms in the SGS kinetic energy transport equation,
which is the most commonly used one-equation SGS model. Ghosal
et al.9 applied the dynamic procedure to the SGS kinetic energy models
(dk-equation), and the coefficients of the one-equation model can be
determined dynamically. The dynamic one-equation model can effec-
tively improve the prediction results of high Reynolds number turbu-
lence. Using the infinite series expansions for the unclosed terms,
Pomraning and Rutland10 suggested a new dynamic one-equation
non-viscosity LES model. With the aid of the SGS kinetic energy trans-
fer equation, Chai and Mahesh11 presented a new dynamic eddy-
viscosity model for large eddy simulation of compressible turbulence.
In addition to the eddy-viscosity model, there are still some other types
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of SGS models. Based on the scale similarity hypothesis, Bardina
et al.12 and Liu et al.13 obtained the scale similarity model.
Considering the subgrid geometrical eddy structure, Misra14 proposed
the stretched-vortex model. Clark et al.15 and Vreman et al.16 put for-
ward the gradient model (GM) using different expansion methods.

Helicity plays an essential role in many natural phenomena, such
as hurricanes and tornadoes in geophysical flows. In previous turbulence
modeling, more attention was focused on kinetic energy. Helicity, the
integral of the scalar product of velocity u and vorticity x, is a second
quadratic inviscid invariant in addition to kinetic energy in three-
dimensional (3D) flows, which means that helicity can cascade to small
scales linearly along the energy cascade in 3D turbulence. Helicity reflects
certain topological characteristics of the flows, such as knottedness or
linkage of vortex lines.17,18 As is well known, there are cascade phenom-
ena and coherent structures in turbulent flows, which indicates that the
use of helicity is an appropriate turbulence modeling approach. Yokoi19

proposed a three-equation with the turbulent helicity using the theoreti-
cal results for Reynolds average Navier–Stokes. Then Baerenzung et al.20

obtained a dynamical spectral model for large eddy simulation based on
EDQNM. They also took into account the turbulent helicity transfers
and proposed a helical model. Based on the character of helicity transfer
between scales, Yu et al.21 proposed a novel eddy-viscosity model (HM),
and the new eddy viscosity is related to the large-scale strain rate tensor
and vorticity gradient tensor. Zhou et al.22 proved that the HM could
predict transitional flow without explicit filtering.

In existing research, almost all of the one-equation models are
based on the SGS kinetic energy. This study will supply the SGS helic-
ity transport equation and then model the unclosed terms of the SGS
helicity transport equation (h-equation model). The coefficients of the
unclosed terms can be given directly or solved dynamically. The
deduction of the h-equation model is introduced in Sec. II. In Sec. III,
the new model is tested a priori and a posteriori in the homogeneous
and isotropic helicity turbulence (HIHT) and is also tested a posteriori
in incompressible channel flow.

The results obtained from the h-equation model are compared
with those from SM and DSM. The conclusion and discussion are
given in Sec. IV.

II. GOVERNING EQUATIONS AND THEORETICAL
ANALYSIS
A. The filtered Navier–Stokes equations

In the LES of incompressible turbulent flows, the filtered Navier–
Stokes equations are taken as follows:

@�ui

@t
þ @�ui�uj

@xj
¼ � 1

q
@�p
@xi

þ �
@2�ui

@x2j
þ �fi � @sij

@xj
; (1)

where a bar denotes spatial filtering at scale D, �f i is the filtered forcing,
and sij ¼ uiuj � �ui�uj is the SGS stress tensor that needs to be modeled.
The filtering operation is represented as �/ðxÞ ¼ Ð1�1 GðyÞ/ðx � yÞdy,
and G is designated as the “grid filter” function.

B. Subgrid-scale model

In LES, the eddy viscosity can be written as

smod
ij � 1

3
dijs

mod
kk ¼ �2�sgs�Sij; (2)

where �Sij ¼ 1=2ð@j�ui þ @i�ujÞ is the resolved (velocity) strain rate ten-
sor, and �sgs is the SGS viscosity, which needs to be modeled.

In the Smagorinsky model (SM), the SGS viscosity is proposed as

�sgs ¼ ðCsDÞ2j�Sj; (3)

with

j�Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�Sij�Sij

q
; (4)

where the constant Cs is suggested to be 0.18 in incompressible
turbulence.

The traditional dynamic model requires a test filtering operation
on the filtered field, which is denoted by tilde, and the subtest-scale
(STS) stress tensor is

Tij ¼ guiuj � e�uie�u j: (5)

Although Tij and sij are unknown in LES, the two tensors are related
by the Germano identity

Lij ¼ Tij �es ij; (6)

where Lij ¼ g�ui�uj � e�u ie�u j is the Leonard term. Then, for DSM, the
Germano identity can be rewritten as

Lij � 1
3
Lkkdij ¼ �2Cs

eD2je�S je�S ij � D2 gj�Sj�Sijh i
: (7)

Using Germano identity, the coefficient of DSM can be obtained
as

Cs ¼
hMijLiji
hMijMiji ; (8)

whereMij ¼ ½D2 gj�Sj�Sij � eD2je�S je�S ij�.

C. Derivation of eddy viscosity based on SGS helicity

For turbulent flows, we define the SGS helicity as hsgs
¼ ðui � ui

�Þðxi � �x iÞ, which may reflect the helicity transfer between
the resolved scale and subgrid scale. The ensemble average of the SGS
helicity can be written as

hhsgsi ¼ hðui � ui

� Þðxi � �x iÞi: (9)

In forced homogeneous and isotropic helical turbulence, there
exists a joint cascade of both energy and helicity to smaller scales with
Kolmogorov's −5/3 power-law spectra. The energy spectrum in the
inertial subrange is

EðkÞ ¼ CKe
2=3k�5=3; (10)

where e is the energy dissipation rate and the coefficient CK (the
Kolmogorov constant for energy) is approximately 1.4.23 The helicity
spectrum in the inertial subrange has the form

HðkÞ ¼ CHge
�1=3k�5=3; (11)

where g is the helicity dissipation rate and the coefficient CH (the
Kolmogorov constant for helicity) is approximately 1.0.23

In the case of an inertial subrange extending to infinity beyond
the cutoff, we have the relation
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hhsgsi ¼
ð1
kc

HðkÞdk ¼ 3
2
CHge

�1=3k�2=3
c ; (12)

where kc ¼ p=D is the cutoff wavenumber.
In helical turbulence, the spectral relative helicity is defined as

aðkÞ ¼ jHðkÞj
2kEðkÞ ; (13)

which measures the ratio of the square of a distortion time scale for
the helicity cascade and that for the energy cascade. The existing
research has shown that the spectral relative helicity aðkÞ must decay
with increasing wavenumber k and that the mean spectral relative hel-
icity should scale as k�1 in the inertial subrange in both direct numeri-
cal simulation (DNS) and LES.

In a statistically steady state, a usually varies between 0 and 1
with wavenumber k.24 Then, such a relationship can be obtained as

e ¼ CH

CK
ð2akÞ�1jgj: (14)

If one lets k¼ kc, the helicity dissipation rate will take the form

jgj ¼ CK

CH
2akce: (15)

Substituting Eq. (15) into Eq. (12), one can obtain the relationship
between the SGS helicity and the energy dissipation rate in the form

jhhsgsij ¼ 3CKakc
1=3e2=3: (16)

The relationship between the energy dissipation rate and the SGS
eddy viscosity25 is

�sgs ¼ A

CKp4=3
e1=3D4=3: (17)

By means of Eq. (16) and Eq. (17), the new eddy viscosity can be
derived as

�sgs ¼ CheD
3=2jhhsgsij1=2; (18)

where Che ¼ A=ð ffiffiffi
3

p
C3=2
K a1=2p7=6Þ is the coefficient of the eddy vis-

cosity. As suggested by Sagaut,25 A can be chosen as 0.438.
Therefore, the coefficient Che is chosen as 0.037 in incompressible
flows.

To take into account the pointwise correlation between the SGS
stress tensor and the resolved strain rate tensor, the local eddy viscosity
can be regarded as

�sgs ¼ CheD
3=2jhsgsj1=2: (19)

In Eq. (19), the absolute value of subgrid-scale helicity is used.
Thus in some cases where the values of the averaged helicity are
zero,26 the new model can also be employed.

For simplicity, the generalized SGS helicity can be defined as

hs ¼ uixi � �ui �x i: (20)

If the filter is a Reynolds operator, the generalized SGS helicity is
equal to the SGS helicity.25 In practice, hs is used to compute the SGS
eddy viscosity. And thus, we use hs to represent the SGS helicity in this
paper.

D. Transport equation of SGS helicity

From the Navier–Stokes equation of incomressible turbulence,
the transport equation of helicity can be derived as

@h
@t

þ @ujh

@xj
¼ @Qj

@xj
� 4�SijRij þ 2fixi; (21)

where h ¼ u � x; Rij ¼ 1
2 ð@xi=@xj þ @xj=@xiÞ is the symmetric part

of the vorticity gradient tensor, andQi is the spatial transport term

Qj ¼ � p
q
xj þ 1

2
uiuixj þ 2�uiRij þ 2�xiSij � ejkmukfm: (22)

We define the resolved helicity as hD ¼ �u � �x, where hD satisfies
the following equation:

@hD
@t

þ @�ujh

@xj
¼ @ �Qj

@xj
�PH

D � 4��Sij�Rij þ 2�f i �x i; (23)

wherePH
D ¼ �2sij�Rij is the SGS helicity dissipation rate and �Qj is the

spatial transport term at scale D

�Qj ¼ �2�xisij � eijk�ui
@skl
@xl

� �p
q
�x j þ 1

2
�ui�ui �x j

þ 2�ð�ui�Rij þ �xi�SijÞ � ejkl�uk
�f l: (24)

Thus, the SGS helicity transport equation (h-equation) can be
derived by subtracting Eq. (23) from the filter Eq. (21) as

@hs
@t

þ @�ujhs
@xj

¼ �2sij�Rij þ 2
@ �x isij
@xj

þ 2
@eijk�ui

@skl
@xl

� �
@xj

þ �
@2hs
@x2j

þ Q; (25)

where

Q ¼ @�ujuixi

@xj
� @ujuixi

@xj
�
@

1
q
pxj � 1

q
�p �x j

� �
@xj

þ 1
2

ð@uiuixj � �ui�ui �x jÞ
@xj

� 2�
@ui
@xj

@xi

@xj
� @�ui

@xj

@ �x i

@xj

 !
: (26)

In Eq. (25), �sij�Rij is the production term, which is the helicity
transport between the resolved scale and subgrid scale, � 1

q @ðpxj

��p �x jÞ=@xj is the pressure diffusion term, @ð�ujuixi � ujuixiÞ=@xj
and 1

2 @ðuiuixj � �ui�ui �xjÞ=@xj are the triple correlation terms, and

�2�ð@ui=@xj @xi=@xj � @�ui=@xj @ �x i=@xjÞ is the dissipation term by
viscous effects.

The SGS helicity in Eq. (19) can be computed by the transport
Eq. (25). In Eq. (26), there are some terms that need to be modeled,
including @ð�ujuixi � ujuixiÞ=@xj, etc.

E. Modeling the h-equation

To obtain insight into the unclosed terms, it is useful to look at
the infinite series expansions for each term. For a regular uniform grid
(dx¼ dy¼ dz), Bedford and Yeo27 derived
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fg � �f �g ¼ 2c
@�f
@xk

@�g
@xk

þ 1
2!
ð2cÞ2 @2�f

@xk@xl

@2�g
@xk@xl

þ 1
3!
ð2cÞ3 @3�f

@xk@xl@xm

@3�g
@xk@xl@xm

þ � � �; (27)

where

cðyÞ ¼
ð1
�1

x2Gðx; yÞdx; (28)

and G(x, y) is the kernel of the filter. Considering the isotropic filter,28

we know that c ¼ D2=24. In practical simulation, c can be taken as
c ¼ CD2.

For the pressure diffusion term, using the series expansion of
Eq. (27) and setting f¼ p and g ¼ xj, one can obtain

1
q
ðpxj � �p �x jÞ ¼ CpD

2 @�p
@xk

@ �x j

@xk
: (29)

For the triple correlation terms, using Eq. (27) and setting
f ¼ uixi and g¼ uj, one can obtain

uixiuj � uixi�uj ¼ 2a
@uixi

@xk

@�uj

@xk

þ 1
2!
ð2aÞ2 @

2uixi

@xk@xl

@2�uj

@xk@xl
þ � � �: (30)

Nevertheless, uiwi in Eq. (30) cannot be obtained directly in LES,
and it needs an approximate form model that can be resolved. As sug-
gested by Pomraning and Rutland,10 the triple correlation can be
approximately estimated as 2ð�x iuiuj � �x i�ui�ujÞ. Then, the series
expansion for this model is

2ð�x iuiuj � �x i�ui�ujÞ ¼ 2�xið2aÞ @�ui

@xk

@�uj

@xk

þ 2�x i
1
2!
ð2aÞ2 @2�ui

@xk@xl

@2�uj

@xk@xl
þ � � �: (31)

Thus, the first triple correlation term can be written as

� @uixiuj
@xj

� @uixi�uj

@xj

 !
¼ �Ct1D

2
@ �xi

@�ui

@xk

@�uj

@xk

� �
@xj

: (32)

As discussed above, the second triple correlation term can be
written as

1
2

@ðuiuixj � �ui�ui �x jÞ
@xj

¼ 1
2

@ðuiuixj � uixj�ui þ uixj�ui � �ui�ui �x jÞ
@xj

¼ 3
2

@ðuixj�ui � �ui�ui �x jÞ
@xj

; (33)

3
2
ð�uiuixj � �ui�ui �x jÞ ¼ 3

2
�uið2aÞ @�ui

@xk

@ �x j

@xk

þ 3
2
�ui

1
2!
ð2aÞ2 @2�ui

@xk@xl

@2 �x j

@xk@xl
þ � � �: (34)

Thus, the second triple correlation term can be written as

1
2

@ðuiuixj � �ui�ui �x jÞ
@xj

¼ Ct2D
2
@�ui

@�ui

@xk

@ �x j

@xk

� �
@xj

: (35)

The dissipation term by viscous effects can be modeled as

2�
@ui
@xj

@xi

@xj
� @�ui

@xj

@ �xi

@xj

 !
¼ C2D

2
@
@�ui

@xj
@xk

@
@ �x i

@xj
@xk

: (36)

In the following cases, we give the value of the coefficients as
Cp ¼ 0:084; Ct1 ¼ 0:16; Ct2 ¼ 0:078, and C2 ¼ 0:17� based on the
DNS results from HIT and turbulent channel flow.

Using the Germano identity, the model can be written as

Tij � 1
3
dijTkk ¼ �2Che

eD3=2jHj1=2e�S ij; (37)

aij ¼ �2eD3=2jHj1=2e�S ij; (38)

bij ¼ �2D3=2jhsj1=2�Sij; (39)

where

H ¼ guixi � e�u i e�x i: (40)

Using Eqs. (20) and (40), one can obtain

H ¼ ehs þ g�ui �xi � e�u ie�x i: (41)

The coefficients of the unclosed terms in the equation can also be
determined dynamically.

For the pressure diffusion term, one can obtain

@
1
q
ðg�p �xj � e�p e�x jÞ

@xj
¼ �Cp

@
1
q
eD2 @e�p

@xk

@e�x j

@xk
� D2

g@�p
@xk

@ �x j

@xk

 !
@xj

: (42)

For the first triple term (�ð@uixiuj=@xj � @uixi�uj=@xjÞ
� �2ð@ð�x iuiuj � �x i�ui�ujÞ=@xjÞ), one can obtain

2
@ �xiðg�ui�uj �e�u ie�u jÞ

@xj
¼�Ct1

@ �x i
eD2 @e�u i

@xk

@e�u j

@xk

 !
�D2

g@�ui

@xk

@�uj

@xk

 !0@ 1A
@xj

:

(43)

For the second triple term (12 @ðuiuixj � �ui�ui �xjÞ=@xj
� 3

2 @ð�uiuixj � �ui�ui �x jÞ=@xj), one can obtain

3
2

@�uiðg�ui �x j �e�u ie�x jÞ
@xj

¼�Ct2

@�ui
eD2 @e�u i

@xk

@e�x j

@xk

 !
�D2

g@�ui

@xk

@ �x j

@xk

 !0@ 1A
@xj

:

(44)

For the dissipation term by viscous effects, one can obtain

2�
g@�ui

@xj

@ �xi

@xj
�@e�u i

@xj

@ e�x i

@xj

 !
¼�C2

eD2
@
@e�u i

@xj
@xk

@
@ e�x i

@xj
@xk

�D2

g
@
@�ui

@xj
@xk

@
@ �x i

@xj
@xk

0B@
1CA
:

(45)

Then, we will discuss the realizability of the h-equation model
here. Schumann29 has shown that to guarantee a realizable solution
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for a subgrid-scale stress tensor, the following conditions should be
considered:

sij � 0 ðfor i ¼ jÞ; (46)

s2ij½ � � s ii½ �s jj½ � ðfor i 6¼ jÞ; (47)

detðsijÞ � 0: (48)

One can find that the SGS helicity one-equation model satisfies
the realizability conditions according to the DNS case.

III. NUMERICAL RESULTS AND ANALYSIS
A. Homogeneous and isotropic turbulence

The SGS helicity one-equation model is first tested to assess a pri-
ori the incompressible homogeneous and isotropic turbulence.

The full Navier–Stokes equations and the filtered Navier–Stokes
equations are solved using a pseudo-spectral model in a cubic domain
with the side length L ¼ 2p. Periodic boundary conditions are
employed in the three coordinate directions. The phase-shift method
together with the

ffiffiffi
2

p
=3 rule is applied to remove the dealiasing error.

The second-order Adams-Bathforth scheme is applied to integrate the
governing equations21 temporally.

The turbulent field is initially generated by a Gaussian random
field as

E0ðkÞ ¼ Ak2U2
0k

�5
0 e�2k2=k20 ; (49)

with k0 ¼ 4:5786 and U0 ¼ 0:715, and the constant A can be deter-
mined when the initial kinetic energy is equal to 3U2

0=2. The whole
system is maintained by constant energy and helicity injection rates
(e ¼ 0:1 and g ¼ 0:3) in the first two wavenumber shells.21 The grid
resolution for DNS is 1024� 1024� 1024 and that for LES is
64� 64� 64. The Taylor Reynolds number (Rek) for DNS is 341.
According to K41,30 the viscous effect can be ignored in the inertial
subrange, and the SGS energy and helicity dissipations are unchanged
with the changed filter width, which ensures the scale invariance of the
SGS model in LES.

Figures 1(a) and 1(b) show the SGS energy and helicity dissipa-
tions vs the normalized filter width d=f from the a priori test of differ-
ent models (d is the filter width, and f is the Kolmogorov scale). The
SGS dissipations calculated by the real SGS stress tensor are also pre-
sented as a reference for comparison. The trends of the SGS dissipa-
tions predicted by both the h-equation and SM models are close to
constant in the inertial subrange (60 < d=f < 120), which is similar
to the results calculated by the real SGS stress. Additionally, we can
find that the values predicted by the SM are higher than those of the
real SGS stress and the h-equation model, which are closer to the real
results. The DSM has the worst behavior. Tables I and II show the per-
centage errors from different models in Figs. 1(a) and 1(b). The per-
centage errors of the h-equation model are less than that of SM.

Furthermore, through the a priori results, we could infer that the
h-equation model could also provide better prediction results in the a
posteriori test.

Figure 2 shows the energy spectrum and helical spectrum in the
system driven by constant injection rates of energy and helicity, i.e.,
e ¼ 0:1 and g ¼ 0:3. From Figs. 2(a) and 2(b), the h-equation model
and the dynamic h-equation model (dh-equation) can well predict the
spectra of energy and helicity, which are slightly better than those of

the DSM and the dk-equation model. As Figs. 2(a) and 2(b) show,
because the SGS dissipations predicted by the h-equation model are
lower than those predicted by the SM model, the dh-equation model
predicts the energy spectrum to be slightly lower than that of the DSM
at 3 < k < 9 and predicts the energy spectrum to be slightly higher
than that of the DSM at 10 < k < 12. Tables III and IV list the per-
centage error from different models in Figs. 2(a) and 2(b).

In addition, the validity check of the h-equation in the turbulence
with chiral symmetry is provided here. We employ the new model in

FIG. 1. The SGS energy dissipation (PE) and SGS helicity dissipation (PH) in the
system are driven by constant injection rates of energy and helicity, i.e., e ¼ 0:1
and g ¼ 0:3; (a) the SGS energy dissipation (PE) and (b) the SGS helicity dissipa-
tion (PH).

TABLE I. The percentage errors of the energy dissipation compared to DNS from
different models against different d=f in Fig. 1(a).

d=f h SM

10 77% 160%
20 27% 120%
30 16% 91%
50 −4% 59%
70 −12.5% 47%
90 −15.8% 41.5%
110 −16.6% 39%
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the system are driven by constant injection rates of energy and helicity,
i.e., e ¼ 0:1 and g ¼ 0:0. The Taylor Reynolds number (Rek) for DNS
is 306. The grid resolution for DNS is also 1024� 1024� 1024 and
that for LES is 64� 64� 64.

Figure 3 shows the energy spectrum in the system driven by only
a constant injection rate of energy, i.e., e ¼ 0:1 and g ¼ 0:0. The
dh-equation model can perfectly predict the energy spectrum, and
the h-equation model also performs better than the DSM, the SM, the
k-equation model, and the dk-equation model. From the results above,

we can infer that the h-equation model is a common SGS model for
the large-eddy simulation of 3D turbulent flows. Table V lists the per-
centage error from different models in Fig. 3.

B. Turbulent channel flow

The h-equation model is also tested and assessed a posteriori in
turbulent channel flow. The Fourier–Chebyshev pseudo-spectral algo-
rithm method is applied to solve the governing equations.31 The
second-order Adams–Bashforth scheme is applied for the nonlinear
term for temporal integration. The dealiasing error is removed by the
phase-shift method together with the 2/3 rule.32 Periodic boundary

TABLE II. The percentage errors of the helicity dissipation compared to DNS from
different models against different d=f in Fig. 1(b).

d=f h SM

10 57% 98.9%
20 23% 58%
30 6.4% 37%
50 −8.9% 18%
70 −13.9% 12.3%
90 −15.5% 10%
110 −10% 8%

FIG. 2. The energy spectrum and helical spectrum in the system driven by con-
stant injection rates of energy and helicity, i.e., e ¼ 0:1 and g ¼ 0:3; (a) the energy
spectrum and (b) the helical spectrum.

TABLE III. The percentage errors of the energy spectrum compared to DNS from
different models against different d=f in Fig. 2(a).

d=f h SM k dh DSM dk

2 −12.9% −13.2% −15.3% −2.7% −23% −24.9%
4 30.2% 51.7% 35.1% 23.6% 34.9% 12.4%
6 22.6% 38.9% 27.8% 16% 32.3% 8%
10 −8.7% −23% −15% −1.8% −6.4% 1.3%
14 −21.7% −55.3% −33.67% −4.4% −26.3% 13%
18 −17.5% −67.7% −34.3% 8.9% −28.6% 41%
21 −5.5% −64.3% −24.6% 23.9% −20.9% 57.8%

TABLE IV. The percentage errors of the helical spectrum compared to DNS from dif-
ferent models against different d=f in Fig. 2(b).

d=f h SM k dh DSM dk

2 −20% −24% −32% −26% −31.8% −26%
4 14.5% 40.7% 3.8% 24.9% 19.4% 28.8%
6 27.9% 56% 12% 38% 38% 38%
10 10.2% 0.3% 13.7% 11.3% 14.6% 7%
14 11.5% −34.9% 52% 3.4% 2% −4%
18 28% −51% −100% 10% −6% 8%
21 46% −37% 130% 25% 22% 23%

FIG. 3. The energy spectrum and helical spectrum in the system driven by con-
stant injection rates of energy and helicity, i.e., e ¼ 0:1 and g ¼ 0:0.
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conditions are supplied in the streamwise (x) and spanwise (z) direc-
tions and non-slip boundary conditions are designated at walls
(y ¼ 6d), where d is the channel half-width. This channel flow is
driven by a constant pressure gradient along the streamwise direction.
The grid filter width is set as D ¼ ½DxDyðyÞDz�1=3, where Dx, DyðyÞ
and Dz are the local grid spacings. In this paper, the top-hat filter is
adopted by integrating over space points using Simpson's rule.33 For
the dynamic procedure, the subtest filter is set to be 2D correspond-
ingly. For the sake of analysis, we select six SGS models for compari-
son: the h-equation model, the dh-equation model, the k-equation
model, the dk-equation model, the SM, and the DSM. For constant-
coefficient models, we use the van Driest damping function near the
wall.34

As suggested by Moser and Mansour,35 the computational
domain is a three-dimensional box of size 2ph� 2h� ph (h is the
half-width of the channel) with 256� 192� 192 at Res ¼ 395, and
another computational domain is 4ph� 2h� 2ph with 192� 193
�192 at Res ¼ 180. The DNS results are in good agreement with the
data from Moser and Mansour.35 For the LES model, the coarser the
grid is, the more challenging the modeling is, and the more convincing
model quality that is perceived.36 From Meyers's discussion, the grid
resolution of the large-eddy simulation is chosen as 48� 48� 48 at
Res ¼ 180 and 48� 64� 48 at Res ¼ 395. The grid resolution that
we choose is slightly coarser than that chosen previously.37

The details of the parameter settings are listed in Tables VI and
VII (case 1 is at Res ¼ 180, and case 2 is at Res ¼ 395).

Figure 4 shows the SGS energy dissipation (PE) at Res ¼ 395
from a priori. The dh-equation and the dk-equation models can have
better performance than the DSM. The dk-equation model predicts
the SGS energy dissipation lower than the real values.

Figures 5(a) and 5(b) show the normalized mean velocity
(Uþ ¼ h�ui=us) profiles from different models at Res ¼ 180 and
Res ¼ 395, respectively. In the two cases, the simulation results of
these models display a similar trend. As Fig. 5 shows, the dh-equation
model gives perfect predictions of the velocity profiles compared with

TABLE V. The percentage errors of the energy spectrum compared to DNS from dif-
ferent models against different d=f in Fig. 3.

d=f h SM k dh DSM dk

2 −21.5% −20% −24% −12% −24% −18%
4 16% 39% 5% 12% 25% 23%
6 −2% 11.9% −11.5% −4% 6% 2%
10 −14% −31% −8% −10% −14% 22%
14 −20% −59% −4% −13% −30% −36%
18 −11% −69% −31% 0.7% −29% 34%
21 3.5% −66% 51% 10% −20% −23%

TABLE VI. Parameters of the simulations in channel flow for DNS.

Case Grids Dxþ Dyþmin Dzþ

Case1 192� 193� 192 11.78 0.024 5.88
Case2 256� 192� 192 9.68 0.053 6.45

TABLE VII. Parameters of the simulations in channel flow for LES.

Case Grids Dxþ Dyþmin Dzþ

Case1 48� 48� 48 47.12 0.38 23.56
Case2 48� 64� 48 51.68 0.48 25.84

FIG. 4. The SGS energy dissipation (PE) under Dz filter width at Res ¼ 395.

FIG. 5. The mean velocity profiles in the wall unit at (a) Res ¼ 180 and (b)
Res ¼ 395.
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the DNS profiles at both Res ¼ 180 and 395 and agrees well with the
log-law line in the logarithmic region. Tables VIII and IX list the per-
centage error from different models in Figs. 5(a) and 5(b).

The profiles of the h-equation model and the DSM are also close
to the real profile and apparently better than that of the SM. The only
difference between the results of the h-equation and the DSM is that
the mean velocity profile predicted by the h-equation model is slightly
lower than that of the DNS, and the results from the DSM are slightly
higher than those from DNS. The dk-equation model can obtain good
results at a low Reynolds number. The k-equation model and dk-equa-
tion model well predict the mean velocity profiles in the near-wall
region, but worse in the log-law region than DSM because of the lower
SGS energy dissipation.

For steady-state turbulent channel flow, there is a balance equa-
tion for the total shear stress along the wall-normal direction, and the
total shear stress stot is composed of two important parts, which
include the viscous stress sl and the Reynolds shear stress Ruv

28

stot ¼ sl þ Ruv: (50)

The viscous stress sl is dominant in the viscous sublayer. Shown
in Fig. 6 is the normalized resolved viscous shear stress (sl=sw) from
different models at Res ¼ 180 and Res ¼ 395, and the real value from
DNS is also displayed here for comparison. As Fig. 6 shows, the
dh-equation model still perfectly predicts the viscous shear stress. The
h-equation model, the DSM, the k-equation model, and the dk-equa-
tion model also perform better than the profiles from the SM. Tables
X and XI list the percentage error from different models in Figs. 6(a)
and 6(b).

The Reynolds shear stress Ruv(�huvi) plays a dominant role in
the log-law region. In LES, it is composed of two parts, which are the
resolved and modeled stress. In Fig. 7, we present the results of the
normalized Reynolds shear stress (Ruv=sw) from different models in
the two cases, and the DNS result is supplied for comparison. As
shown in Fig. 7, we find that the three dynamic models can generally
perform well, but the DSM result deviates from the real value in the
centerline region of the high Reynolds number case (Res ¼ 395). The
dk-equation model result is a lot higher than that of DNS. For the
constant-coefficient models, the result of the h-equation model

TABLE VIII. The percentage errors of the mean velocity profiles compared to DNS
from different models against different y+ in Fig. 5(a).

y+ h SM k dh DSM dk

10 −1.5% 7% −4% −0.5% 1.6% −0.9%
20 −3.6% −1.2% −8.7% −0.5% 2% −3.3%
30 −3.6% 3.9% −9.6% 0.12% 2.5% −3.5%
50 −2.7% 6.5% −9% 0.5% 2.7% −3.2%
80 −1.5% 5.4% −6.7% 1% 3% −2%
100 −1% 4.7% −5.8% 1% 3% −1.5%
150 −1.17% 3% −3.5% 0.6% 2.5% −1.2%

TABLE IX. The percentage errors of the mean velocity profiles compared to DNS
from different models against different y+ in Fig. 5(b).

y+ h SM k dh DSM dk

10 −4% −22% −2.8% −1.8% −0.7% −2.8%
20 −4.5% −19.6% −9% −3% −1.5% −9%
50 −0.8% −3% −10.7% −0.1% 1.4% 9%
80 0.1% 4% −9% 0.1% 2.5% −8%
200 −1.5% 3.5% −5.5% 0.6% 2.9% −5.1%
300 −2.5% 1% −4% 0.1% 3.4% −4%
390 −2.8% 0.3% −3% 0.1% 3.3% −3.1%

FIG. 6. The normalized viscous shear stress distribution against y+ from different
models (a) at Res ¼ 180 and (b) at Res ¼ 395.

TABLE X. The percentage errors of the normalized viscous shear stress compared
to DNS from different models against different y+ in Fig. 6(a).

y+ h SM k dh DSM dk

1 0.1% 7% 1.5% 0.5% 0.7% 1.8%
5 −3.8% −14% −3.2% −2.2% −0.6% −2.8%
10 −6.6% −3.4% −6.8% −1.5% 2.6% −6.5%
20 −5.8% 42% −6.5% 3.4% 6.2% −6.4%
40 9% 44% 2% 13% 7% 3%
150 9% −14% 33% 14% 15% 26%
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perfectly approaches the real value in the low Reynolds number case
(Res ¼ 180), but in the buffer layer and log-law region of the high
Reynolds number case, the h-equation model weakens the Reynolds
shear stress. The k-equation model performs a lot worse than the h-
equation model. In both cases, the SM cannot reasonably predict the
Reynolds shear stress. Tables XII and XIII list the percentage error
from different models in Figs. 7(a) and 7(b). The percentage errors of
the h-equation and dh-equation model are less than that of DSM in
the log-law region from the tables.

We show in Figs. 8–10 the resolved turbulence intensities
[�urms

i ¼ hð�ui � h�uiiÞ2i1=2] calculated from the h-equation model, the
dh-equation model, the SM, the DSM, the k-equation model, and the
dk-equation model at Res ¼ 180 and Res ¼ 395. Figures 8(a), 9(a),
and 10(a) show the streamwise, wall-normal, and spanwise turbulence
intensity distributions against y+ at Res ¼ 180, respectively, and the
DNS data are also presented for comparison purposes.

For Res ¼ 180, it is visually apparent that the resolved turbulence
intensities given by the h-equation are closest to the DNS data in
almost all the regions. The k-equation model predicts the results a lot
lower than the h-equation model at 0 < yþ < 50 in Fig. 8(a). The per-
formance of the dh-equation is slightly better than that of the DSM
and the dk-equation model, while the performance of the SM is rela-
tively poor compared with that of other models.

The resolved turbulence intensities for Res ¼ 395 are supplied in
Figs. 8(b), 9(b), and 10(b). In this case, the dh-equation model behaves
best except for a slight drop in predicting the normal-wall and span-
wise components in part of the buffer layer and log-law region
(20 < yþ < 150). It shows that the proposed model based on SGS hel-
icity can better capture the turbulent fluctuations, and the reason may
be the dh-equation model could supply more proper SGS energy dissi-
pations according to the a priori test than other models. The DSM, the
h-equation model, the k-equation model, and the dk-equation model
can also give acceptable results. The SM can't capture the turbulent
fluctuations in the full region. The turbulence intensities predicted by
the k-equation and dk-equation model are higher than real values
except for the spanwise turbulence intensity at Res ¼ 395 because the
averaged SGS energy dissipations predicted by the dk-equation are
lower than real values. Tables XIV and XV list the percentage error
from different models in Figs. 8(a) and 8(b). Tables XVI and XVII list
the percentage error from different models in Figs. 9(a) and 9(b).

TABLE XI. The percentage errors of the normalized viscous shear stress compared
to DNS from different models against different y+ in Fig. 6(b).

y+ h SM k dh DSM dk

1 −4% −8% 4% −0.9% 2.5% 3.8%
5 −11% −37% −3.5% −3% −4% −3.6%
10 −23% −28% −19% −6% −4% −17%
20 −28% 20% −23% 4% 6% −21%
50 18% 140% 10% 30% 31% 16%
100 19% 27% 16% 3.6% 3% 14.6%
200 71% −17% 87% 20% 42% 51%

FIG. 7. The resolved Reynolds stress normalized by friction velocity us vs y
+ from

different models (a) at Res ¼ 180 and (b) at Res ¼ 395.

TABLE XII. The percentage errors of the resolved Reynolds stress compared to
DNS from different models against different y+ in Fig. 7(a).

y+ h SM k dh DSM dk

5 50% −80% 63% 20% 15% 64%
10 8.8% −78% 16% −3% −8% 17%
20 1.7% −59% 5% −4% −5% 7%
50 2% −15% 3% 0.4% −0.5% 2.5%
100 1.5% −7% 6.9% 4.6% 3% 2.6%
150 9.8% −8% 2.5% 2% 11% 6.8%

TABLE XIII. The percentage errors of the resolved Reynolds stress compared to
DNS from different models against different y+ in Fig. 7(b).

y+ h SM k dh DSM dk

5 29% −92% −26% 26% 21% 77%
10 2% −91% −34% 7% 3.4% 35.8%
30 −15.8% −70% −37% −1.6% −3.4% 7%
100 −16.6% −11% −35% −2% −3% 4%
200 −12% −0.4% 31% 6% 3% 7%
300 −13% −0.2% −32% 8% 21% 3.5%

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 035128 (2021); doi: 10.1063/5.0038165 33, 035128-9

Published under license by AIP Publishing

https://scitation.org/journal/phf


Tables XVIII and XIX list the percentage error from different models
in Figs. 10(a) and 10(b). Table XX lists the time to compute LES every
20 time steps with 24 CPU.

The coherent structure is one of the main characteristics of tur-
bulent flows, and the ability of coherent-structure capture is an impor-
tant evaluation criterion of LES. The second invariant of the strain rate
tensor Q is a method of vortex structure identification38

Q ¼ �1=2ðSijSij �WijWijÞ; (51)

where

Sij ¼ 1
2

@ui
@xj

þ @uj
@xi

 !
; Wij ¼ 1

2
@ui
@xj

� @uj
@xi

 !
: (52)

Figures 11 and 12 show the instantaneous isosurfaces of different
Q at Res ¼ 395. From the figures, we can find that the dh-equation can
identify abundant vortex structures, and the dh-equation model result
is most similar to the result from DNS. The DSM and the dk-equation
model can also capture abundant vortex structures, and they are mainly
concentrated near the wall region. In the near-wall region, many vortex
structures are caught by the h-equation and the k-equation, and they

also have a small amount of distribution in the centerline region. In
contrast, the SM can only capture some large-scale vortices. The
h-equation model behaves a little better than the k-equation model.
Hence, based on the Q analysis, we could infer that the dh-equation
model and the h-equation model have the intrinsic advantage of
capturing the vortex structure for modeling through the SGS helicity.

IV. CONCLUSION AND DISCUSSION

In this paper, we choose subgrid-scale helicity as the target physi-
cal quantity to construct a new subgrid-scale model for large-eddy
simulation of turbulent flows. The SGS helicity reflects the helicity
transfer between the resolved scale and subgrid scale. First, a relation-
ship between the SGS helicity and SGS viscosity is established through
the theoretical derivation in the spectral space of homogeneous and
isotropic helical turbulence. Then, we obtain the SGS helicity transport
equation from the Navier–Stokes equations. For the unclosed terms of
the SGS helicity equation, we use the infinite series expansions method
to model each one of them.

The new models (h-equation model and dh-equation model) ini-
tially use a priori and a posteriori tests in homogenous and isotropic
helical turbulence. These tests have proven the reasonability in model-
ing and excellent character in predicting turbulence compared with

FIG. 8. Profiles of turbulence intensities (a) Uþ
rms, at Res ¼ 180 and (b) Uþ

rms, at
Res ¼ 395.

FIG. 9. Profiles of turbulence intensities (a) Vþ
rms, at Res ¼ 180 and (b) Vþ

rms, at
Res ¼ 395.
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other classic SGS models. Furthermore, we have verified the universal-
ity of the model for non-helical turbulence. In turbulent channel flow
for various Reynolds numbers, the h-equation model and the dynamic
h-equation model are also tested for their validity. The DSM, the SM,
the k-equation model, and the dk-equation model are compared.
From the simulation results, we find that the h-equation model and
dh-equation model can obtain more accurate mean turbulence fields
at various Reynolds number flows, such as the mean velocity profiles,

the viscous shear stress, and the Reynolds shear stress. The percentage
errors tables can also be referenced to prove above. However, the new
models still have no apparent advantages over k-equation and dk-
equation models in predicting turbulent stress. As the results of the a
priori test in HIHT show that the h-equation model can supply a more

FIG. 10. Profiles of turbulence intensities (a) Wþ
rms, at Res ¼ 180 and (b) Wþ

rms, at
Res ¼ 395.

TABLE XIV. The percentage errors of the streamwise turbulence intensities com-
pared to DNS from different models against different y+ in Fig. 8(a).

y+ h SM k dh DSM dk

10 −5% −17% −4% −2.5% −2% −4%
20 −7% 3% −12% 0.5% 5% −6%
50 −1.6% 26% −3% 7% 10% 1%
80 1.7% 18% 2% 6.7% 3% 3%
120 3.4% 14% 7% 4% −6% 3%
170 11% 17% 16% 11% 7% 5%

TABLE XV. The percentage errors of the streamwise turbulence intensities com-
pared to DNS from different models against different y+ in Fig. 8(b).

y+ h SM k dh DSM dk

10 1.7% −34% 5.8% 0.6% 2.8% −0.5%
60 −6% 40% −10% 5% 5% −4%
120 −2.6% 34% 2% 1.8% 3% 1.4%
200 −0.4% 16% 5.8% −1.5% 3% 2%
300 11% 14% 7% 2% 20% 2%
380 27% 22% 8% 4% 31% −0.2%

TABLE XVI. The percentage errors of the wall-normal turbulence intensities com-
pared to DNS from different models against different y+ in Fig. 9(a).

y+ h SM k dh DSM dk

10 12% −71% 20% −8% −8% 16%
20 6.8% −63% 12.8% −9% −10% 8%
50 0.5% −37% 0.3% −7% −5% 0.2%
80 0.3% −17% −1% −4% 2% 0.5%
120 4% −3% −0.4% −0.1% 8% 3%
150 5% 2% −0.7% 2% 4% 4%

TABLE XVII. The percentage errors of the wall-normal turbulence intensities com-
pared to DNS from different models against different y+ in Fig. 9(b).

y+ h SM k dh DSM dk

20 −2% −83% 19% −16% −31% 15%
60 −8% −61% 4% −13% −18% 2.5%
120 −7% −32% 5% −6% −11% 0.1%
200 −2.8% −10% −0.6% −2% −5% 0.4%
300 8% 3% −9% −0.2% 0.1% −3%
380 22% 8% −16% 1% 2% −5%

TABLE XVIII. The percentage errors of the spanwise turbulence intensities com-
pared to DNS from different models against different y+ in Fig. 10(a).

y+ h SM k dh DSM dk

10 4% −50% 11% −7% −10% 6%
20 2.8% −43% 5% −6% −9% 3.4%
40 1.8% −32% 1% −6% −9% 1%
100 2% −5% −0.9% −1% 3% 2.6%
130 7% 5.8% 2.5% 4.6% 8% 4.7%
160 −6% 13.8% 0.8% 8% 6.7% 3.4%
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accurate SGS dissipation than the SM, we infer that the proper SGS
dissipation furnished by the h-equation model and the dh-equation
model is the radical guarantee for the models to predict the proper
mean turbulence fields. The new proposed models can also capture
finer vortex structures (Q analysis) in turbulent channel flow. As

mentioned in the Introduction, helicity could reflect the topological
character of the vortex, and it could be inferred that the new models
based on SGS helicity can catch finer turbulent structures.

In summary, we propose a new one-equation SGS model based
on the SGS helicity. The new LES model can supply better simulation
results for incompressible turbulent flows. For future work, it is worth
applying the model to transition flow and compressible turbulent
flows, which needs further study.
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TABLE XIX. The percentage errors of the spanwise turbulence intensities compared
to DNS from different models against different y+ in Fig. 10(b).

y+ h SM k dh DSM dk

20 −3% −58% −36% −5% −6% −38%
60 −12.8% −42% −18.5% −10% −10.6% −20%
120 −12.3% −25% −12.8% −7% −8% −16.9%
200 −6% −6% −12.5% −1.8% −1.6% −11.6%
300 5% 10% −13% −2% 1% −7.6%
380 21% 18% −16% 2% 2% −5%

FIG. 11. Instantaneous isosurface of Q¼ 250 obtained from different models in tur-
bulent channel flow of the Res ¼ 395 (a) DNS, (b) dh-equation model, (c) DSM, (d)
dk-equation model, (e) h-equation model, (f) SM, and (g) k-equation model.

FIG. 12. Instantaneous isosurface of Q¼ 350 obtained from different models in
turbulent channel flow of the Res ¼ 395 (a) DNS, (b) dh-equation model, (c) DSM,
(d) dk-equation model, (e) h-equation model, (f) SM, and (g) k-equation model.

TABLE XX. The time to compute LES every 20 time steps with 24 CPU.

y+ SM h DSM dh

Time 1.2 s 2 s 3 s 4 s
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