
International Journal of Mechanical Sciences 197 (2021) 106299 

Contents lists available at ScienceDirect 

International Journal of Mechanical Sciences 

journal homepage: www.elsevier.com/locate/ijmecsci 

The role of material and geometric nonlinearities and damping effects in 

designing mechanically tunable acoustic metamaterials 

Shaowu Ning 

a , Dongyang Chu 

a , Heng Jiang 

b , c , ∗ , Fengyuan Yang 

a , Zhanli Liu 

a , ∗ , Zhuo Zhuang 

a 

a Applied Mechanics Laboratory, School of Aerospace Engineering, Tsinghua University, Beijing 100084, P.R. China 
b Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China 
c University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China 

a r t i c l e i n f o 

Keywords: 

Mechanically tunable acoustic metamaterials 

Locally resonant 

Bragg scattering 

Band gaps 

Material and geometrical nonlinearities 

Damping effect 

a b s t r a c t 

Elastomeric material (as rubber) can be used to design the mechanically tunable acoustic metamaterial (AM) 

with reversible and repeatable deformation utilizing its geometric and material nonlinearities introduced by the 

large deformation. Meanwhile, an elastomeric material usually possesses the inherent damping effect, which will 

complicate the dynamic responses of AMs. In this paper, taking the AMs comprising different resonating elements 

(include soft elastomeric coating and hard core) embedded into an elastomeric matrix with a square array of 

circular holes of varying size as examples, we try to reveal the roles of material and geometric nonlinearities and 

damping effects (Rayleigh damping and linear viscoelastic damping) in the process of elastic wave manipulation 

by calculating the band structures and the transmittances of the finite-sized AM structures with and without 

damping. The numerical results indicate that the geometrical nonlinearity of the AM (mainly from matrix and 

coating) and the nonlinearity of coating material can simultaneously manipulate the locally resonant and Bragg 

scattering band gaps. Still, the nonlinearity of the matrix material mainly affects the Bragg scattering band gaps. 

The analysis of geometrical parameters indicates that the AM with holes of large size, thin coating, and a hard 

core of large radius benefits enhance its bandgap’s tunability. The transmittances of the finite-sized AMs without 

damping drastically reduce in the frequency ranges of band gaps, which agree well with the numerical predictions 

of band gaps. The damping effect in the elastomeric matrix and coating materials can lead to the appearance of 

a new band region and the changes in the position and width of the band region. However, excessive damping 

in the coating and matrix materials suppresses the elastic wave propagation in the AM structures so that it is 

difficult to identify the band regions from the transmittance spectrums. The above researches demonstrate the 

roles of these influencing factors above in the process of elastic wave manipulation. They can help us design new 

AMs to meet the unique needs of noise and vibration control. 
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. Introduction 

In recent years, artificially structured composite materials, such as
hononic crystals and acoustic metamaterials, engineered to control and
anipulate the propagation of elastic waves have received significant

nterest because of their broad range of applications, including wave
uiding [1–3] , acoustic cloaking [ 4 , 5 ], seismic [ 6 , 7 ], acoustic filter [8] ,
avefront modulation [9] , vibration control [10–12] , noise reduction

13–16] , acoustic imaging and acoustic focusing [17–20] . Because of
and gaps, in which the propagation of mechanical waves is forbidden,
hese heterogeneous systems can be exploited to suppress the noise and
ibration. The band gaps mainly originate from Bragg scattering [ 21 , 22 ]
nd local resonance [23–25] . 
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Bragg scattering band gaps in the earlier acoustic band gap material,
alled a phononic crystal (PC) [ 26 , 27 ], result from multiple scattering
f waves at the interface of materials with different acoustic properties,
ighly depending on the periodicity and symmetry of the microstruc-
ure. The Bragg scattering band gaps typically occur at the wavelengths
f the order of the structure’s unit cell size. By contrast, based on local-
zed resonance mechanism, acoustic metamaterial (AM) as a new type of
uman-made system exhibits unusual properties beyond natural occur-
ing media, such as negative effective mass densities [28–30] , negative
ffective bulk modulus [ 31 , 32 ], and double-negative [33–37] , and so
n. The AMs are especially capable of manipulating waves with wave-
engths much larger than the lattice parameter of the AMs so that they
an be exploited for vibration and noise control because of the low-
requency band gap characteristic of AMs. Although the development
f PCs and AMs provides a new platform for manipulating the propa-
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ation of acoustic waves, many studies mainly focused on passive PCs
nd AMs, and their acoustic properties are fixed and difficult to change
fter they are fabricated, which limit their applications. 

Hence, new strategies are required to design PCs and AMs with adap-
ive properties that can be reversibly tuned. Recently, tunable PCs and
Ms based on various modulation techniques have been achieved, in-
luding AMs with piezoelectric control [ 15 , 28 , 38 ], mechanically con-
rollable components [39–47] , electric and magnetic control [ 29 , 48 , 49 ],
emperature-controlled [50–52] , rotation of scatterer [ 53 , 54 ], and so
n. For the piezoelectric control strategy, active AMs were first investi-
ated by Baz [28] and Akl and Baz [32] . They used piezoelectric mate-
ials to tune the effective density and bulk modulus of AMs. Allam et al.
38] introduced a class of active AMs consisting of clamped compos-
te piezoelectric diaphragms suspended in air, whose effective density
f the material is manipulated in real-time dynamic properties of the
iaphragms through a closed-loop feedback controller. Their effective
ensity can be programmed to any value ranging from -100 kg/m 

3 to
00 kg/m 

3 passing by near-zero density conditions. For a temperature-
ontrolled strategy, Xia et al. [50] investigate the influences of the water
emperature on the local resonant band gap and the negative bulk mod-
lus of the AM with Helmholtz resonators. Results show that the rela-
ive variations of the local resonant band gap and the negative effective
ulk modulus suffering from the change of the water temperature are
pproximately equivalent and are up to about 11%. For the electric and
agnetic control strategy, Chen et al. [49] applied the principles of ac-

ive AMs to membrane-type AMs by using a magnetorheological mem-
rane material and an external gradient magnetic field to control the
re-stress inside the membrane material, and this enables the shifting of
he membrane eigenfrequencies during operation by selecting appropri-
te external magnetic field gradients. For rotation of scatterer control
trategy, Goffaux and Vigneron [53] analyzed the tunability of band
aps by altering the geometry of the PC consisting of a set of parallel
olid square-section columns distributed in the air on a square lattice.
u and Chen [54] investigated the dispersion relationship of the two-

imensional PC consisting of elliptic rods in the fluid. They found the
efraction direction of the wave propagating through the PC is tuned
y rotating the elliptic rods due to the geometric anisotropy of the el-
iptic rids. For mechanically control strategies, at present, there have
een extensive studies. Fig. 1 presents several typical designs of PCs
nd AMs. Chen et al. [44] reported a class of mechanically tunable ar-
hitected lattice metamaterials, and they possess mechanically tunable
egative Poisson’s ratios and vibration-mitigation capability. Utilizing
he periodic porous elastomeric structures, the PCs without and with
ard inclusions are designed to manipulate the elastic wave propagation
n the structures through the deformation, which can refer to [ 41 , 43 , 45 ].

ang et al. [39] reported a class of tunable and switchable AMs con-
isting of a metallic core connected to the elastomeric matrix through
lastic beams, whose buckling is exploited as a novel and effective ap-
roach to control the elastic wave propagation. 

We have known that the first AM was spherical metal cores coated
ith a soft rubber shell packed to a simple-cubic lattice in a host mate-

ial, which could exhibit a Mie-type resonance frequency far below the
avelength-scale Bragg resonance frequency of the lattice [24] . Its dy-
amic property is closely related to the material and geometrical param-
ters of each component of this AM. Hence, if the material and geometri-
al parameters can be changed, its dynamic responses can be tuned cor-
espondingly. Inspired by the above mechanically control strategies, we
ave designed a kind of AMs comprising resonating elements (including
lastomeric coating and hard core) embedded into an elastomeric matrix
ith a square array of circular holes to manipulate the low-frequency

ocally resonant band gaps through large deformation [40] . On the one
and, the geometric and material nonlinearities of the elastomeric ma-
rix can be induced by the large deformation. Utilizing its geometric
nd material nonlinearities, the tunable PCs have been designed, and
he effects of geometric and material nonlinearities on their dynamic
esponses have been investigated [42] . On the other hand, elastomeric
2 
aterials used for the matrix and coating possess the inherent damping
ffect, which can significantly alter the dynamic performance of PCs
 41 , 55 , 56 ]. For AMs, we don’t know what roles these effects play in
uning the dynamic responses of AMs and how they affect the dynamic
esponses of AMs, so that it is difficult to design the unique AMs based
n the same principles to meet new needs of noise and vibration control
n application. 

Thus, to reveal the roles of these effects mentioned above in the pro-
ess of elastic wave manipulation, taking the AMs comprising resonating
lements (include elastomeric coating and hard core) embedded into an
lastomeric matrix with a square array of circular holes as examples, we
ill investigate the effects of geometric and material nonlinearities and
amping effects on the dynamic responses of AMs to reveal how to tune
he responses of AMs. Through this research, we hope to provide a better
nderstanding of the roles of design parameters in AMs and to guide us
o design new AMs to meet the unique needs of noise and vibration con-
rol in application. The paper is organized as follows. The AM models
nvestigated in this study and the corresponding governing equations,
aterial behavior, and boundary conditions are shown in Section 2. Pat-

ern transformation and band structures of the AMs are presented in
ection 3. Section 4 highlights the roles of material and geometric non-
inearities and damping effects on band structures and transmittances of
nite-sized AMs without and with damping. Additionally, the impacts
f design parameters of AM on its dynamic performance is discussed in
ection 5. Finally, conclusions are drawn in Section 6. 

. Numerical model description of mechanically tunable AM 

A unit cell of the tunable AM, as shown in Fig. 2 , is consisted of
hree parts: (a) soft elastomeric matrix with a square array of circular
oles, (b) elastomeric coating, and (c) hard cores made of a material
ith reasonably high density and high rigidity [40] . The coatings and
ard cores constitute the resonating elements. The large deformation of
lastomeric matrix and coating under equibiaxial compression can in-
roduce the material and geometric nonlinearities so that the dynamic
esponses of AMs can be tuned. In this paper, to further reveal how the
eformation affects the dynamic responses of AMs, taking the AMs with
ifferent design parameters as examples, we will calculate their band
tructures and the transmittances of the finite-sized AMs. Here, both
atrix material (a) and coating material (b) are made of hyperelastic-

ty materials, whose responses are captured by Neo-Hookean or Gent
odels [ 42 , 57 ]. Their material parameters [40] are listed in Table 1 .
he geometrical parameters in Figs. 2 (a), 2(b), and 2(c) can be assigned
o form new and different AMs, as listed in Table 2 . The areas of their
oatings and hard cores are kept the same. Here, the commercial finite
lement code ABAQUS/Standard was used for simulating the buckling,
ost-buckling, and wave propagation analysis of AMs [58] . Assuming
lane strain conditions, ABAQUS element type CPE6H is used to con-
truct the finite element models. Next, the analysis process will be di-
ided into three steps: (1) buckling analysis, (2) post-buckling analysis,
nd (3) wave propagation analysis [ 40 , 42 ]. 

• Buckling analysis and post-buckling analysis 

It is well known that, under compression, the geometric pattern of
oft periodic elastomeric cellular solids can suddenly change due to me-
hanical instability (microscopic instabilities or macroscopic instabili-
ies) [ 43 , 59 ]. For example, for the PCs with a square array of circular
oles, microscopic instabilities lead to an enlarged unit cell of 2 × 2
rimitive unit cells and to the formation of a pattern of alternating, or-
hogonal and elongated holes [59] . For our designed AMs, their primi-
ive unit cells are shown in the left subfigures of Figs. 3 (a)~3(f), which
re indicated by the dashed squares. Through Refined Eigen Analyses of
nit cells consisting of n × n primitive unit cells [59] , as shown in Fig.
 , taking Case1 and Case4.1 as examples, the critical volumetric strains
hat correspond to the first eigenmode converge to those of 2 n × 2 n prim-
tive unit cells at buckling, so that the enlarged unit cells consisting of
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Fig. 1. Mechanically tunable phononic crystals and acoustic metamaterials. (I) Mechanically tunable lattice phononic crystals [44] . They possess mechanically 

tunable negative Poisson’s ratios and vibration-mitigation capability; (II) Periodic porous elastomeric planar structures [43] . Their responses can be effectively tuned 

by the level of applied deformation; (III) Periodic porous elastomeric planar structures with hard inclusion [41] . The filled hard inclusions make the sensitivity of 

the post-buckling deformation to the initial geometrical imperfections significantly reduce. (IV) Periodic porous elastomeric planar structures with hard inclusion 

[45] . The deformation of elastomeric matrix manipulates the orientation of hard inclusion to tune the wave propagation in the structures; (V) Mechanically tunable 

acoustic metamaterials [39] . The buckling of elastic beams connecting the elastomeric matrix and metallic core is exploited as a novel and effective approach to 

control the elastic wave propagation. 

Fig. 2. Geometric parameters of AM, reciprocal lattice and the first Brillouin zone. (a) Elastomeric matrix; (b) Elastomeric coating; (c) Hard core; (d) Primitive unit 

cell consisting of (a), (b) and (c); (e) Reciprocal lattice and the first Brillouin zone. For (d), its IBZ is rectangle MAGXM. 

Table 1 

Material parameters. 

Hyper-elastic: Neo-Hookean or Gent model Elastic 

(A) 

Rubber 

(B) 

Silicone rubber 

(C) 

Tungsten 

Density (kg/m 

3 ) 1050 1300 Density (kg/m 

3 ) 19100 

Shear modulus (MPa) 1.08 0.04 Young’s modulus 

(MPa) 

354100 

Bulk modulus (MPa) 2000 2.94 Poisson’s ratio 0.35 

Table 2 

Geometrical parameters. 

Case 1 Case 2 Case 3 Case 4 - 

L (mm) 20.0 20.0 20.0 20.0 - 

R (mm) 8.0 8.0 8.0 8.0 - 

r 1 (mm) 5.0 5.0 4.0 4.0 r 1 r 2 = 25 

r 2 (mm) 5.0 5.0 6.25 6.25 

r 3 (mm) 3.0 2.25 3.0 2.25 r 3 r 4 = 9.0 

r 4 (mm) 3.0 4.0 3.0 4.0 
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 × 2 primitive unit cells are expected. Other AMs shown in Fig. 3 have
he same characteristic. The detailed process can refer to the Supple-
entary Materials. In short, the deformation leads to an enlarged unit
3 
ell consisting of 2 × 2 primitive unit cells, as shown in the left subfig-
res of Figs. 3 (a)~3(f). Next, the buckling analysis and post-buckling
nalysis will be performed on the enlarged unit cells under equibiaxial
ompression. In both analysis processes, continuous periodic boundary
ondition 

 B − 𝐮 A = 

(
𝐅̄ − 𝐈 

)(
𝐗 B − 𝐗 A 

)
(1)

s imposed on the enlarged unit cell boundaries, where A and B are two
eriodically located points on the boundaries of unit cells. Under equib-
axial compression, the macroscopic deformation gradient is given by
̄
 = 𝜆( 𝐞 1 ⊗ 𝐞 1 + 𝐞 2 ⊗ 𝐞 2 ) . 𝜆 is the macroscopically applied stretch ratio
nd e 1 and e 2 are the basis vectors of two-dimensional Cartesian coor-
inates. Obviously, it can be noted that 𝜆 = 1, 𝜆 > 1 and 𝜆 < 1 represent
he unit cell is unstretched, extended and compressed, respectively. In
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Fig. 3. The primitive and deformed unit cells of the AMs with the geometrical parameters according to Table 2 and the Mises stress distributions of the deformed 

configurations under equibiaxial compression ( 𝜆 = 0.8). For Case 4, here are three cases with different arrangements of resonating element, as (d), (e) and (f).The 

dashed squares indicate the primitive unit cells. 

Fig. 4. Critical volumetric strains (for 1st and 2nd buckling modes) at buckling 

vs. unit cell sizes subjected to equibiaxial compression for Case1 and Case 4.1, 

respectively. 
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ddition, note that in the process of post-buckling analysis an imper-
ection in the form of the lowest eigenmode scaled by the scale factor

( 𝜂 = 0.5) is introduced into the initial geometry by perturbing the
osition of each node. 

• Wave propagation analysis 

In this step, frequency domain wave propagation analysis is per-
ormed on the deformed configurations to obtain the dispersion rela-
ion of AMs. To investigate the effect of the applied deformation on the
ropagation of small-amplitude elastic waves, incremental deformations
uperimposed upon a given state of finite deformation are considered.
amely, a linearized constitutive mode is used to investigate the wave
ropagation through the pre-deformed AM unit cells [60] . Differently,
ere the Bloch-type boundary condition 

̄
 ( 𝐱 + 𝐑 ) = 𝐮̄ ( 𝐱 ) exp ( i 𝐤 ⋅ 𝐑 ) (2)
4 
s applied to the edges of the deformed unit cell, where 𝐮̄ and x de-
ote the incremental displacement and position vector of a point, re-
pectively, and k and R are the propagating Bloch-wave vector and the
istance between each pair of nodes periodically located on the bound-
ries, respectively. By solving the eigenvalue problem, the dispersion
elations are obtained by sweeping the wave vector k = ( k x ,k y ) along
he edges of the irreducible Brillouin zone (IBZ). It should be noted that
he IBZ evolves during deformation. It is necessary to determine the IBZs
ccording to the specific configures of unit cells (refer to Supplementary
aterials). Meanwhile, the normalized frequency 𝑓 = 𝑓𝑙 ∕ 𝑐 𝑡 , with f, l and

 t = 32.07 m/s denoting the frequency, the characteristic size of unit cell
n the undeformed configuration and the elastic wave speeds for shear
ave in the matrix material, is adopted in this paper. 

. Pattern transformation and Band structures of AMs 

.1. Pattern transformation 

In this paper, we hope the dynamic responses of the designed AMs
an be tuned by deformation. Thus, it is necessary first to investi-
ate how the geometrical shapes of the holes, soft coating, and hard
ore affect the deformed configurations of the AMs. Fig. 3 shows the
ndeformed and deformed ( 𝜆 = 0.8) configurations of unit cells and
he Mises stress distributions in the deformed structures. The AMs in
igs. 3 (a)~3(d) have the same radius of circular holes and different res-
nating elements, and the ones in Figs. 3(d)~3(f) have other arrange-
ents of resonating elements with the same shapes. After deformation

 𝜆 = 0.8), the matrixes almost have the same deformed shapes. How-
ver, the forms of coatings significantly affect the deformed shapes of
esonating elements. It can be observed from Figs. 3 (a) and 3(b) that
he circular coatings lead to an approximate square of resonating ele-
ents and from Figs. 3(c) ~ 3(f) that the elliptical coatings lead to an

pproximate parallelogram of resonating elements after deformation.
lso, they can be arranged with different forms for the weak symmet-
ic resonating elements, as shown in Figs. 3 (d) ~ 3(f), and they have
nique deformation patterns induced by deformation. Later we will see
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Fig. 5. Band structures. (a): The unit cell and the band structure of the pure elastomeric matrix with periodic holes with the radius 8 mm; (b): The deformed unit 

cell in (a) under equibiaxial compression ( 𝜆 = 0.8) and the corresponding band structure; (c) and (d): The unit cells and the band structures of the elastomeric matrix 

only containing the resonating elements with the geometrical parameters according to Case 1 and Case 4.1, respectively. The blue bands represent the complete band 

gaps. 
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hat they have different high-frequency band gap performances due to
he other arrangements. Previous studies have shown that the deforma-
ions of coating and matrix materials can lead to changes in material
arameters [40] . Thus I do not repeat them here, and the correspond-
ng results are included in Supplementary Materials. Just because of the
hanges of geometrical shapes and material parameters during defor-
ation, the deformation is used to tune the dynamic responses of the
esigned AMs. In the following, we will investigate the changes in band
tructures of AMs shown in Fig. 3 induced by deformation. 

.2. Band structures of the AMs 

First, the designed AMs can be considered to combine the elastomeric
atrix with a square array of circular holes and resonating elements

including elastomeric coating and hard core). Thus, to reveal the band
ap formation mechanism of the designed AMs, we first investigate the
and structures of the elastomeric matrix only with a square array of cir-
ular holes and the elastomeric matrix only with resonating elements.
igs. 5 (a) and 5(b) display the band structures of the elastomeric ma-
rix only with a square array of circular holes in the undeformed and
eformed ( 𝜆 = 0.8) configurations, respectively. It can be observed that
fter deformation, the pre-existing band gap shown in Fig. 5 (a) is shifted
o a new position and its width decreases, and other new band gaps are
pened. These band gaps belong to the Bragg scattering band gaps. Figs.
 (c) and 5(d) show the band structures of the elastomeric matrix only
ith the resonating elements, whose geometrical parameters are set ac-

ording to Case 1 and Case 4.1, respectively. It can be seen that there
s a band gap in Fig. 5 (c), which is attributed to the locally resonant of
he resonating elements, but there is not a band gap in Figs. 5 (d). These
esults indicate the geometrical shapes of the resonating elements can
ffect the dynamic responses of AMs. In this paper, the combinations of
he combination of the elastomeric matrix with a square array of circu-
ar holes and resonating elements form the new AMs shown in Fig. 3 ,
nd later we will see that their combinations can significantly enhance
he tunability of their dynamic performances. 

Fig. 6 shows the band structures of AMs with the geometrical pa-
ameters according to Table 2 in the undeformed (i) and deformed (ii)
onfigurations, respectively. Their band structures have significant dif-
erences. In comparison with Fig. 5 , combining the elastomeric matrix
ith periodic holes and resonating elements leads to new band struc-

ures and band gaps. In the undeformed configuration, except the left
5 
gure of Fig. 6 (c), there is a band gap between mode 12 and mode 13
or other cases, which corresponds to the locally resonant band gap. For
hese AMs, the position and width of this band gap can be tuned by
eformation. These results indicate the combination of the elastomeric
atrix with periodic holes and resonating elements can enhance the tun-

bility of the dynamic response of AMs. To accurately reflect the change
f the band gap before and after deformation, here we define the relative
ize of a band gap as [42] 

𝜔 = 

𝜔 upper − 𝜔 lower (
𝜔 upper + 𝜔 lower 

)
∕2 

(3)

here 𝜔 upper and 𝜔 lower denote the frequencies of the upper and lower
dge limits of a band gap, respectively. Table 3 lists the frequency ranges
nd the relative sizes of the band gaps between mode 12 and mode 13.
he AMs with the parameters of Case1 and Case2, or of Case3 and Case4,
ave different shapes of hard cores. As listed in Table 3 , the positions and
idths of their band gaps between mode 12 and mode 13 have signifi-

ant differences. Meanwhile, the band gaps located near the normalized
requency 1.0 are also quite different. These differences indicate the ge-
metrical shapes of hard cores in the resonating element affect the low-
requency band gaps (locally resonant bandgap), and affect the high-
requency band gaps (Bragg scatter bandgap). In addition, for the AMs
ith different arrangement of resonating elements, it can be observed

rom Figs. 6 (d)~6(f) that for the locally resonant band gaps between
ode12 and mode 13, they have almost the same positions and widths

n the undeformed ( Fig. 6 (d.i): 0.227~0.257; Fig. 6 (e.i): 0.221~0.253;
ig. 6 (f.i): 0.194~0.253) and deformed ( Fig. 6 (d.ii): 0.199~0.381,
ig. 6 (e.ii): 0.189~0.376, Fig. 6 (f.ii): 0.187~0.389) configurations, re-
pectively. It is mainly because that the locally resonant band gaps are
nrelated to the arrangement of resonating elements. However, their
igh-frequency band gaps have significant differences. The Bragg scat-
ering band gaps are closely related to scatterers’ arrangements (The
esonating element plays the role of scatterer). For the Bragg scattering
and gaps, both holes and resonating elements play the roles of the scat-
erer. The deformations of the elastomeric matrix and coating improve
heir coupling effects so that the tunability of Bragg scattering band gaps
s significantly enhanced. 

In short, the deformations of matrix and coating structures can effec-
ively manipulate the dynamic responses of AMs. During deformation,
he material and geometric nonlinearities can be induced, and they de-
ermine the manipulation of dynamic responses of AMs. Thus, it is nec-
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Fig. 6. Band structures of the AMs with the geometrical parameters according to Table 2 in the undeformed and deformed ( 𝜆 = 0.8) configurations, respectively. 

For Case 4, (d), (e) and (f) are for the three cases with different arrangements of resonating element shown in Figs. 3(d), 3(e) and 3(f), respectively. (i) and (ii) are 

for the undeformed and deformed configurations, respectively. The blue bands represent the complete band gaps. 

Table 3 

The positions of the main band gaps (mode 12 ~ mode 13) and their relative sizes in Figs. 5 and 6 . 

Fig. 5 (a) (b) (c) (d) 

Mode: 12~13 0.751~0.855 0.748~0.838 0.296~0.389 0.354~0.367 

Δ𝜔 0.1295 0.1135 0.2715 0.0361 

Fig. 6 (a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4.1 (e) Case 4.2 (f) Case 4.3 

Mode: 12~13; (i) 0.197~0.226 0.211~0.253 ~ 0.227~0.257 0.221~0.253 0.194~0.253 

Δ𝜔 0.1371 0.1810 ~ 0.1240 0.1350 0.2640 

Mode: 12~13; (ii) 0.168~0.364 0.186~0.370 0.185~0.373 0.199~0.381 0.189~0.376 0.187~0.389 

Δ𝜔 0.7368 0.6619 0.6738 0.6276 0.6619 0.7014 

6 
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Fig. 7. Under equibiaxial compression, the evolution of band gaps as a func- 

tion of stretch ratio 𝜆 for the designed AMs with the geometrical parameters 

according to Case1 and Case 4.1, respectively. (a) Case 1; (b) Case 4.1. 

e  

i  

d

4

a

 

m  

4  

r  

w  

F  

m  

r  

7  

u  

A  

t  

f  

o  

h  

r  

o  

w  

r  

i  

p  

t  

H  

p  

q  

e  

t

4

g

 

b  

d  

t  

m  

[

𝑊  

w  

a  

T  

t  

r  

d  

1  

f  

c
 

c  

I  

f  

t  

t  

a  

a  

e  

d  

t  

r  

t  

l  

f  

i  

i  

u  

w  

s  

m  

t  

b  

F

(

ssary to investigate the roles of material and geometric nonlinearities
n manipulating the dynamic responses of AMs and how to affect their
ynamic responses. 

. The roles of material and geometric nonlinearities of matrix 

nd coating materials 

The above analyses have shown that the deformation can effectively
anipulate the band structures of AMs. Further, taking Case1 and Case
.1 as examples, the evolutions of band gaps as a function of the stretch
atio 𝜆 are calculated, respectively, as shown in Fig. 7 . For convenience,
e divide the band gaps into two groups (I) and (II). It can be seen from
igs. 7 (a) and 7(b) that for the first group of band gaps (I) (between
ode 12 and mode 13), it nearly remains unchanged when the stretch

atio 𝜆 is between 0.975 and 1.0. For Case1, it can be observed from Fig.
 (a) that in the compression ranges about between 0.925 and 0.975, the
pper edge of the first band gap (I) significantly shifts to high-frequency.
nd it almost remains unchanged again when the stretch ratio is less

han 0.925. The lower edge of the band gap (I) slightly moves to low-
requency in the entire compression range. Also, for the second group
f band gap (II) (between mode 44 and mode 45), its position shifts to
igh-frequency, and its width increases with the decrease of the stretch
atio. For Case4.1, it can be observed from Fig. 7 (b) that the upper edge
f the first group of band gap (I) continuously shifts to high-frequency
ith the stretch ratio varying from 0.875 to 0.975. When the stretch

atio is less than 0.875, its upper edge almost remains unchanged. Sim-
larly, its lower edge slightly shifts to low-frequency in the entire com-
ression range. The evolutions of band gaps are indeed closely related
o the material and geometric nonlinearities induced by deformation.
owever, it is unclear what roles they play in manipulating the dynamic
erformance of AMs during deformation. In this section, to answer this
ig. 8. The band structures of the designed AMs with the geometrical parameters acc

a) J m = 0.8; (b) J m = 1.0; (c) J m = 1.5; (d) J m = 5.0. 

7 
uestion, we first focus on the effects of material and geometric nonlin-
arities induced by the deformation of matrix and coating materials on
he dynamic responses. 

.1. The roles of material nonlinearity of matrix and coating on the band 

aps 

Here, we first investigate the effect of material nonlinearity on the
and gaps. In order to evaluate the effect of material nonlinearity on the
ynamic response, we choose Gent constitutive model to characteristic
he material properties of matrix and coating, respectively. The Gent
odel is characterized by the following strain energy density function

57] : 

 

(
𝐼 1 , 𝐽 

)
= − 

𝜇

2 
𝐽 𝑚 log 

( 

1 − 

𝐼 1 − 3 
𝐽 𝑚 

) 

− 𝜇 log ( 𝐽 ) + 

( 

𝜅

2 
− 

𝜇

𝐽 𝑚 

) 

( 𝐽 − 1 ) 2 (4)

here I 1 = trace( F T F ), 𝐽 = det ( 𝐅 ) , F denotes the deformation gradient
nd J m 

denotes a material constant related to the strain at saturation.
he initial shear ( 𝜇) and bulk ( 𝜅) modulus uses the same the parame-
ers as mentioned in Table 1 . Note that as J m 

→ +∞ the Gent model
educes to the Neo-Hookean model and the smaller values of J m 

intro-
uce stronger nonlinearities in the material behavior [42] . Taking Case
 as an example, we investigate the dynamic responses of AMs with dif-
erent Gent constitutive constants. Here, we choose four different Gent
onstitutive constants J m 

: 0.8, 1.0, 1.5 and 5.0. 
Figs. 8 and 9 show the band structures of AMs with different Gent

onstitutive constants J m 

of coating and matrix materials, respectively.
t can be seen from Fig. 8 that there is the similitude of band structures
or the AMs with different Gent constitutive constants J m 

, and all of
he band gaps shift to low-frequency with the increase of Gent consti-
utive constant J m 

. Here, we only focus on the band gaps (I) and (II),
nd they locate between mode 12 and mode 13, and between mode 44
nd mode 45, respectively. Other band gaps may disappear for differ-
nt Gent constitutive constants. The widths of the band gaps (I) and (II)
ecrease with the increase of Gent constitutive constant J m 

. To quantify
he changing law of the band gaps (I) and (II), Fig. 10 (a) displays their
elative sizes defined as Eq.(3). It can be observed from Fig. 10 (a) that
he relative size of the band gap (I) increases, and the band gap shifts to
ow-frequency with the increase of Gent constitutive constant J m 

. Also,
or the band gap (II), its relative size almost remains constant because
t shifts to low-frequency while its width decreases. These phenomena
ndicate that the property of coating material can simultaneously manip-
late the low- and high-frequency band gaps of the AMs. In comparison
ith Fig. 8 , it can be seen from Fig. 9 that the band structures have

mall changes for different Gent constitutive constants J m 

of the matrix
aterial. Their relative sizes are shown in Fig. 10 (b). It can be observed

hat the relative size of band gap (I) only has a few changes, but, for
and gap (II) and (III), their positions shift to low-frequency and their
ording to Case1 for different Gent constitutive constants J m of coating material. 
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Fig. 9. The band structures of the designed AMs with the geometrical parameters according to Case 1 for different Gent constitutive constants J m of matrix material. 

(a) J m = 0.8; (b) J m = 1.0; (c) J m = 1.5; (d) J m = 5.0. 

Fig. 10. The relative size of the main band gaps in Figs. 8 and 9 of the AMs with the geometrical parameters according to Case 1 for different Gent constitutive 

constants. The band gaps (I), (II) and (III) are between mode 12 and mode 13, mode 44 and mode 45, and mode 40 to mode 41, respectively. (a): coating material; 

(b): matrix material. 

Fig. 11. The evolution of band gaps as a function of stretch ratio 𝜆 for the 

AMs with the geometrical parameters according to Case 1. The Gent constitu- 

tive constant J m of both coating and matrix materials are 0.8 and other parame- 

ters remain unchanged. (a) Coating material. (b) Matrix material. The red lines 

represent the band gaps shown in Fig. 7 (a). 
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elative sizes increase with the increase of Gent constitutive constant J m 

.
hese phenomena indicate that the property of matrix material can sig-
ificantly affect their high-frequency band gaps (Bragg scattering band
ap (II) and (III)) but slightly affect the low-frequency band gap (locally
esonating band gap (I)) of the AMs. In short, the tunability of locally
esonating band gaps (I) is mainly related to the coating material. 

Further, taking Case 1 as an example, Fig. 11 shows the evolution
f band gaps as a function of stretch ratio 𝜆 for the designed AMs. The
ent constitutive constants J m 

of coating and matrix materials are 0.8,
epresenting the elastomeric material is strong nonlinearity, and other
arameters remain unchanged. Firstly, it can be observed from Figs.
 and 11 that the first group of band gaps (I) (between mode 12 and
8 
ode 13) nearly remains unchanged when the stretch ratio 𝜆 is be-
ween 0 and -0.025. In fact, for them, in this stretch range, the coating
till works in an elastic state during compression, and their geometri-
al shapes only have small changes so that their dynamic performances
emain unchanged. However, in other stretch ranges, there are signifi-
ant differences between Fig. 11 (a) and Fig. 7 (a). These differences are
ttributed to the strong material nonlinearity of coating material. Dif-
erently, it can be seen from Fig. 11 (b) that the strong nonlinearity of
atrix material almost doesn’t affect the band gap (I), but other band

aps can be significantly changed. These results demonstrate the strong
onlinear coating material can simultaneously enhance the tunability
f the low- and high-frequency dynamic responses. The strong nonlin-
ar matrix material only affects the tunability of the high-frequency dy-
amic response. In addition to playing the role of the local resonance,
he resonant element also plays the role of the scatterer. Thus the nonlin-
arity of coating material can simultaneously alter the locally resonating
nd Bragg scattering band gaps. By contrast, because the nonlinearity
f matrix material only affects the wave propagation in the matrix, it
ignificantly affects Bragg scattering band gaps. Still, it does not affect
he locally resonant band gaps. 

.2. The roles of geometric nonlinearity of matrix and coating on the band 

aps 

Next, to evaluate the effect of geometric nonlinearity on the dy-
amic responses of the AMs, we investigate the dynamic responses in
 stress-free structure with the deformed geometry determined by the
ost-buckling analysis. After deformation, we set all the stress compo-
ents to zero before performing the dynamic response analysis. Namely,
he inhomogeneous stress distribution is not taken into consideration
hen computing the dynamic response. Figs. 12 (a) and 12(b) show the
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Fig. 12. The evolution of band gaps as a function of stretch ratio 𝜆 for the 

designed AMs in the stress-free structures with the deformed geometries, whose 

initial material parameters and geometrical parameters set according to Case 1 

and Case 4.1, respectively. (a) Case 1; (b) Case 4.1. The red lines represent the 

band gaps shown in Fig. 7 . 
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volution of band gaps as a function of stretch ratio 𝜆 for the designed
M as Case 1 and Case 4.1, respectively. Their material parameters are
et with the initial material parameters. The red lines in Fig. 12 repre-
ent the band gaps shown in Fig. 7 . These results indicate the large de-
ormation (geometrical nonlinearity) can significantly manipulate their
ynamic responses. Especially, the small differences between locally res-
nant band gaps (I) shown in Fig. 12 and Fig. 7 indicate they mainly
ome from their geometrical deformation when the materials of AMs
re weakly nonlinear. Other band gaps shown in Fig. 12 can be signif-
cantly tuned by deformation. Their differences shown in Fig. 12 and
ig. 7 are due to the absence of material nonlinearity. They indicate
gain that the tunability of the Bragg scattering band gap results from
he comprehensive action of the geometric and material nonlinearities
f the AMs during deformation. 

.3. Transmittances of mechanically tunable finite-sized AMs and the role 

f material damping effect 

Usually, to enhance the tunable ability, the matrix and coating ma-
erials of AMs are composed of soft elastomeric materials. Besides the
bove material and geometric nonlinearities, the soft materials usually
resent significant viscous and damping effects, which have a remark-
ble impact on elastic wave propagating in the AM structures. Here,
y calculating the transmittances of finite-sized AMs without and with
amping, we study the damping effects in the matrix and coating mate-
ials on their dynamic responses. 

.3.1. Mechanically tunable finite-sized AM structures and their 

ransmittances without damping 

To validate the tunability of dynamic responses of the designed AMs,
wo samples of the AMs comprising 8 × 8 unit cells shown in Fig. 3 (a)
nd 4 × 4 unit cells shown in Fig. 3 (f) are chosen to calculate their
ynamic responses in the undeformed and deformed ( 𝜆 = 0.8) configu-
ations. Here the monopole excitation in-plane is applied to excite the
ynamic responses of the AM structures, and it is approximated by a ra-
ial pressure excitation, as shown in Fig. 13 . Letter A denotes the input
easurement location, and letter B and C represent the output measure-
ent locations, whose accurate positions are exhibited in Figs. 14 (a)

nd 15 (a). The initial configurations of the AM structures are shown
n Figs. 14 (a) and 15 (a), and their deformed configurations are demon-
trated in Figs. 14 (b) and 15 (b), respectively. Figs. 14 (c) and 15 (c) show
he transmittance spectrums of the finite-sized AMs in the undeformed
nd deformed configurations, respectively. The transmittance is defined
s 20 log 10 ( |𝑢 𝑜𝑢𝑡 |∕ |𝑢 𝑖𝑛 |) , where | u out | and | u in | are the amplitudes of dis-
lacements in the output and input measuring positions, respectively.
he upper and lower figures of Figs. 14 (c) and 15 (c) display the trans-
ittance curves from A to B and from A to C, respectively. In these
9 
gures, the gray and red bands represent the band gaps in the unde-
ormed and deformed ( 𝜆 = 0.8) configurations. Luckily, it can be ob-
erved from Figs. 14 (c) and 15 (c) that the transmittances significantly
educe in the frequency ranges of band gaps, and they agree well with
he numerical predictions of band gaps above. However, it should also
e observed from Fig. 14 (c) that there are significant inconsistencies
etween the low-frequency locally resonant band gap and the band re-
ion in the transmittance spectrum in the undeformed configuration.
he discrepancies are mainly due to the influence of the boundaries of
nite-sized AM structures. Also, besides the complete band gaps, we
an observe that the transmittances significantly attenuate in some fre-
uency ranges, for example, in the frequency range between 0.5 and
.75 and near 1.25, which is attributed to the existence of directional
and gaps. These results indicate the tunability of the AM structures’ dy-
amic responses through deformation, especially for the low-frequency
ocally resonant band regions. 

.3.2. The roles of damping effects in mechanically tunable finite-sized AM

tructures 

For the finite-sized AMs with damping, to reveal the roles of damp-
ng effects in the mechanically tunable finite-sized AM structures, we
espectively define the material with Rayleigh damping and viscoelas-
ic damping material to investigate the influences of damping effects on
he finite-sized AM structures’ dynamic responses. 

.3.2.1. Rayleigh damping. For convenience, we only specify
ayleigh damping factor 𝛽 for stiffness proportional damping in
BAQUS/Standard . Thus, an additional damping stress 𝜎d propor-

ions to the total strain rate, 𝜎𝑑 = 𝛽𝐷 

𝑒𝑙 𝜀̇ , where 𝜀̇ is the strain rate.
or hyperelastic material D 

el is defined as the elastic stiffness in the
train-free state [58] . Here, we take the finite-sized AM structures as
hown in Figs. 16 (a) and 16 (b) as examples and six groups of damping
actors 𝛽, such as 0 (Undamped), 1e-5, 1e-4, 0.001, 0.01 and 0.03, are
hosen to calculate its transmittances from A to C in the undeformed
nd deformed configurations. These results are shown in Fig. 16 . The
ray and red bands in Fig. 16 denote the band gaps shown in Fig. 6 (f)
n the undeformed and deformed configurations. It can be observed
hat, in comparison with the undamped case, the Rayleigh damping
akes the transmittances of the AM structures attenuate obviously in

he pass-bands. Especially, the attenuation in the high-frequency range
greater than the locally resonant band gap) is more significant. 

Fig. 16 (a) shows the effects of the matrix materials with different
amping factors on the transmittances of the finite-sized AM structures.
he top and bottom halves of Fig. 16 (a) are for the undeformed and de-
ormed configurations, respectively. It can be seen from Fig. 16 (a) that
or these cases, the band regions disappear gradually with an increase
f the damping factors, so that it is difficult to identify the band regions
rom the transmittance spectrums. For example, for damping factor 1e-
, we still clearly recall the three band regions (the gray band in the
pper figure and the two red bands in the lower figure). Yet, for the
ases with damping equal or greater than 0.001, these band regions dis-
ppear. Also, it is seen that the transmittances increase with the increase
f damping factors equal to or greater than 0.001. It is attributed to the
act that, on the one hand, an excessive amount of damping is equiva-
ent to increasing the stiffness of the structures. On the other hand, it
an impede the relative motion within the structures to consume energy.
hus, excessive damping enhances the wave transmittances in the AM
tructures. 

Fig. 16 (b) shows the effects of the coating materials with different
amping factors on the transmittances of the finite-sized AM structures.
he top and bottom halves of Fig. 16 (b) are for the undeformed and
eformed configurations, respectively. Besides the same characteristics
s those shown in Fig. 16 (a), it can be observed from the top half of Fig.
6 (b) that there is a valley in the normalized frequency range 0.6~1.0
hen the damping factors are 0.01 and 0.03, respectively. Meanwhile,
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Fig. 13. The radial pressure excitation method, which is used 

to approximate the monopole excitation, and Input (A) and 

Output (B,C) denote the measuring positions of the input and 

output signals. 

Fig. 14. Finite-sized AM structure with 8 × 8 

unit cells with geometrical parameters accord- 

ing to Case 1 in the undeformed (a) and de- 

formed (b, 𝜆 = 0.8) configurations and their 

transmittance curves (c). Letter A denotes the 

input measurement location. Letter B and C de- 

note the output measurement locations. The 

gray and red bands denote the band gaps shown 

in Fig. 6(a) in the undeformed and deformed 

( 𝜆 = 0.8) configurations, respectively. 

i  

q  

e  

s  

e  

t  

s  

n  

t  

t  

r  

e

4  

d  

i  

o  

d

𝐺  

𝐺  

t  

w  

s  

l  

i  

c  

t  

T  

o
a  

a  

s  

q  

p  

t  

a  

e  

g  

t  

g  

o  

o

n the bottom half of Fig. 16 (b), we can observe that the normalized fre-
uency range of the valley widens to 0.6~1.4. As explained above, the
xcessive amount of damping in coating material increases the coating’s
tiffness and impedes the occurrence of local resonance. A resonating
lement (including coatings and hard cores) translates to a scatterer so
hat the Bragg scattering phenomenon appears. And this valley corre-
ponds to the Bragg scattering band gap. This exciting interesting phe-
omenon can help us to design other tunable acoustic metamaterials
hrough material damping effects. Also, these results indicate that for
he Rayleigh damping model, the damping factor needs to be optimized
ather than bigger is better to achieve the most effective suppressive of
lastic wave propagation. 

.3.2.2. Linear viscoelastic damping. In contrast, a linear viscoelastic
amping model based on frequency domain Prony series is adopted to
nvestigate the influences of damping effect on the dynamic responses
f the finite-sized AM structures. The expression for the frequency-
ependent shear modulus can be written as follows [58] : 

 𝑠 ( 𝜔 ) = 𝐺 0 𝐺 

∗ 
𝑠 
, 𝐺 

∗ 
𝑠 
( 𝜔 ) = 

[ 

1 − 

𝑁 ∑
𝑖 =1 

𝑔̄ 𝑃 
𝑖 

] 

+ 

𝑁 ∑
𝑖 =1 

𝑔̄ 𝑃 
𝑖 
𝜏2 
𝑖 
𝜔 

2 

1 + 𝜏2 
𝑖 
𝜔 

2 
(5)

 𝑙 ( 𝜔 ) = 𝐺 0 𝐺 

∗ 
𝑙 
, 𝐺 

∗ 
𝑙 
( 𝜔 ) = 

𝑁 ∑
𝑖 =1 

𝑔̄ 𝑃 
𝑖 
𝜏𝑖 𝜔 

1 + 𝜏2 𝜔 

2 
(6)
𝑖 

10 
an 𝛿 = 

𝐺 𝑙 

𝐺 𝑠 

= 

𝐺 

∗ 
𝑙 

𝐺 

∗ 
𝑠 

(7)

here 𝑔̄ 𝑃 
𝑖 

, 𝜏 i and i = 1, 2, ⋅⋅⋅, N , are material constants. G 0 is the in-
tantaneous shear modulus, G s ( 𝜔 ) is the storage modulus, G l ( 𝜔 ) is the
oss modulus, 𝜔 is the angular frequency, and N is the number of terms
n the Prony series. We don’t consider the viscoelastic damping asso-
iated with the bulk modulus. Here, to facilitate the parametric study,
he first-order Prony series is chosen in the frequency domain, N = 1.
he influences of viscoelastic damping on the dynamic characteristics
f AMs are investigated by adopting different material parameters 𝜏1 

nd 𝑔̄ 𝑃 1 . First, the material parameter 𝜏1 is chosen as 1e-4s, 1e-3s, 0.01s,
nd 0.1s, respectively, while the parameter 𝑔̄ 𝑃 1 is fixed at 0.5. Fig. 17 (a)
hows the evolutions of the storage and loss shear moduli verse fre-
uency at the given parameter 𝜏1 . It can be seen that the smaller the
arameter 𝜏1 is, the greater the loss shear modulus is so that the greater
he loss factor tan 𝛿 is. Further, the parameter 𝑔̄ 𝑃 1 is chosen as 0.25, 0.5,
nd 0.75, respectively, while 𝜏1 is fixed at 1e-4s. Fig. 17 (b) shows the
volutions of the storage and loss shear moduli verse frequency at the
iven parameter 𝑔̄ 𝑃 1 . It can be observed from Fig. 17 (b) that the greater
he parameter 𝑔̄ 𝑃 1 is, the smaller the loss shear modulus is, so that the
reater the loss factor tan 𝛿 is. Next, we respectively discuss the effects
f the material parameters 𝜏1 and 𝑔̄ 𝑃 1 in the viscoelastic damping model
n the wave transmittances in the finite-sized AM structures. 
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Fig. 15. Finite-sized AM structure with 4 × 4 

unit cells with geometrical parameters accord- 

ing to Case 4.3 in the undeformed (a) and de- 

formed (b, 𝜆 = 0.8) configurations and their 

transmittance curves (c). The gray and red 

bands denote the band gaps shown in Fig. 6 (f) 

in the undeformed and deformed ( 𝜆 = 0.8) con- 

figurations, respectively. 

Fig. 16. The effects of the damping effects of matrix and coating materials on the transmittances from A to C in the finite-sized AM structures with 4 × 4 unit cells 

according to Case 4.3. (a) is for matrix material and (b) for coating material. The gray and red bands denote the band gaps shown in Fig. 6 (f) in the undeformed and 

deformed configurations, respectively. The damping factors 𝛽 are 1e-5, 1e-4, 0.001, 0.01 and 0.03, respectively. 
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Figs. 18 and 19 show the effects of the material parameter 𝑔̄ 𝑃 1 on
he transmittances of the finite-sized AM structures. Here the parame-
er 𝜏1 is fixed at 1e-4s and 0.1s, respectively. And Fig. 20 shows the
ffects of the material parameter 𝜏1 on the transmittances of finite-sized
M structures. Here the parameter 𝑔̄ 𝑃 1 is fixed at 0.5. In these figures,

he gray and red bands denote the band gaps (as shown in Fig. 6 (f))
11 
f AMs without damping in the undeformed and deformed configura-
ions, respectively. As described above, a small parameter 𝜏1 or a large
arameter 𝑔̄ 𝑃 1 means large viscous damping in the viscoelastic material.
imilar to Fig. 16 , it can be seen from Figs. 18 and 20 that excessive
iscous damping can effectively suppress the dynamic responses of the
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Fig. 17. The evolutions of the storage and loss shear moduli verse frequency at the given parameters 𝜏1 and 𝑔̄ 𝑃 1 , respectively. (a) 𝜏1 : 1e-4, 1e-3, 0.01 and 0.1; (b) 

𝑔̄ 𝑃 1 : 0.25, 0.5, 0.75. 

Fig. 18. The effects of the viscoelastic damping parameter 𝑔̄ 𝑃 1 of matrix and coating materials on the transmittances from A to C in the finite-sized AM structures with 

4 × 4 unit cells according to Case 4.3. (a) is for matrix material and (b) for coating material. The gray and red bands denote the band gaps shown in Fig. 6 (f) in the 

undeformed and deformed configurations, respectively. The viscoelastic damping parameter 𝑔̄ 𝑃 1 is selected as 0.25, 0.5 and 0.75, respectively, while the parameter 

𝜏1 is fixed at 1e-4s. 
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nite-sized AM structures in the high-frequency range so that the band
egions can’t be identified from the transmittance spectrums. 

In Fig. 18 , the parameter 𝜏1 is fixed at 1e-4s, and this means that
izeable viscous damping is contained in the matrix and coating ma-
erials. Thus, the high-frequency responses are suppressed so that it is
ifficult to identify the high-frequency Bragg scattering band regions
rom the transmittance spectrums. However, the low-frequency locally
esonant band regions still can be identified from Fig. 18 . In Fig. 19 , the
arameter 𝜏1 is fixed at 0.1s. In comparison with Fig. 18 , there is small
iscous damping in the matrix and coating materials. Interestingly, in
ontrast with those without damping and with Rayleigh damping, some
ew phenomena can be observed from the transmittance spectrums. For
he case that the matrix material adopts the viscoelastic damping model,
12 
he high-frequency Bragg scattering band regions are opened after de-
ormation, and the low-frequency locally resonant and high-frequency
ragg scattering band regions shift to high-frequency with the increase
f parameter 𝑔̄ 𝑃 1 , as shown in Fig. 19 (a). It can be noted that the transmit-
ances inside these band regions increase with the rise of parameter 𝑔̄ 𝑃 1 
efore and after deformation, and excessive damping makes the high-
requency Bragg scattering band region disappear, such as 𝑔̄ 𝑃 1 = 0 . 75 .
or the case that the coating material adopts the viscoelastic damp-
ng model, besides the low-frequency locally resonant band region, a
ew high-frequency Bragg scattering band region is opened in the un-
eformed configuration when the parameter 𝑔̄ 𝑃 1 is greater than a special
alue. For example, for the cases of 𝑔̄ 𝑃 1 = 0 . 5 and 𝑔̄ 𝑃 1 = 0 . 75 , the band re-
ions at about 1.13~1.28 and 1.24~1.48 are opened, respectively. This
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Fig. 19. The effects of the viscoelastic damping parameter 𝑔̄ 𝑃 1 of matrix and coating materials on the transmittances from A to C in the finite-sized AM structures 

with 4 × 4 unit cells according to Case 4.3. The material parameter 𝜏1 is fixed at 0.1s, and other parameters are the same as those in Fig. 18 . 

Fig. 20. The effects of the viscoelastic damping parameter 𝜏1 of matrix and coating materials on the transmittances from A to C in the finite-sized AM structures 

with 4 × 4 unit cells according to Case 4.3. (a) is for matrix material and (b) for coating material. The gray and red bands denote the band gaps shown in Fig. 6 (f) 

in the undeformed and deformed configurations, respectively. The viscoelastic damping parameter 𝜏1 is selected as 1e-4s, 0.001s, 0.01s and 0.1s, respectively, while 

the parameter 𝑔̄ 𝑃 1 is fixed at 0.5. 

p  

R  

t  

o  

f  

r  

i  

s  

D  

t
 

o  

s  

l  
henomenon is not observed in the cases without damping and with
ayleigh damping. By contrast, this new band region’s appearance in

he undeformed configuration is attributed to the frequency-dependent
f viscoelastic damping material. Similarly, after deformation, the low-
requency locally resonant and high-frequency Bragg scattering band
egions shift to high-frequency with the increase of parameter 𝑔̄ 𝑃 1 . Also,
t can be noted from Fig. 19 that the width of the high-frequency Bragg
13 
cattering band region also increases with the rise of the parameter 𝑔̄ 𝑃 1 .
ifferently, the transmittances inside these band regions decrease with

he increase of parameter 𝑔̄ 𝑃 1 before and after deformation. 
In Fig. 20 , the material parameter 𝑔̄ 𝑃 1 is fixed at 0.5, and the effects

f the material parameter 𝜏1 on the dynamic responses of the finite-
ized AM structures are investigated. It can be seen from Fig. 20 that the
ow-frequency locally resonant band region shifts to the high-frequency
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Fig. 21. Effect of radius of circular hole on band gaps of the AM with geomet- 

rical parameters according to Case 1. (a) and (b) are for the undeformed and 

deformed configurations, respectively. The red line in (b) shows the adopted 

stretch ratios for different radiuses of circular holes. 
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Fig. 22. Effects of thickness of coating on band gaps of the AM with geomet- 

rical parameters according to Case 1. (a) and (b) are for the undeformed and 

deformed ( 𝜆 = 0.8) configurations, respectively. 

Fig. 23. Effects of radius of hard core on band gaps of the AM with geomet- 

rical parameters according to Case 1. (a) and (b) are for the undeformed and 

deformed ( 𝜆 = 0.8) configurations, respectively. 
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ange with the increase of viscoelastic damping parameters 𝜏1 before
nd after deformation. The smaller the parameter 𝜏1 is, the greater the
amping in the material is. Thus, when the parameter 𝜏1 is 1e-4s, it is dif-
cult to identify the high-frequency Bragg scattering band region from
he transmittance spectrum. Also, in comparison with the undamped
ase, the existence of viscoelastic damping makes the high-frequency
ragg scattering band region shift to the high-frequency range. Espe-
ially, when the coating material adopts the viscoelastic damping mate-
ial model with parameters 𝜏1 = 0.001, 0.01, and 0.1, it can be observed
rom the top half of Fig. 20 (b) that the new high-frequency Bragg scat-
ering band region at about 1.125~1.284 can be opened in the unde-
ormed configuration. These band regions have the same positions and
idths. It can be seen by combining Fig. 19 and Fig. 20 that the material
arameter 𝑔̄ 𝑃 1 determines the position and width of the high-frequency
ragg band region. In comparison with those without damping and with
ayleigh damping ( Fig. 16 ), the appearance of this band region is closely
elated to the frequency-dependent of viscoelastic damping material and
aterial parameters 𝑔̄ 𝑃 1 and 𝜏1 . 

In short, because of the frequency-dependent of viscoelastic damping
aterial, the valleys in the transmittance spectrums, which correspond

o the band gaps, exhibit the dependency of viscoelastic damping mate-
ial parameters. The band regions are different for different viscoelastic
amping material parameters 𝑔̄ 𝑃 1 and 𝜏1 . We can design other tunable
Ms utilizing the frequency-dependent of viscoelastic material damping
ffects based on these phenomena, 

. Discussion of design parameters of AM 

The above analyses focus on the effects of material and geometric
onlinearities and damping effects of matrix and coating materials on
he dynamic responses of AMs. To enhance the tunability of the dynamic
erformance of AM, besides the above factors, the rational design of AM
an further promote its dynamic performance and tunability. The results
hown in Fig. 6 indicate that the geometrical shapes of components of
Ms can affect their dynamic performance. In this section, we also dis-
uss the effect of the geometrical parameter of AM on its dynamic re-
ponses. Here, taking Case 1 as the example, Figs. 21 , 22 , and 23 display
he effects of the radius of circular holes, the coating’s thickness, and the
adius of hard core on its dynamic response. 

Fig. 21 shows the effects of the radius of circular holes on the band
aps of the AMs in the undeformed and deformed configurations, re-
pectively. Except for the radius of the circular holes, other parameters
emain constant according to Case 1. It can be observed from Fig. 21 (a)
hat there is a band gap (I), which is between mode 12 and mode 13,
nd its position and width vary with the radius of the circular holes. The
oles of considerable size in the elastomeric matrix lead to enhancing
he coupling effect between resonating elements and holes in the elas-
omeric matrix. The locally resonant band gap varies with the radius
f the circular holes. Meanwhile, other band gaps (except the band gap
I)) appear after the radius of the circular hole is greater than a specified
14 
alue (7mm). The holes of large size can enhance the wave scattering
ffect in the matrix to result in the Bragg scattering band gap. 

Because the size of the circular hole in the elastomeric matrix limits
he deformation of the elastomeric matrix, we adopt suitable stretch ra-
ios to induce the deformations of matrixes with different circular holes.
he red line in Fig. 21 (b) represents the adopted stretch ratios for the
atrixes with different radius of the circular holes. It can be seen that the
idth of the band gap (I) between mode 12 and mode 13 significantly

ncreases, and its position shifts to high-frequency with the increase of
he radius of circular hole. Meanwhile, when the radius of the circular
ole is greater than 7 mm, the new band gap (II) between mode 44 and
ode 45 appears, which corresponds to the wave Bragg scattering band

ap. With the increase of the hole’s radius, its width significantly in-
reases, and its position shifts to low-frequency. In short, the AMs with
oles of large size have better tuning performance. On the one hand, the
arge size hole enhances the wave Bragg scattering effect in the matrix.
n the other hand, it allows the large deformation of the elastomeric
atrix to manipulate the elastic wave propagation. 

Fig. 22 shows the effects of the thickness of the coating on the band
aps of the AMs in the undeformed and deformed configurations, re-
pectively. Except for the thickness of coating, other parameters are the
ame as Case 1. It can be observed from Fig. 22 (a) that all of the band
aps are shifted to low-frequencies with the increase of thickness of the
oating. By contrast, there are more band gaps in the deformed config-
ration, as shown in Fig. 22 (b). Especially, for the band gap (I) between
ode 12 and mode 13, it can be significantly tuned through deforma-

ion, and the thinner the thickness of the coating, the wider the width of
he band gap after deformation. Meanwhile, the Bragg scattering band
aps between mode 44 and mode 45 (II), mode 52 and mode 53 (III) ap-
ear when the thickness is more significant than a specified value. Their
ositions shift to low-frequency while their widths are widened with the
ncrease of the coating’s thickness in the deformed configuration. The
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esonating element (including coating and hard cores) can play the role
f the scatterer. The deformation of the elastomeric matrix and coating
urther enhances the coupling effects of holes and coating so that the
ragg scattering band gaps are significantly tuned during deformation.
lso, the thick coating means that the coating has a weak equivalent
tiffness, and thus the locally resonating band gap (I) is shifted to low-
requency with the increase of thickness of the coating. Fig. 23 shows
he effects of the radius of hard core on the band gaps of the AMs in the
ndeformed and deformed configurations. Increasing the radius of the
ard core is similar to decreasing the thickness of the coating, and thus
e can get the same conclusions from Fig. 23 as those from Fig. 22 . 

In short, the results shown in Figs. 21 , 22 , and 23 demonstrate that
he large-sized holes, thin coatings, and large-sized hard cores in AMs
enefit them to acquire the optimal manipulation performance of dy-
amic response. According to the engineering requirement, the AM’s
esign needs to be chosen carefully to meet the design target. 

. Conclusions 

To reveal the roles of the geometric, material, and damping parame-
ers in mechanically tunable AMs in manipulating the elastic wave prop-
gation, taking the AMs comprising resonating element (include soft
lastomeric coating and hard core) embedded into an elastomeric ma-
rix with a square array of circular holes as examples, their band struc-
ures and the transmittances of finite-sized AM structures are calculated
o investigate the influences of these parameters above on the tunability
f their dynamic responses. The conclusions are gotten as follows: 

1. The deformation (geometric nonlinearity) of elastomeric matrix
and coating induced by equibiaxial compression can simultaneously
manipulate their low-frequency (locally resonating) and high- fre-
quency (Bragg scattering) band gaps. The AM with holes of large
size, thin coating, and a hard core of large radius benefits enhance
the band gap’s tunability and has a wider band gap. The resonat-
ing element’s arrangement mainly affects the Bragg scattering band
gaps because the locally resonant band gap is unrelated to its ar-
rangement. 

2. The stronger nonlinearity of coating material can simultaneously
manipulate their low- (locally resonating) and high- frequency
(Bragg scattering) band gaps during deformation. Still, the nonlin-
earity of matrix material mainly tunes their high-frequency (Bragg
scattering) band gaps. 

The transmittances of the finite-sized AM structures without damp-
ng agree well with the numerical predictions of band gaps, which vali-
ate the tunability of the dynamic responses of the AMs. However, the
amping effect in the elastomeric matrix and coating materials can lead
o the appearance of a new band region and the changes in the position
nd width of the band region. This phenomenon can guide us in design-
ng new AMs to manipulate the wave propagation. However, excessive
amping in the matrix and coating materials makes it hard for us to
dentify the band regions from the transmittances of the finite-sized AM
tructures. 

In summary, the paper’s results can guide us to design various tun-
ble AMs to meet the new needs of elastic wave propagation manipula-
ion. Significantly, the low-frequency locally resonant band gap can be
uned by deformation to be used for low-frequency noise and vibration
ontrol. The optimal damping needs to be optimized rather than bigger
o achieve the most effective suppressive of elastic wave propagation
hrough the damping effect. 
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