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WELL-POSEDNESS OF ELECTROHYDRODYNAMIC INTERFACIAL
WAVES UNDER TANGENTIAL ELECTRIC FIELD*

ZHAN WANG' AND JIAQI YANGH

Abstract. We consider the motion of the interface between two inviscid, incompressible, and
dielectric fluids with different densities and permittivities, in the presence of a uniform electric
field acting in a direction parallel to the undisturbed configuration. The system is assumed to be
irrotational except the interface where the discontinuity of the tangential velocity induces vorticity.
In this paper, we establish the local existence and uniqueness theory for the initial-value problem in
Sobolev spaces for interfacial electrohydrodynamics. As we show, this system is locally well-posed
in both two and three dimensions when surface tension is taken into account. More importantly, the
tangential electric field provides a significant stabilizing effect for the two-dimensional problem (with
a one-dimensional interface) such that we can prove the local-in-time well-posedness for small data
even if one neglects the surface tension.
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1. Introduction. We study wave motions in interfacial electrohydrodynamics
(EHD), a research field pioneered by Taylor and Melcher among others in the 1960s
(see [20, 21, 22, 31, 32]). An electric field can exert considerably large force at inter-
faces in a multilayer immiscible fluid system, and it can be stabilizing or destabilizing
broadly depending on its orientation with respect to undisturbed interfaces and elec-
tric properties of the fluids (see [21, 24]). A tangential electric field, which is parallel
to the flat equilibrium, has a stabilizing effect, and relevant problems have been in-
vestigated by many scientists in modeling and numerics. A tangential electric field
can delay the formation of film rupture (see [33]), remove the Kelvin-Helmholtz in-
stability at all wavelengths in the linear regime even without surface tension (see
[12, 13]), and completely suppress the Rayleigh—Taylor instability (see [5, 9]). A nor-
mal electric field, as opposed to the tangential electric field, has a destabilizing effect
on the interface of two liquids with different permittivities. Extensive coverage of the
electrohydrodynamic instability resulting from normal electric fields can be found in
[17, 18, 23, 24, 25, 31, 32, 34] and references therein.

Although much effort has been devoted to the linear analysis, multiscale modeling,
and direct numerical simulation, until recently there has been very little work done on
the well-posedness of the EHD interfacial wave problems. In this paper, we consider a
different and more interesting scenario, namely, the local existence and uniqueness of
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interfacial waves between two dielectric fluids under tangential electric fields. It is well
known that a two-layer density-stratified system is ill-posed without surface tension
due to the Kelvin—Helmholtz instability, but surface tension can control Fourier modes
of high wavenumber in the linearization and then make the problem well-posed (see
[2]). In the present paper, we prove rigorously that for the two-dimensional problem,
surface tension can be replaced by a tangential electric field which also provides a
dispersive regularization in local well-posedness, but surface tension remains necessary
in the three-dimensional problem.

Let us recall some local well-posedness results of the Cauchy problem for fully
nonlinear water-wave equations (without electrical fields). The first breakthrough in
this research field was made by Wu [35, 36] who proved that arbitrary irrotational
initial data lead to short-time existence in both two and three dimensions. Since then
there have been a great number of papers devoted to the short-time problem with
increasing generality. Of note is the work of Lannes [14] who treated the case of uneven
bottom topography, Beyer and Giinther [7] who took the effects of surface tension into
consideration, and Christodoulou and Lindblad [8], Lindblad [19], and Coutand and
Shkoller [10] who investigated the problem with vorticity. The interested reader is
referred to Alazard et al. [1], Ambrose and Masmoudi [3, 4], Schweizer [26], Shatah
and Zeng [27], and Zhang and Zhang [38] for more results on this topic. On the other
hand, Ambrose [2], Shatah and Zeng [28, 29], and Lannes [16] extended these results
to two-fluid systems where surface tension is necessary due to the Kelvin—Helmholtz
instability.

1.1. Mathematical formulation. The system is composed of two incompress-
ible and inviscid fluids superimposed on top of each other. Denote by Q; and Q; the
domain occupied by the lower and upper fluids, respectively, at time t. We assume the
sharp interface between two layers can be parameterized by a function z = ((t, X),
where X = (X1,...,Xy)" € R? (d = 1,2) is the horizontal coordinate system and the
z-axis points in the opposite direction to the force of gravity with z = 0 at the undis-
turbed interface. The system is bounded below (respectively, above) by a horizontal
wall located at z = —H™ (respectively, z = H™). For the sake of convenience, we
also denote by I'y the interface I'y = {(X,2) T,z = (¢, X)} and by I'* the lower and
upper boundaries T+ = {z=FH i}. The fluids are assumed to be perfect dielectrics
with electric permittivities et and €~ in the corresponding regions (e* # €7), and a
uniform electric field acts parallel to the undisturbed configuration. In the subsequent
analyses, we define [[A*]] and (A%) as follows:

+ —
a%] = At —am, a4 =200
where A* can be real numbers, functions, etc.

The flow is assumed to be irrotational everywhere except at the interface; therefore
there exist potential functions ¢+ such that the velocity fields are V X7Zq§i in the
corresponding regions, where Vx . := (9x,,...,0x,,0.)". If the electric field in
each layer is denoted by E*, the electrostatic limit of the Maxwell equations yields
Vx,. X E* =0, and hence we can introduce voltage potentials V* such that E* =
-V X,zVi. Under these assumptions, the field equations read

Ax.¢* =0 inQFf,
Ax.VE=0 inQf,
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where Ay, := 8%, +- - -+0%,+02. The boundary conditions for the voltage potentials
V# at the interface I'; are

oVt ov—
+ _ vy — +7 _ -2
Vr=V", e on € on

where a% :=1n-Vx,  and the unit normal vector is

_ (_Cle' ) _Cde ]-)T
V1+I[V(P ’

where V := Vx = (0x,,...,0x,) " is the horizontal gradient. While the hydrody-
namic boundary conditions at I'y, namely the kinematic boundary conditions are

(= ¢F — V(- VT,

which implies the continuity of the normal velocity at the interface. The Bernoulli
equations read

1 .
p* (@qsi +9¢+ 2|Vx,z¢i|2) =—P* inQf,

and the continuity of normal stresses gives

[P*(t,)[r. ]l = or(¢) + [0 Z* - nl]
with

1
+ + [ o+t +
SE=e (E Ef —3IE |25ij>,

where §;; is the Kronecker delta, pt are the densities corresponding to two fluid

layers, g accounts for the gravitational acceleration, o represents the surface tension
coefficient between liquids, and x(¢) is the mean curvature of the interface,

A straightforward calculation yields

n-YF . n=¢e

avEN? 1
() —alvxev*E|

The boundary conditions on the channel walls I'* are a no-penetration condition for
hydrodynamics and no-current condition for electrostatics:!

ovE oot
8z 9z

Finally, the asymptotic condition in the far field,

VE S EoXy as /|X|2 + 22 = foo,

1On physical ground, no-current boundary condition for electric field is used to model electrically

insulating walls.
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completes the mathematical statement of the problem. We now introduce the modified
+
voltage potentials W= by defining W+ = ‘I/ET — X. Tt then follows that W+ satisfy

AX,zWi =0 in Qti ,
Wt =w- on I,
+OWtT W _ .+ (x
€ “on € “on —H H\/m on I'y,
mévzi =0 on I'F,
and
n-o* .n:eiE§|:<8Wi>2_ 20x, ow=
(1.1) on V1+|V(? On
% + 1 +2 | —
— - = p — e E5.
T v IV W =5 Ey
Denoting
OH(X ) = ¢ (X, (X, 1), 1)
and

w(X,t) = WH(X,((X,t),t) = W (X,((X,1),1),

one can then reduce the system to the Zakharov—Craig—Sulem formulation [11, 37]:

(= GF [t =0,

Grt =G, (7T — e[ w = [[e*]1¢x,
o (00 + g+ JIVo? - CTETOT) — _p|p
[Pt )r,]] = 04(C) + [ - X - n]],

(1.2)

where G*[¢] = GF[¢, HF] are the Dirichlet-Neumann operators corresponding to two
fluid layers (see (2.2) for the precise definition). Next, as in [16], we will reduce the
above two-fluid equations to a set of two equations on the surface elevation ¢ and of
the quantity ¢ defined as

+.,+ —oh— : + Pi
To this end, we define the operator G[(] as
G¢ = G710 (26 [c —p 671 7L
It then follows that
Gl =67t =67[Jv~, v =G*[]'G[CJv.

In addition, we define the operator G[(] as

Gl :=€e"GH (] — €G] with ¢*
Finally, we set

-+ GF[(Jw+ V(- Vw
(1.3) Z = e
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(1.4) WE = (Wi, WHT = Vw2V

Now, after redefining the velocity potential to absorb constant in (1.1), one can
rewrite the system (1.2) in a canonical form (see [6]) as

(1.5)
8tc_g[dw:0a o N o
Oup + 9'C + [Vt ) - IR T = —Wen(() — Bvr(€).
w = [[e*]]G[¢] ' Ox, ¢,
P = GEFCT1G Y,
where g’ = (p* — p7)g, We = = By = Ei(f:;fi), and
_ [e£(GE[¢w)?]] 1 + 7+ +) 5% Hﬁiﬂgﬁ +rp+
7(¢) = Tir Ve 2 (Hé (W] + [[e5] 2 |2]]> T Ve [[eWT]].

1.2. Main results.
THEOREM 1.1. Let tg > %, N > 5. Assume that o > 0. Let U° = (¢°,4°)T be
the initial data satisfying

3pE, >0, inf (HF +¢%(X)) > h

min min ?
XeR4

and EN(U®) < oo, where EN(U°) is defined in (5.1). Then there exist T, > 0 de-
pending on o and a unique solution U = (¢,9)" € EN to the system (1.5) with initial
data U°, where EY is given by (3.2).

If one neglects the surface tension, i.e.,

atC_g[C]w:O’ + + + +\2

16) Ou + 9'C + 3l IVl - e = — B (0),
w = [[€]]61¢)10x, ¢,
v = GE[IGIC,

then one has the following result.

THEOREM 1.2. Set d = 1. Let tyg > %, N > 5, and ij(UO) and E~'JTV be defined

by (6.1) and (6.2), respectively. For any 0 < § < HE;TIW being with M > 0 is a fived
constant, if the initial data U = (¢0,¢°) T satisfies
InE (H* +¢%(X)) > nt

min min

>0, inf
XeRr
and c‘:’N(UO) < %, then there exist Ts > 0 and a unique solution U = ({,¥)" € E]TV to
the system (1.6) with the initial condition U° such that EN(U) < 6.

1.3. A simplified model. Theorem 1.2 implies that the tangential electric field
can stabilize the system like surface tension. To understand this mechanism and the
role of the electric field, we consider a simpler model. Since our point is to understand
the electric regularization, for clearness, we assume ¢~ = p~ =0 and ¢™ = H" =1
which reduce the system to a single-layer problem. Furthermore, we retain the leading-
order effect arising from the electric field by neglecting quadratic and even higher-
order terms in 7(¢), namely, we replace G[¢]~* by G[0] (i.e., tanh(|D|)|D|, where
|D| = (—A)z). Thus (1.5) becomes
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. {6,54—9[6]1&:07
A . 2 83(1
O +9C + 3|V — CEETE = —on(0) - B aanapor

From the simplified system (1.7), one can easily see that the new electric field term
should play the same role as the capillary term o(¢) and thereby has a stabilizing
effect, since the pseudodifferential operator —9%, (tanh(|D|)|D])~" is positive, and it
is coercive when d = 1.

1.4. Main ideas and difficulties. There are various formulations available to
handle the local well-posedness of the classical water-wave equations. It is suitable to
use the framework of Lannes [14, 15, 16] for our problem. Let us first simply describe
Lannes’ formulation, which is based on a canonical form of the problem originally
proposed by Benjamin and Bridges [6]. In Eulerian coordinates, the interfacial wave
problem (Ey = 0) can be written as

¢ =Gy =0, T £2
(1.8) @f) _|_g/f[_: él[[p[i]|v¢ﬂ:2]] (g [;(];bﬂgz%vw Dl | _piijgi)_ 7
Y= =G G[ClY.

To prove local well-posedness of (1.8), Lannes introduced a “good” unknown
o o o T
U(D‘) = (C(Ot) = 8 <71/’(a) = 8 7// — Za C) s

where Z = ptZt — p~Z with zt = %%’ and reduced (1.8) to the

quasilinear system

(1.9)
0¢((a) + transport terms — G[(]t)(,) + subprincipal terms = lower-order terms,
UV’C[VC]VC(a)

e + subprincipal terms = lower-order terms,

04 (o) + transport terms —

2

where K[V(] = (1+|V(Cl\ ﬁ::gg’w. It is noted that this quasilinear system is sym-
+ 2

metrizable; thus by using the energy method, Lannes obtained the local well-posedness

in [16].

For our problem, according to section 1.3, the quasilinearization of (1.5) should
take the same form as (1.9) except that there is an additional term in the second
equation owing to the electric field. This term plays the same role as the term
_ oVK[V(V(a)

pT+p~

after, arises from 0%7((), where L.[(] is a first-order operator. Hence our prob-
lem boils down to linearzing 0“7(¢). Although L.[(]((s) is subprincipal, we must
show that it is a self-adjoint operator to ensure a symmetrization of the quasilin-
ear system. It is not difficult to understand that the dominated term in 7(¢) is
—[[e+])20x,G1[¢]dx, ¢, but the other terms in 7(¢) cannot be neglected when we
linearize 0*7(() since all terms in 7(¢) have the same order. This is a nontrivial task
since there is no evidence that the linearized operator L.[(] is self-adjoint at the first
sight of the involved expression of 7({). This is the main difficulty of the problem.
Fortunately, although 7(¢) is very intricate, we can obtain the following linearization
formula through careful analysis (see Proposition 3.4):

. More precisely, this extra term, which is denoted by Lc[(]((a) here-

0°7(¢) = Le[¢]¢(a) + lower-order terms
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Lolle == [[€#]70x, G '0x, o ~[[e*]) (93,677 - (We) + W.- VG 0x, o)

W VGV (We) + ete 12716616 (127 T]e)
= — [[e*]]?0x,G 1 9x, ® +Lc[(]e,

where Z and W¥ are defined in (1.3) and (1.4), respectively, and W = ¢* W' —
e~ W ™. This formula is the main contribution of our paper. Furthermore, from
Remark 3.6, we know that £.[(] is a self-adjoint operator. Thus, we can obtain the
well-posedness result shown in Theorem 1.1. Noting that —d%, (tanh(|D])[D|)~* (or
—[[€X]]20x,G 9x,) is a first-order positive operator and is coercive when d = 1, it
is not surprising that Theorem 1.2 holds when one neglects the surface tension. We
remark that the small data condition is imposed due to the presence of the operator
L.[¢] and the instability operator Ins[U] (see (6.4)).

The rest of the paper is organized as follows. In section 2, we give some pre-
liminary results that will be used later. Section 3 is our main new ingredient: the
linearization formula of 7(¢) will be established; this is the main contribution of this
paper. The next parts are relatively standard. In section 4, we will quasilinearize the
system (1.5). In section 5, we will prove Theorem 1.1. Finally, in section 6, we focus
on the proof of Theorem 1.2.

Since our interest is the local well-posedness, we take B, = W, = H* =1 in the
following sections for convenience.

2. Preliminary results. In this part, we introduce some operators together
with their properties, which were mostly given by [15, 16]. We first introduce some
notations. Denote by LP(R?) the standard Lebesgue space with associated norm
lull, = (f]Rd |u|pdx)% when 1 < p < oo and ||f|lec = esssupga|f|, and H*(RY)
(s € R) the usual Sobolev space H*(RY) = {u € &', ||u||gs < o}, where |Ju| s =
[(1 = A)zul|y. In addition, the space H**z(R?) is defined as

H**3(RY) = {u € L}, (RY), Vu € H*~2(RY)%}

loc
endowed with the norm HUHHS*% = ||Vu||HS,%.

2.1. Dirichlet—Neumann operators. Since the Dirichlet—-Neumann operator
plays an important role in the free-surface/interfacial wave problem, we start with its
precise definition.

Let tg > % and ¢ € H%*2(R%). Consider the following boundary value problem
of the Laplace equation:

+ __ : +
(2.1) {AX’ZCID =0 in Q*,

(Pilzzg = djia azq)ilz:q:Hi = 07
where
OF ={(X,2)T eRM  —HT <2< (X))}, O ={(X,2)T eR¥" ((X)<z< H}.

It is well known that for ¥* € H2(R?), there exist unique solutions ®* €
H*(OF) = {u € L} (QF),Vx.u € HY(QF)¥1} to (2.1). Therefore, we can de-

loc

fine the Dirichlet—Neumann operators G¥[¢, H*] : H2 (R%) — Hz (R?) as follows:
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+
(2.2) G¥C, HHU* o= /T H VP

In the following, without loss of generality, we suppress the dependency of Dirichlet—
Neumann operators on ¢ and H* for simplicity of notations, namely, we denote
G* = G*[¢, 1]. For the operators GF, we always assume that the following condition
holds:

(2.3) InE

min

>0, inf (1+¢(X))>hs, .
Jof (1= ¢(X)) > Doy

We also introduce a constant M defined as
1
M:=C <h I

Al
min
as well as M (s) := C(M, ||¢|| ). Hereafter, C(-) denotes generically a nondecreasing,
positive function of its arguments.
For the self-adjoint operators G, we have the following estimates (see [15, The-

orem 3.15] and [16, Inequality (2.23)]):

(2.4)
1 1
1650,y <0 (54 5) 1900, 0<s <0+ o0 e HHHRY,
3 _—

1656050y < M (180l + 1€l 1261 e 25> to+ oo € HHH R,

(2.5)
[(A*GE by, A2)| < M| B ||1s || B2 e .0 < s < to + 1,001,900 € H¥FE(RY),

where % := —PL__ and A := (=A)z.

1
(1+|D)=2
To establish the linearization formula of 7({), we need some commutator esti-
mates.

PROPOSITION 2.1. For any 11,19 € H%(Rd), one has
(2.6) (I, Vi, va)| < M(to + 3)|| B |2]| Bpall2

(2.7) ([GF,G71un,¥2)| < M{to + 3)l| Bn 2] Bz 2 -

Proof. We only give the proof of (2.7), and the proof of (2.6) is simpler. For any
¢ e H2 and 0 < s < to + 1, from Theorem 3.10 of [14] or Remark 18 of [16], one has

(2.8) 1G%% F 9(X, D)yl oy < Mlto +3)| B -
where
(2.9) 9(X,8) = \/|€]2 + V22 — (V¢ - 2.

Denoting R* = G* ¥ g(X, D), one then has
(IGF, G, 92) =(G %1, G 42) — (G742, G 41)
= (R 91,6 2) — (R 2, G 1)
— ((1+1D)~Hg(xX, D)y, (1 + DR, )
+ (141D~ g(X, DYz, (1 + D R¥ 4 ).
Thus, one can obtain (2.7) from (2.5) and (2.8) with s = 0.
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2.2. Some inverse operators. It follows from [16] that (G*)~! are well defined

on the range of G and with values in H2(R?). Furthermore, according to [16,
Remarks 8 and 9] and [16, 2], one has, for 0 < s < tg + 1,

(2.10) 1B(G) " Vhllae < MIBY|e . 1BG) Ve < M| B |m

where G := ¢tGt — ¢ G, and

2.11) | BGF) T GTY | < M| BY|1e s | BG) T GEY | e < M| BY| s
and
(2.12) 12(pTG™ — p~GT) 'GP e < M| BY| - -

In addition, one can deduce from (2.6) and (2.7) that

(2.13)
|8(GF)71G, VIvlla < M(to +3)| B2,  |1B(G) G, G52 < M(to + 3)|| B2 -

Finally, in order to show that the operator L.[(] is coercive, we need the following
fact.

PROPOSITION 2.2. Letd =1,k €N, and k > 1. For any f € H’H'%(]R), one has
~ 1
(2.14) (G710:071,0:0;F) > 105117, — M(to +3)[12; 113

where we set x := X7.
Proof. From (2.8), if we set R =

G — g(z, D), then
(2.15) IRfIl 3 < M(to+3)[BF]:-
Since d = 1, from (2.9), we have g(z, D) = |D|, and therefore
(G 10,0 f,0,0% f) = (I1D|"M(G — R)G 0,08 f,0,0% f)
(2.16) = (ID|7' 0,05 f, 0,05 f) — (ID| "' RG 0,05 f, 0,0, f)
= [IDI2 0k fII3 + (ID|> RG 10,08 £, |D|> 051 f).

By (2.10), (2.15), and the interpolation theorem, one gets

(IDI2 RG 0,0 £,|D|2 057" )| <[|| D> RG1 0,05 ||| D> 05~ f 15
(2.17) <M (to + 3)|| 0% f[l2/|DI2 05 £

< IIDIRO8 71 + M(to + 3) |05 F13.

One can obtain (2.14) from (2.16) and (2.17).

2.3. Shape derivatives. It is useful to define derivatives of the Dirichlet—
Neumann operator on (. More accurately, we let ¢+ € H5T2 (RY) for 0 < s <to+1,
considering the mapping

¢ GFE = GH[G Lyt HYP(RY) o HTE(RY).
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Let j € Nand h = (hy,...,h;)T € (H"**2(R?))7. We denote by d’G*(h)y™ its jth
derivative at ¢ and in the direction of h = (hq, ..., hj)T. These derivatives are called
the shape derivatives.

Next, we list an exact formula for the first-order shape derivative for the operators

g+,
(2.18) dGF (h)y* = =G (hZ*) =V - (hV7)
with

(2.19) Z+ = GEYE +VC VYT

+ _ + +
7 = e and V= =Vy~* —-Z7V(.

For the shape derivative of G*, one has the following useful estimates ([16, Inequali-
ties (2.31) and (2.35)]): If 0 < s < to + 1 and ¢ € H*"2(R?), then

J
<M I Wl sroveos: 188

m=1

(2.20) |G )] .-

1
2

where a V b stands for max{a,b}. If 0 < s < to+ 1 and ¢, 92 € H”%(Rd), then

i
(2.21) (A& GF (h)gor, A*02)| < M T Wl proveo 1B | 21| B2 | -

m=1

In the end of this section, we introduce two new operators which will be utilized
in the following sections (see also [16]).
e Define Z[U] by

(2.22) I[U)(8) = V- (V&) +p G(G7) (V- ([F]}s)).

e Define the operator &[¢] (which is associated with the Kelvin—-Helmholtz in-
stabilities) by
(2.23) ElC)(0) =Vo (p7G —p Gt oV T(e).

3. Linearization formula of 7(¢). As argued in sections 1.3 and 1.4, the
essence of the proof is to get the linearization formula of 7(¢). In this part, we will
focus on this point.

Before stating the result, we first give some definitions. Following [16], we define
the energy EV(U) of the system (1.5) as

(3.1) ENU) = Vel + D0 (Il + 1 20@l3),

a€eNtd |a|<N

where N € Nand U = (¢,%)". It is noted that the energy can be used to measure
the size of the residual. For all T > 0, we define the space EX as

(3.2) EN = {U e C([0,T); H*T2(R?) x HZ(Rd)’oileT ENW(t)) < oo}.

Moreover, we set
m™(U) = C (M, EN(U)).
To linearize 7(¢), we first give a linearization formula of G¥w. The proof is very
similar to [16, Proposition 6] (a linearization formula for Gi), and therefore we omit
the details here.
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PROPOSITION 3.1. Let T > 0, to > & 5, and N € N be such that

7
[(N+1)/2]>1vto+5 and N >to+ = .

2
Then for all a = (ap, ay,...,aq) € N'*9 with 1 < |a] < N, one has
0*(G*w) = GFow + S, if Ja| <N -

9%(GTw) = GFo%w + dGT (0°Ow + S,
=GF0%w — GF(0°CZ) — V- (WO*C)+ Sa  if |a|=N
where Zi and W= are defined in (1.3) and (1.4), respectively, and So, satisfies
15502 < m¥(U).

We then focus on the linearization formula of 9%7(¢). For the sake of clearness,
we first establish the following two lemmas.

LEMMA 3.2. If f € HY(RY), then one has
(3.3) GEGIVf ~GTIGEV S ~ GTIVGEf ~ VGTIGES

(3.4) GYGIG f=6G"G Gt f~GIGTG F~ GGG,

(35) Gilvg’vf ~ vfy g~71g:|:g~f ~ g:tf, gilaXianf ~ aXig’v*lanfa
where a ~ b means
|%(a —b)|l2 < M(to +3)||Bf|2.

Proof. We only need to prove (3.3) and the first identity of (3.4), since the other
cases are similar to (3.3). Actually, one has

GGV =G71GG* GV = G710V + §71(G,0%IG !
G1GFV = GIVG* + G GH, v,

GIVGT =G (VGGG = VGGt + GV, GGGt

Thus (3.3) follows from (2.10)—(2.13). The first identity of (3.4) follows from the
following calculation:

e e GGG — T gTGTIG
=[G —¢ g ) +etgTG Y (etgh) —efe GGG
=G+ (e GT) — et GG e G)
= "Gt +etGgTG et gt —eG)=0.
LEMMA 3.3. If g € H2(R%) and f € HtL(R?), then one has
181GEG 'V, flglla < M(to + 3)||f || reor lgll,, 1 -

_ Proof. Similar to the proof of Proposition 2.1, denoting R* = G* ¥ ¢g(X, D) and
R =G - g(X,D), one has
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GEGIV =+ ¢(X,D)G 'V + R*G™'V
=+ (G- RG 'V + R*G'V
=+ V+ (FR+RYG'V.
Thus,
[G°G7'V, flg =[+V + (FR+ RT)G'V, flg
=+ gVf+ (FR+RNG'V(f9)+ f(FTR+ RT)G 'Vy.

Using (2.8), (2.10), and the Sobolev multiplication law (see, for example, [30]), one
obtains

1BIGFG'V, flglla < M(to + 3)|| fll o llgll 3 -
We can now state our main result as follows.
PROPOSITION 3.4. Let T >0, to > 4, and N € N be such that

27
1 7
[(N+1)/2]21\/t0+§ and N2t0+§.

Then for all a = (ap, ay,...,aq) " € N4 with 1 < |a] < N, one has
0°7(¢) =5, if Jla]<N-1,
() =Le[C)O°C+ Sa if |a| =N,

where S, satisfies
|#Sallz < m¥(U),
and
Lo[cle == [[€)20x,G 10, o —[[c] (9,7'V - (We) + W - VG0, o)
—W VGV (We) + e [Z)GHG'G (]

where W = etWt — e W™, and Z, W* are defined in (1.3) and (1.4), respectively.

Remark 3.5. From Proposition 3.1 and the following proof, it is easy to check
that if & = (ay,...,aq)" € N% one can get ||[BS.|l2 < mV(U), where m”™ (U) is
defined in (6.3).

Remark 3.6. Since GTG~1G™ = G~G'GT (see (3.4)), we know that the operator
L.[¢] is self-adjoint.

Proof. In the following, for convenience, we write a = b+ -+ if [|B(a — b)|2 <
m™(U).

For the sake of clearness, before establishing the linearization formula of 9%*7((),
we list the expression of 7(¢):

(GEw)2 3 1162
()= O 2 (et + (127 - e — w7,
where
Zi — M’ Ei = Vw — ZiVC, w= [[gi]]G*@XlC.

14+ [V(]?
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In order to obtain the linearization formula of 9“7 (¢), we first give the following three
facts.
(a) It is easy to check that

a< 1 )__wc-vaang“_
L+|VCR) (1 +]V¢PR)? '
(b) One has the following fact:

Vo w =[[e*]|VG 1 0x,0%¢ + Z V¢
+ e (ZTVEIG 0 + VEIV - (W) + - -
Z([eEVG10x,0°¢C + Z V¢
b ZTVETIG 0 + VETIY - (W) + - -

(3.6)

Actually, due to Gw = [[e+]]¢x,, from (2.10) and Proposition 3.1, one has
Vo©w =G~ GV w
=G 'VGow + G 1[G, V]o"w
=GV (Gu) - G7'VdG(@" Ow + GG,
=[[e£)]G ' Vax,0°¢ — GVdG(0“)w + GG, V] w + - - -,
and from (2.10) and (2.13), one has

V0w + - -

L~ 1
18616, V10" wll <M (1o + 3180wl < M (N4 3 ) el ey < m¥(0).

From this, one has
Vorw = [[et]]G1Vax, 0%C — GTIVdG (8% )w + - - -
Noticing that G = etGt — ¢~ G, one has
(3.7)
—dG(0*Quw = (g+g+(z+8°‘<) - g‘g‘(Z‘aao) + (V- (W0 — e V- (W0%0)
=G(Z' 0"+ G (IZ7)0°0) + V- (Wo*0)
L G(Z0°0) + e G (IZTN)0°¢) + V- (WoC).

Now, one can obtain (3.6) from the above facts and Lemmas 3.2 and 3.3.
(¢) Similar to (b), one has

GFo"w = GGG w
=G71G*Go%w + GG, G0 w
=G7'GF0Gw — G GFAG (0 Qw + - --
= ([€°11G7'G*0x,0°¢ = G GFdG (0" Qw + -+ ;
from (3.7) and Lemmas 3.2 and 3.3, one gets
GEow =[]0 G%0x, 0°C + G (27 0°C) + €7 GGG (2 7)0°0)
+W-GTIGEVOC -
Next, we calculate 0%7(().
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Step 1. The first step is to show that

6:I: :tw a iw ]
(3.8) rro= HgHIaV(Ci’)” * Hﬁi (—Ei VOw+ 2 WE va%)”
el (T 0% o) 4

Actually, by the Sobolev multiplication law, (2.4), and (2.10), it is easy to get

o (giw)2 1 +,2 5t 2
o (ks - w12 )

+ a (ot - ~ ~
:QQT%%é%EEQ+a“«1+¢vcﬁr*xgiwfAﬂyi~3KVuw—z*vcwa*6?Zi+-~
+ a (ot
= %wam +IVCP) TG Fw)? - WE - Votw + ZTWE VIR~ G w2

and

+ .
GFwd 2" = GFwd” (g wt Ve Vw)

1+ |V¢?
_giwaa(giw) o 2\—1\ /%t \2 4 oE a(VC‘Vw>
= T +0%((1+|VC)7) )(GTw)*+GTwd T+ Ve +e
Hence
o [ (GFw)? 1 +2 5+ 2
o (100 - SUrtP +1Z°P))
_ giwaa(giw) + « 5t 4 1o + 1o VCV’U)
- e W e 2wt v e ()

Noticing (etG+t — e~ G~ ) w = Gw = [[¢F]|Cx, , one has

o (585 S|

([ S [l (o 2w )|

— [[e])¢x, 07 (m) L

(3.9)

On the other hand, from the Sobolev multiplication law and (2.4), one has

+ .
W = 005w — 0" (cxlwaCVw)

1+ V(P

GEwCx, | 2x,GEwVC - V(

1+[V(P2 (1+[V¢P)2

(x, 0% (GFw) 99k, (V¢ V) O ( V(- Vw)
1+ V(P2 1+]VC]? BT+ VP

= 0%0x,w —

)
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and then

o (€516},
-0 (qug + [[GiWﬂO

— [ 20x,0%Cx, _ 2<§(1v< : vaac) — [lefn o
eFGTrwo(y, 4. 2GFwV(- Vo 4 0°G*Tw
e | R e R el
o V¢V V(-V
TSI et o (T )

It is easy to check that
[ e emr) o )

L+ vl (1+[V¢P)? T IVER

= [[ejt]]%XlaiaCX1 _ HeiHQC?ﬁVC—~V8"C

I R Ve = (1+[VCP)?
Therefore
(3.10)

NG —
—0 <1 + | V¢|? +[[e W3 H)
0°Cx,(V(-V VeV
= e o+ [V g + 0" (g

Adding (3.9) and (3.10), one can get (3.8).
Step 2. The second step is to show that

0°7(¢) = ~[[*]*0x,§ " 0x, 0°C + Heigw Lan CXI)”

1+ V(P
(3.11) — [[€4]] (05,07 V - (WO ) + W - VG~ 0x,0°¢)
+ et [(1ZTMG 1G4 0x,0°¢]] — W - VGV - (Wo()
— e [IZMWE -G gFVo().
Firstly, by (b), one can get
(| (-t vorw+ 27w vor) |
(3.12) = [[IW - VG 0x,0°¢ — e (12 NW™ - VG 'GT o]
—W VGV (W) + -+
On the other hand, due to (b), one has
0x,0%w =[[*])0x, G 0x,07C + Z " Dx,0°¢
+ e 1 ZN0x,G71G7(0°0) + 0,67V - (W) + -
Z[[e*)0x,G 1 0x,0°C + Z 9x,0°C
4t Z)0x,G7LGT(0%C) + Ox, GV - (WHC) 4 - .
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Upon noting

§+Z+6X180‘C _ éfz—axlaac _ [[EigiwaXlaaC:H [Li“w

1+ |V(P? L+|v¢pR
one has
(3.13)
(P o)

~ ei iw X “ _ = 5—1 [}
— [P0 G000 - | [ ST | 2 g gt ox, ]

— [[€4])0x, 671V - (W) + - .

Thus (3.11) follows from (3.8), (3.12), and (3.13).
Step 3. The third step is to show that

Heigiwaa (GFw— Cxl)H

1+ |V(?
B 1267670 (127110°0) - e (112 )G 0% 0x,0°C]
+er e (12w - GT1GTV) + -
First of all, one has
e GTwo* (G w) — " GTwi(x, = "G wo* (GTw) — [[%Hgﬂu@“ ("G w—e G w)
et Gtw ., 0 — Cw
= ey O @)
and
€ GTwI (G w) —e GTwd (x, =€ G wd* (G w) — H%Hg’waa (€"Gtw—€e G w)
e GTw, n
Since [[Zi]] = g;_':l;vgcl_;”, one has
Eigiwaa (giw - CX1):|:| _ §+§7 5+ fe} — _Ct
(3.15) H e - 2@ 0= gh).

Next, by Proposition 3.1 and Lemma 3.2 and (c), one can get that
0°(GFw) = G¥0%w — GH(0°CZ ) — V- (WH0°() + -
= G0 w — GE(0°CZT) - WE - GTIGVINC + -
= FGEGIGF([Z71107C) + [[€11G 1 GF0x, ¢
—eTW ™ -GTIGTVON + W T -GGV + -

(3.16)

One can obtain (3.14) from (3.15) and (3.16).
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Step 4. Finally, inserting (3.14) into (3.11), one has
9°7(¢)
= —[[e*)?0x, 71 9x,0°¢ — [[€¥]] (9, GV - (9°CW) + W.- VG0, %)
—W VGV (WOrC) + e (270676710 (00127 T) +
= Le[Cl{(a) + -
Thus, we complete the proof of the proposition.

4. Quasilinearization. Having obtained the linearization formula of 7(¢), the
next procedures are standard. We quasilinearize the system in this part and then
establish the energy estimates in the next part. To this end, we first introduce some

notations. Let a = (ag,a1,...,aq)" € N9 we denote by 9°° the time derivative
and by 0% (j # 0) the spatial derivatives. We define the “good” unknowns as
(4.1) Cla) = 07C, WYy = 0" — Z20°C,

where Z = B+Z+ —p~Z and Zi are defined by (2.19). To describe the subprincipal
part of some quantities, as in [16], we also introduce the following notations:
T T
Cay = (Ca0)s -, C@aa)) 5 Yy = (Yaoys - Y@aay)

where &7 € N4 satisfy &7 +e; = . Following [16], we introduce the operator Ins[U]
as follows:

Ins[UJe =a e —p*p~[[VZ]] - E[C]([[VF]]e) — V- KIV(]V

where a = ¢’ + [[p* (9, + [[V]] - V)Zi]] &[¢] is defined by (2.23), and
(4.2) kv = LF VEP)Id - VR VC
(1+ V(P23

We also introduce the matrix operators

A= (s 0 )+ 8= (70" )

and

= ey o)

where G := G~ (pTG~ —E*ng)fl G*, Z[U] is defined by (2.22), Z|U]* is the dual
operator of Z[U], G4 is given by

(4.3) Gy ¥ia) Zajdgaow(w),

7=0

and K)[V(] is defined by
d
(4.4) Ko [VCF = =V - | > (dK (V0;Q) Vf; + dK (V £;) V;Q)
7=0

for all F' = (fo, f1,...,fa) . The following proposition indicates that the system (1.5)
can be quasilinearized.
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PROPOSITION 4.1. Let T > 0, tg > %, and N be chosen as in Proposition 6 in

[16]. If U = (¢,9)" € EX satisfies (2.3) uniformly on [0,T) and solves (1.5), then

for all
a=(ag,...,aq) € NHd
with 1 < |af < N, Uy = (C(a),w(a))T solves
(4.5) 0:Uta) + AlUIU() = (R(a): S@) ', lal <N,
0 Uay + AlUNU oy + BU)U(a) + CalUlUsy = (R(a), S(o)) '+ || = N,

where Uysy = (Q“(&),z/)(&))—r, and the residuals R, and S, satisfy the estimate
(4.6) [Rallzr + [ BSalls <m™(U).

Proof. We consider the most difficult case, i.e., |a| = N. Firstly, by [16, Propo-
sition 6], one has

(4.7) 9C(a) = G¥(a) + ZIU] = G(a)¥(a) = Ra -
Secondly, if o = B + v € N'*¢ with |y| = 1, then it is easy to check that

00"+ 07+ [PV - (VOWT = 2TV )] = [[pF 2707 (GY)]] = =07 ((C) +7(Q)) -
In the following, a ~ b means || Z(a — b)|s < m™ (U). By [16, Lemma 9], one has
00 + 0°C + [[pTVF - (V) + 0°CVZH)] = [[p=Z270%(GY)]] ~ =% (k(O) + 7(C))
based on the fact that

pIVE A, 2V~ (07, 2107 (Gy) ~ p™(0°, Z7HOT(VE - VO Gy) ~ 0.
Noting that 9%(Gy) = 9;0%(, one obtains

0,0°% +ad*C + [[p*VF - Vi, ) ~ =0% (5(¢) +7(Q)) -

where a = ¢’ + [[p*(0; + VF - V)w™]]. Since

(4.8) (9" = O™+ 1™
one has

Drth(ay + 007C+ (VF) - Vihiay + VI - (50, ~ =0% (5(¢) +7(0)) -
Next, [16, Lemma 10] implies that

(4.9)
Oty — ZIUT Yoy +a0*C — p*p  [VF]] - E[C] (G [VF]) ~ =0 (5(C) + 7(C)) -

Note that

(4.10) 0“k(C) ~ =V - K[V(IVI*C + Koy [VC]{(a) 5

see, for example, [15, equation (9.17)]. From (4.10) and Proposition 3.4, one has
(4.11) 9% (k(C) + 7(¢)) ~ =V - K[V(]V((a) + Le[Cl{(a) -

Thus Proposition 4.1 can be obtained from (4.7), (4.9), and (4.11).
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5. Proof of Theorem 1.1. Since the energy method is applied for local well-
posedness, we will prove that £V(U) in a short time interval is controlled by the
energy at t = 0. Noting that £V (U) involves time derivatives, we must specify in
what sense the initial energy £V (U°) holds. Hence we must choose initial data U(Oa)
for (U(a))lt=0 when ag > 0, in terms of U? and its spatial derivatives. As in [16], we
achieve this via a finite induction. When «g = 0, we take

. giwi,o + VC . v¢i,0:|:|
1+ [V(? '

Ul = (0%¢°,0%¢° = 2°0°¢") T with 2° = Hp
Let 1 <n < N, and assume Ug)|i—o = U(OB) has been chosen for all

ﬂ = (ﬂ07615"'aﬂd)—r € N1+d

with By < n. We remark that for all o with ag = n we have
Ueylt=0 = (0e(ary, Otbary + 0:20% ¢) =0 ,

where o/ = (ag — 1,a1,...,0a4)", and therefore we can set up initial conditions for
0¢U(q+y by using Proposition 4.1.

The initial energy, which we denote slightly abusively by £V (U°) as in [16], is
therefore defined as

(5.1) VU = IV e+ 2 (ISl + 129 13)

a€eNtd |a|<N

with U(Oa) constructed as above.

5.1. The mollified quasilinear system. Following [16], let x : R — R be a
smooth, compactly supported function, which equals one in a neighborhood of the
origin. For all 0 < ¢ < 1, we denote by J* the mollifier J* = x(¢|D|). Consider the
mollified system

(5.2)
{atc— J'Gh =0,
Ob + g' T ¢+ LI ([ IVeEA)] — (1 + [VCP)[[p(Z25)2)]) = —J* (5(¢) + 7)) -

Since J* is a smoothing operator, from the Cauchy-Lipschitz theorem of ODE, we
know (5.2) has a unique maximal solution U* = (¢*, ") with initial data (¢°,4°) on a
time interval [0, T% ,.]. Proceeding exactly as in the proof of Proposition 4.1, one can

check that for all @ = (ag,a1,...,aq)" € N4 1 < |a| < N, Ulo = (C(La),wza))—r
solves

(6.3)  OUay + J'A[UNU(o) + J*'BlUU oy + J*Ca|U]U sy = (J'Ra, J*Sa + ST
where R, and S, satisfy (4.6) and S, is given by
Sy = (1= 1) ([P0 Z*NGw) + (0" 27T, 7] 0 (Guw).
5.2. Symmetrizer and energy. We denote a symmetrizer of the system (5.3),

by
S[U] = SU + SHU) + S [U],
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where

(5.4)
‘Sl[U] = dzag(Ins[U], g) ) Sl [U] = diag(ﬁe [C]v 0) ) Si[U] = di(lg (K(a)[vda g(a)) .

The corresponding energy F'(U) is defined as
Fluy= Y F*U), 1<I<N,
(NN
with

FU) = 518U + 8 UV, Uw) i 0 £0,

FOU) =m O)[C7n + (@, Gl0J)] if a=0,

.
where Uta) = (C(a), ) -
We now give a lemma which implies that the energy FV(U) is equivalent to
EN(U).
LEMMA 5.1. Let T > 0, and assume U = ((,%)" solves (1.5) on [0,T] and
satisfies (2.3). Then one has, for all0 < j < N,
(5.5) ENU) <m ()F(U) and F/(U) <m'(U)E(U).
Proof. The definition of F7(U) yields
FU)= > [(Ins[U¢a) + LelCIC(a): $(a) + (G(a) Yia))]
NN
1 2
+m'(U) (€I + (¥, G[0]¥)) -
It is easy to check that
IV 3 5
" < (K[ V(), Vi) < Va3 -
(1+1V¢I)?E o :
On the other hand, from [16, Proposition 5] for the estimate of the operator &[], the
following inequality holds:
m'(U)
4N

[ 3
6l + ot

o) — + — 7i Ry + o))y Can < D TH
[(aliay — 7o~ [IVF]] - STV ENIC@)s Sa)] < 1+ V)

Next, using (2.10) and (2.11), one has

(1 + D) 72 LeC)@)s (14 1D1)2 )| ML+ IW 30 + 2001 1,4
m'(U)
<
AN

ot + el
A0+ V%3

Thus, one has

wllfn wm'(U
ool 2Dl < 1 (st + Lol i) | < WO Gl

In addition, it follows from Proposition 3 and Lemma 7 of [16] that
M| B (o) |3 < (980 ¥ia) < MIBY(@)l3 -

Therefore, we have the estimates (5.5).
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5.3. Energy estimates. The proof is similar to [15, 16], and we just focus on
the new terms arising from the electric field. We first consider the case o # 0. Taking
the L2-scalar product of (5.3) with (S§' + 8")U(a) + S2U(s) and noting that

(JL.AU(Q), (81 + Sl)U(a)) =0

and
(JL.AU(Q),SSLU(@) + (JLCaU<d)a (81 + Sl)U(a)) =0,

one can get
(8" + 80U ey, Utay) + (8:U (), SaUay) + (J'Caltay, Saliay) + ((S" + 8")J BUtay, Uray)
+ (J'BUn), 82U sy) = (JL(RQ, Sa+9a)", (8" + 8w +33U<a>)7

where the superscript ¢ of U is omitted for convenience’s sake. Hence, one has

7 3
d (o
(5.6) gt PO+ Uiy SU@)) = 3 Ai + 3 B
j=1 j=1
where
1 .
A =5 (01,80, Utwy), Az = (Ui@), 0(Salis)), Az == (J'CalUa), SalUta))

Ay =—(8'J'BU),Uw)s  As = = (J'BU(a), SaUtay),  As = 5 ([0, 8" U(a), U

1
2
A7 = — (S'J'BU(a), Uty)s

and

By = (J"(Ra,Sa) ", 8'Uia) + S2Usy),  Ba= (J(0,5,)", 8" Uia) + S2Us)),

B3 = (J"(Ra,Sa) T, S Ulw)).
Next, we estimate A; (j =1,...,7) and B; (j =1,2,3).

FEstimate of A;. Similar to the control of A; in [16, section 5.5.4], one can get

Estimate of As. Tt follows from the definitions of S2 and EN(U) that |As| <
m™N(U).

Estimate of As. It follows from [|Gia)¥(aylle < mN(U) and [|Ko) [V ll2 <
mY(U) that |A3] < mY (U).

Estimate of Ay. From Appendix C of [16], one has |A4] < m™ (U).

Estimate of As. It is noted that

As = (J'Z (a), K(0)[VC]Ca)) + (T T 0y, Ga)¥ia)) -
Thus, from (2.20) for G, [16, Proposition 4] and the definitions of K4)[V(]{s) and
G(a)¥(a), one can get |As] < m™N(U).
Estimate of Ag. First, from
%G 'ox, =G7'G0G  0x, = G 010x, + G0, G161 Ox,

one has

[3t,g~716X1] = gil[at,gqgilaxl = gildg(atogilaxl .
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From this, (2.10), and (2.21), one has

\(axl 0,67 0x,)Cas Ca) | = 1(dG(0:0)G " 0x,{(a), G Ox,Ca)| < mN (V).

Similarly, one can get

([0 (0x,6719 - (We) + W - 9GO, 0) | Gl G ) | < ™ (0),

([ 9675009 )] < Y0,
and
([0 12719467207 (1Z719)] G G0 | < m¥ ().

Thus, one obtains | 4| < m™ (U).
Estimate of A7. By Proposition 2.1, (2.10), and (2.11), one can get

[1Le[C)¢(oyll2 < m™N(U).

From this estimate and [16, Proposition 4] for the estimates of the operator Z, one
has

|A7| = [(Le[QZT"Cay Ga))| = 1T a)s LelClCe))] < m™ (V).
We remark that the above proof is not applicable to the case ¢ = 0. However, by
(2.8), as in the proof of Lemma 3.3, one can deduce that L.[(]ZJ" is a second-order

operator with a skew symmetric principal symbol; therefore, for all f € H 3 (R%), one
can obtain

1,
H?2

[(Le[C)ZT f, )] = %I(ﬁe[C]IJL + (Le[ZT))f P < M(to + 3) [V | eo [ £

which can be used to estimate fl4 in the next section.

Estimate of By. Similar to the control of By in [16, section 5.5.4], one can get
|B1| < m™(U).

FEstimate of By. This is similar to the control of By in [16, section 5.5.4], and one
has | B;| < m¥(U).

FEstimate of Bs. Combining Proposition 2.1, (2.10), (2.11), and (4.6) yields

|Bs| = (14 D)) J"Ras (1 + D) "2 Le[¢J¢(a)| < mV (V).

Now, collecting the above estimates, one can deduce from (5.6) that for any
1< el <N,
d

(5.7) =

(F*(U) + (U(a), S2Usy)) <m™(U).

When a = 0, one can rewrite the system as follows:

(5.8) {CtJLQ[OWJrJLM(U)o,

P+ J (1—=A)C+J'No(U) =0,

where N7 (U) and N>(U) are given by
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[0 — G,
(e IVYIH] = (1 + V¢ (Z25)2) +7(C)

V¢ ,
VAV ——— - 1)¢.
( ¢ \/1+vc|2>+(g X
Taking the L? product of (5.8) with ((1 — A)(, Q[O]w)—r yields

%fo(U) < (U)INLO) [ K] e + m (U) [ BN (U) [l2]| #2012 < m™ (U) .

From (5.7) and (5.9), one has that for all 0 < ¢ < 1,

(5.9)

d d

N—-1 < N L el N L L 2 < N(rrt )

dt(]—" U) <mN(UY), il (U)+|Z_3N(U(a),8 2Ulsy) | <m™ (@)

Set, R
FNU) =FNWU") + MFNH U + Y (Ul S2ULs);
la|=N
then one has
d -

(5.10) ﬁ]-'N(UL) <wN(UY).

Noting that
L L 1 L — L
Z |(U(a)58c2vU(&>)| < §‘FN(U ) +M‘FN 1(U )v
la|=N
one has 1
SF (WU S FYUY) < MFN(U?),

From this fact and Lemma 5.1, (5.10) is surely the energy estimate. Once the energy
estimate is established, the rest of the proof is standard, and we omit the detail here
(the interested reader is referred to [1, 15]).

6. Case without surfgce tension. In the case without surface tension and d =
1, we introduce the energy £V (U) of the system (1.6) for all N € N and U = ({,¢) "
as follows:

EVU) = V8l + Y (1@l ) +126)3) -

aeN,|a|<N

and we denote the initial energy by EN (U), which is defined as

61)  ENU) = IV e+ S (I 1800 3) |

a€eN |a|<N
where UC,) = (9°¢%, 940 — Z°0°¢"T with

ZO _ |:|: igi,(l)i,o_’_vg_vwi,O:H
- - 1+ [V¢]?
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We remark that the summation is over & = a; € N rather than a = (ag, ;)" € N*!
in this case. For all T' > 0, we define

(6.2)  EN = {U € C([0,T]; H*T2(R) x HQ(R)’oileTgN(U(t)) < oo} .

Moreover, we set
(6.3) aN(U) = C (M, éN(U)) .

Similar to the proof of Proposition 6 in [16], with a slight modification, we have the
following fact.
PROPOSITION 6.1. Set d =1. Let T >0, ty > 3 and N € N be such that
1 7
[(N+1)/2]>1\/t0+§ and NZto—l—i.

Then for all o € N with 1 < a < N, one has

0(GY) =G¥¢(a) + Ra if a<N-1,

0*(GY) =Gy — Z[U]OC+ Ro if a=N,

where the linear operators Z|U] are defined in (2.22), while R, satisfies the estimate

1Ball,py <Y (U).

In the same vein as section 4, we introduce the operator Ins[U] as

(6.4) Ins[Ule =ae—p*p~[[VF]]- SNV *]e),

and the matrix operators as

AT = ( L © ) - BlUT= ( 0 oy )

As in the proof of Proposition 4.1, by using Remark 3.5 and Proposition 6.1, one has
the following proposition.

PROPOSITION 6.2. Setd =1. LetT > 0, tg > % and N be chosen as in Propo-
sition 6 in [16]. If U = ((,v)" € EXN satisfies (2.3) uniformly on [0,T] and solves
(1.6), then for alla € N with 1 <a < N, Uy = (((a),w(a))T solves

0:Ua) + AlUIU() = (R(a): S@) " if a<N,
8,5U(a) JFA[U]U(Q) + B[U]U(a) = (R(a),S(a))T if a=N,
where the residuals R, and S, satisfy the inequality
(6.5) IRal, 3 + 12502 < 8 ).
Now, we consider the following modified system:

(6.6)
0C — TG =0,
O + 9/ TC+ 57 ([P IV*P]] = (L+ VP (Z5)%) = —T(7(Q) + vAQ).
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The Cauchy-Lipschitz theorem of ODE, indicates that there exists a unique maximal
solution U*Y = (¢4, 9*¥)T to the system (6.6) with initial data (¢°,¢°) on the time

interval [0, 7% .]. Proceeding exactly as in the proof of Proposition 6.2, one can check

that for alla € N, 1 < a < N, U(LOS = (((L&V),wé’;’))—r solves

6.7) 04U +J* (A[U] - VC(D)) Ulwy + J“BIUIU(q) = (J*Re, J*Sa + SL) T

cor=( 8 o)

and where R, and S, satisfy the estimate (6.5) and S/, is given by

St = —(1=J) ([[p* 0w ) + [[[" 270, J*] 0*(GY) -

with

A symmetrizer for the system (6.7), is given by
S,[U] = SHU] + vdiag(—A,0) + S'[U],

where S*[U] is defined as (5.4) and S'U] = diag(Ins[U),G).
The corresponding energy F'(U) is defined as

Fluy= > F*U), 1<I<N,

0<al<I
with

FU) =5 ([S'U] + S UNU(a), Uay) if a#0,

1
2
FOU) =M (to + 3)(¢, ) + [[€5]17(G 1 [0)0x, ¢, 0x,C) + (,G[0]¢) if a=0,

-
where Uia) = (G(a): ¥(a) - )
The following lemma is crucial in the proof, which tells us F!(U) is true energy.

LEMMA 6.3. Setd=1. Let T > 0, and assume that U = (¢,9)" solves (1.6) on
[0,T] and satisfies (2.3). We then have, for all0 < j < N,

(6.8) ([[&]]2 ~ Mt + 3)51(U)) E1(U) < MFI(U) and FI(U) < ' (U)&(U) .
Proof. By the definition of F7(U), one has

FU)y= Y {(fv”s[U]C(a)+5e[C]C(a>aC<a>)+(9¢<a>v¢<a>)}

NI
+ (Mt +3)(¢, ) + €126 010, €, 0x,€) + (4, G[0]4) ) -
First, it is noted that
(Lell¢(a) Se) = TG 0%, ((a)» 01 C(a)) + (L£e[C¢(0)» S(e) »

where we decompose L[] as L.[¢] = —[[eF]]?0x,G '0x, + L[¢]. Since d = 1,
Proposition 2.2 gives
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M(t0+3)

(G710x,((a)s 0%, (o)) = ||<a)H 1<l3,

and it is easy to know that

(G710x, (), Ox, G| S W (U)[1G I, -
From Proposition 2.1, (2.10), and (2.11), one has

|(LelC1C(a) )] <L+ D)2 Le[¢C(a)s (1 + D) E (o))
MW o + W regss + 1220 )NS5

1 51 2
SqM o +3)E )G,y -
Hence, one has

M(to +3) 51

(Lldlon o 25 (141 - HOSED @) ) o 12 - )

ISl

(Lol Cia)] < o (@) 2.

Next, by [16, Proposition 5] for the estimates of the operator £[(], it is easy to obtain

M(t0+3)
4

[\)

|(Tns[U) (), Gan)| < MENU) |G|, 3 < ENO¢

Thus, one can get

L1 1? - Mlo + 38 ) Gl ~ Mo+

I¢13 < (T8 + Lelcloia o).

’(IHS[U]C(a) + Le[¢1C(a) C(a))‘ < ()12 4 -
In addition, it follows from Proposition 3 and Lemma 7 of [16] that
M7 BY ) I3 < (G¥(a)s V(o)) < M| Ba)ll3-

Therefore, we have the estimates (6.8).

Next, we establish the energy estimates. The argument is similar to section 5.3,
and hence we just give a sketch. If o # 0, taking the L2-scalar product of (6.7) with
S,U(a), and noting that

(J* (A= vC(D)) Uta), SuU(a)) = 0
one can get

(8,0:U(a), Utay) + (SuU(a) T BU(a), Ua))
= (J"(Ra,Sa +S) ", S Uw)

where the superscripts ¢, v of U are omitted for convenience’s is sake. Hence,

d 4 ~ 3 B
o (FO) + vV l3) = D_4;+ DB
j=1 j=1
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where

A :% ([6,5,31]U(a), U(a))? iy = — (S‘IJLBU(Q),U(&O +v (diag(A,0)J'BU(a), Uta))
iy =3 (1008 i), Uwy), As = — (8'TBU{), Uiy,

and

Bl = (JL(RQ7SQ)77¢§1U(Q)) —v (JL(Ra,Sa)T7diag(A,O)U(a)),
B, = (JL(O,S&)T,SVU(Q)) = (J"S,,G(a)), By = (J*(Ra Sa)T,SlU(a)).
Similar to the estimates of A1, A4, As, A7, B1, Bz, B in section 5.3, one can obtain

4

69 =

(FU) + VIV llz) <@MU)A+vVlIClmver), 1<a<N,

where m”~ (U) is independent of v. The case a = 0 is easier. Following section 5.3,
one has

d -
(6.10) 5 (PO + v Vel3) <@ ().
Collecting (6.9) and (6.10), one has that for all 0 < ¢ < 1,

d LV ~. LV LV
©11) 2 (FYO) IVl ) < RO+ I ).

Choose M (to+3) > 1, and let 6 < Ag[ftt]fg) < [[e¥])%; define Ty as

T3 = sup{t € [0, 7] : EN(U () + V|V (02 < 6} -

Due to Lemma 6.3, for all 0 < v < 1, (6.11) implies that if EN(U°) + V||V(?a)||2 <8,
then there exists a constant Ts independent of ¢, v such that Ty > Ts. Finally, the

standard compactness argument gives Theorem 1.2 (see [1, 15] for more details).
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