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More than twenty continuous contact force models have been presented for modeling
contact-impact problems; however, there was no uniformity regarding the value of the
damping term exponent in these models. A new type of continuous contact force model
is proposed in this research, in which the value of the damping term exponent can be
arbitrary. Then, the effect of the value of the damping term exponent on the model accu-
racy is investigated by comparing the simulation and experimental results. As it is almost
impossible to obtain an analytical solution based on the system dynamic equation, accord-
ing to the rule of energy equivalence, an approximate dynamic equation is developed by
introducing an equivalent indentation and equivalent velocity. Based on the system
dynamic equation and the approximate dynamic equation, a primary formula for the
hysteresis damping factor of the model can be obtained. Through nondimensional analysis,
new models for different values of the damping term exponent are established by modify-
ing the primary formula. The comparison between the simulation results and published
experimental data demonstrates the validities of the new models and reveals that the
influence of the value of the damping term exponent on the model accuracy can be
considered to be negligible.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Contact-impact phenomena are commonly found in nature and frequently occur in mechanical systems, with a short
duration, a large collision force, fast energy dissipation and severe velocity changes [1]. Proper modeling of contact-
impact phenomena is very important for an accurate description of the system dynamics behavior and has attracted much
attention from researchers [2–6].

Newton introduced the concept of the coefficient of restitution in terms of the change in velocity, which provided a con-
cise description of the impact phenomenon. Since then, scientists have defined the coefficient of restitution in terms of
impulse and energy, and Newton’s definition is the most commonly used definition [7]. The restitution coefficient is easy
to experimentally determine [8], but it is not possible to provide details of the impact phenomenon, such as the contact force
and deformation. For rigid body systems, researchers have proposed a nonsmooth method for calculating the contact force,
which includes two main methods: the linear complementarity problem (LCP) [9,10] and differential variational inequality
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Nomenclature

i, j impactor, target
v �ð Þ
i , v �ð Þ

j initial velocity
v þð Þ
i , v þð Þ

j separation velocity
t �ð Þ, t þð Þ,tm time of initial contact, time of separation, time of maximum indentation
d, dmax deformation or indentation, maximum indentation
v ij velocity of the objects at timetm
_d, €d deformation velocity or indentation velocity, indentation acceleration
m0, k equivalent mass, equivalent stiffness
Fc; Fmax normal contact force, peak contact force
n elastic term exponent
m damping term exponent
cr coefficient of restitution
k hysteresis damping factor
_d �ð Þ, _d þð Þ initial indentation velocity, relative separation velocitybd equivalent indentation depthb_d, b_dc ,b_dr equivalent velocity, equivalent velocity of compression phase, equivalent velocity of restitution phase
T, tc ,tr time of the whole contact phase, compression phase and restitution phase
DEloss energy loss
DEc , DEr energy loss for compression or restitution phase calculating based on the system dynamic equation
DE�c , DE

�
r energy loss for compression or restitution phase calculating based on the approximate dynamic equation

DEk elastic potential energy
x, s non-dimensional variables
_x derivative of x with respect tos
_x �ð Þ, _x þð Þ initial and final values of _x
a modification parameter
k�, k� non-dimensional parameters
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(DVI) [11,12]. The nonsmooth method assumes that the impact is completed instantaneously and is not valid for modeling
the contact process [13–16]. The algorithms for dealing with contact-impact problems in the finite element method and the
boundary element method can model the contact process and calculate the contact forces and deformations, such as penalty
method and Lagrange multiplier approach. However, these algorithms in the finite element method and the boundary
element method are computationally intensive and not suitable for real-time analysis [17].

The compliant continuous contact force models can simulate the contact-impact process with high computational
efficiency, and the contact forces of these models are modeled as continuous functions of the indentation depth and
deformation velocity [5]. In 1880, Hertz proposed the Hertz contact model [18], which no longer treated the contact
behavior as instantaneous but as an ongoing process, and the contact force was defined as a function of the indentation
depth d: Fc ¼ kdn, where k represents the generalized stiffness parameter and the exponent n depends on the topological
properties of the contacting surfaces [19]. The Hertz model depicts the local deformation of the contacting bodies in
terms of the indentation depth, which is caused by deformation. The duration time and time histories of the velocity,
contact force and indentation depth d can be described by this model. The Hertz model is still an important part of
contact mechanics and is widely used in many fields, especially for quasi-static contact problems. However, this model
cannot take into account the energy dissipation during a collision [7].

Energy dissipation inevitably exists during the impact process. The Kelvin-Voigt model simulates the energy dissipation
by introducing a damping term, and the contact force is modeled as Fc ¼ kdþ k _d, where _d is the deformation velocity and k is
the hysteresis damping factor. However, the contact force calculated by this model is nonzero when the deformation is zero,
which goes against the physical behavior [7], and the accuracy of this model is relatively low.

Hunt and Crossley [20] proposed a contact model based on the Hertz model that can take into account the energy
dissipation. In this model, the contact force is composed of an elastic force and a dissipative force, which is described as
Fc ¼ kdn þ kdn _d. When the deformation is zero, the contact force equals zero; when the deformation velocity _d approaches
zero, the contact condition becomes quasi-static. Due to the nonlinear coupling between the indentation d and deformation
velocity _d in the damping term kdn _d, the analytical solution of the system dynamic equation constructed based on this con-
tact force model is difficult to obtained [7]. In recent years, more than ten continuous contact models have been proposed
based on the work of Hunt and Crossley [14,20,21–28], and several continuous contact models have been proposed with
contact forces in a form that is similar to that of the Hunt and Crossley model [29–37]. The determination of the expression
of k becomes the crucial step in the construction of this kind of model [19]. These models are divided into two categories
based on the expression of k: the preimpact velocity-dependent model and the preimpact velocity-independent model [5].
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The applications for this kind of model include simulations of robotics [2], vehicles, sand [38], clay, seeds [39], hail
specimens [40], structural pounding during earthquakes [41], aero-engines [42] and the contact process between the barrel
and bourrelet of the projectile [43]. Its application has also been extended to the simulation of the discrete element method
[44] and smoothed particle hydrodynamics [5].

Table 1 summarizes the published continuous contact force models. A general expression for the contact force can be
described as Fc ¼ kdn þ kdm _d, wherem is the damping term exponent [13]. In the research of Hunt and Crossley,m is assumed
to be equal to nwithout a theoretical basis [20]. It can be seen that in some studies, the value ofm is not equal to the value of
n, and its value has been set to 1.0 [29–31], 0.65 [32], 0.5 [33–36] and 0.25 [37] when n equals 1.5. This naturally raises the
following questions: How much does the value of the damping term exponent m affect the accuracy of the continuous con-
tact force model? Whether there is an optimal value of m for the continuous contact force model that can provide the best
model accuracy for the description of contact-impact phenomena requires investigation.

Previous studies on the continuous contact force model have focused on the establishment of the damping coefficient
k and the application of the models [5], but few studies addressed the effect of the m-values on the model accuracy. A
method for estimating damping parameters (k and m) has been proposed based on the experimental measurements and
analytical calculations of a cam-follower system [45], the optimum values of damping parameters are m = 1.55 and
k ¼ 92:6GNsm�2:55. However, the chief limitation of this research is the indirect estimation of damping parameters
[45], the damping coefficient k is determined on the basis of experimental results rather than on the basis of the formula
of continuous contact force models. Therefore, the conclusion of [45] cannot be directly applied to the parameters deter-
mination of the continuous contact force models. It may also be noted that for the case when n – m and n is arbitrary
(which means that the contacting object surface has a complex geometry [46]), no corresponding continuous contact
force model has been proposed.

To address this issue, this work develops a new type of continuous contact force model with an arbitrary damping term
exponent m, and the effect of the value of m on the accuracy of the continuous contact force models is discussed. As there is
no analytical solution of the system dynamic equation, an approximate dynamic equation is presented in Section 2.2 by
introducing equivalent indentation and equivalent velocity, and a primary formula for the hysteresis damping factor k is
derived in Section 2.3. In Section 2.4, the deviation between the approximate dynamic equation and the system dynamic
equation is investigated by numerical examples. The new models for different values of m are developed in Section 2.5
by modifying the primary formula of k through nondimensional analysis. The comparison between the simulation results
and published experimental data is conducted in Section 3, which demonstrates the validity of the new models and reveals
the effect of the value of the damping term exponent on the model accuracy.

2. The development of the new model

2.1. General issues regarding the construction of the new model

As shown in Fig. 1a, the general situation of the direct central normal impact between two objects (with masses mi and
mj) is considered, and the entire impact process is divided into two phases: the compression phase and the restitution phase

[7]. At the initial time of impact t �ð Þ, the objects have velocities v �ð Þ
i and v �ð Þ

j . Then, the deformation will increase in the local
zone, as the contacting bodies reach the same velocity v ij, the relative normal deformation d reaches a maximum dmax at time
tm, and the period from t �ð Þ to tm is the compression phase. After that, the deformation begins to recover, the contact force

gradually decreases until it becomes zero at time t þð Þ, and the velocities become v þð Þ
i and v þð Þ

j . The period from tm to t þð Þ is the
restitution phase. When the sizes of the contacting objects are much larger than the size of the contact area, the contact-
impact system with two objects can be equivalent to an impact between an elastic half space and an object with equivalent

mass m0 ¼ mimj

miþmj
and equivalent initial velocity _d �ð Þ ¼ v �ð Þ

i � v �ð Þ
j [26,47], as illustrated in Fig. 1b. This equivalence can be

applied to most elastic contact-impact problems [45,47].
The general expression for the contact force of the compliant continuous contact force model is described below [13]:
Table 1
Summa

Expr

Fc ¼
Fc ¼
Fc ¼
Fc ¼ kdn þ kdm _d ð1Þ
rize of the continuous contact force models.

ession of the contact force Value of the elastic term exponent n Value of the damping term exponent m

kdn arbitrary n m = 0

kdþ k _d m = n n = 1 m = 1

kdn þ kdm _d m = n n = 1.5 m = 1.5 [7,26–28]
arbitrary n m = n [14,19–24,32]

m – n n = 1.5 m = 1.0 [29–31]; m = 0.65 [32]; m = 0.5 [33–36]; m = 0.25 [37];
arbitrary n null
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(a)                         (b)

Fig. 1. Direct central collision: (a) Contact-impact system with two objects; (b) The equivalent system.
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When two spheres are in contact, the exponent n equals 1.5, and the expression of stiffness parameter k, which is depen-
dent on the material properties and the topological properties of the contacting surfaces, is as follows [7,26]:
k ¼ 4E�

3
rirj

ri þ rj

� �1
2

ð2Þ
where ri and rj are the radius of spheres, the material parameter E� is
1
E� ¼

1� s21
E1

þ 1� s22
E2

ð3Þ
where si and Ei are the Poisson’s ratio and Young’s modulus associated with each sphere, respectively.
Besides the contact between two spheres, theoretical analysis shows that for the contact between a cube, prism, cylinder

(horizontal and vertical), or cone and an elastic half space, the n value is 1.0, 1.0, 1.0, 1.0 or 2.0, respectively, in other
situations the n value can be obtained numerically [19]. More details about the determination of the values of k and n for
different contact-impact problems can be found in relevant literature [46].

In Eq. (1), kdn is the elastic force and kdm _d is the dissipative damping force. The dynamic equation for the contact-impact
systems as shown in Fig. 1 can be described as,
m0
€dþ kdn þ kdm _d ¼ 0 ð4Þ
where the equivalent mass m0 ¼ mimj

miþmj
.

The crucial step in the construction of this kind of contact model is the determination of the expression of k [19]. Due to
the nonlinear coupling term dm _d in the contact force expression, it is almost impossible to obtain an analytical solution of k
based on the system dynamic Eq. (4) [19]. In previous studies, the simpler equations than Eq. (4), such as m0

€dþ kdn ¼ 0[26]
and [7,40]m0

€dþ kdþ k _d ¼ 0, were used to construct a functional relationship between the deformation velocity and
indentation, and then combined with Eq. (4), the expressions for k can be obtained. Jie Zhang et al have been proposed a

new contact force model based on approximate dynamic equation m0
€dþ kdn þ kb_ddn ¼0 and the damping factor k was more

rigorously derived. Simulation results had shown high accuracy of the correlation models [7,19,26]. However, in these stud-
ies the damping term exponent m is assumed to be equal to the elastic term n without a theoretical basis [20]. Inspired by
the previous works [7,19,26], a new continuous contact force model is proposed in this research, in which the value of the
damping term exponent m can be arbitrary.

2.2. Approximate dynamic equation for the impact system

Based on the rule of energy equivalence, an approximate dynamic equation is developed in this section, which achieves a
good approximation of the system dynamic equation and can be an important basis for the derivation of k.
4
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The system dynamic equation shown in Eq. (4) can be revised as follows
m0
€dþ kdn�m þ k _d

� �
dm ¼ 0 ð5Þ
Consider first an approximate dynamic equation similar to Eq. (5):
m0
€dþ bdn�m þ bkb_d� �

kdm ¼ 0 ð6Þ
where bk ¼ k
k,
bd is the equivalent indentation, which is a constant and associated with dmax,

b_d is the equivalent velocity

associated with _d �ð Þ; and remains unchanged during the compression and restitution phases [19]. The corresponding approx-
imate contact force can be expressed as
Fc ¼ k bdn�m þ bkb_d� �
dm ¼ kbdn�mdm þ kb_ddm ð7Þ
Eq. (7) is an approximate form of Eq. (1), where kbdn�mdm and kb_ddm correspond to the elastic force term kdn and damping
force term kdm _d of Eq. (1), respectively. More details will be discussed in the following.

Eq. (6) can be expressed as
m0
d _d
dt

þ bdn�m þ bkb_d� �
kdm ¼ m0

d _d
dd

dd
dt

þ bdn�m þ bkb_d� �
kdm ¼ 0 ð8Þ
Then it can be revised as
m0
_dd _d ¼ � bdn�m þ bkb_d� �

kdmdd ð9Þ
Integrating Eq. (9) over the compression phase, it can be deduced that,
_d2 � _d �ð Þ2 ¼ �
2k bdn�m þ bkb_dc

� �
m0 mþ 1ð Þ dmþ1 ð10Þ
where b_dc is the equivalent velocity of the compression phase. As the deformation velocity _d ¼ 0, the indentation depth d

reaches its maximum value, which can be obtained by substituting _d ¼ 0 into Eq. (10):
dmþ1
max ¼ m0 mþ 1ð Þ

2k bdn�m þ bkb_dc

� � _d �ð Þ2 ð11Þ
The relationship between deformation velocity _d and indentation depth d during the compression phase can be obtained
from Eqs. (10) and (11),
_d ¼ _d �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

dmax

� �mþ1
s

ð12Þ
Then the work done by the damping force and elastic force in Eqs. (1) and (7) can be calculated, respectively. And based

on the rule of energy equivalence, the equivalent indentation bd and the equivalent velocity b_d of the approximate dynamic
equation can be derived.

Firstly, the work done by the dissipative force in the compression phase can be calculated based on the system dynamic
Eqs. (4) and (12), it should be noted that Eq. (12) is derived from the approximate dynamic equation,
DEc ¼
Z dmax

0
kdm _ddd ¼

Z dmax

0
kdm _d �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

dmax

� �mþ1
s

dd ð13Þ

¼
Z 1

0

kdmþ1
max

_d �ð Þ

mþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

dmax

� �mþ1
s

d
d

dmax

� �mþ1

¼
Z 1

0

kdmþ1
max

_d �ð Þ

mþ 1

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
dx ¼ kdmþ1

max

mþ 1
� 2

_d �ð Þ

3

In addition, the work done by the dissipative force in the compression phase can be calculated based on the approximate
dynamic Eq. (6), as follows
DE�
c ¼

Z dmax

0
kdmbkb_dcdd ¼

Z dmax

0
kdmb_dcdd ¼ kdmþ1

max

mþ 1
b_dc ð14Þ
5
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Thus, the work done by the dissipative forces in the compression phase can be obtained based on the system dynamic
equation and the approximate dynamic equation, respectively. Then based on the rule of energy equivalence, the equivalent
velocity in the compression phase can be derived from Eqs. (13) and (14),
b_dc ¼ 2 _d �ð Þ

3
ð15Þ
On the other hand, the work done by the elastic force in the compression phase can be obtained based on the system
dynamic Eq. (4),
Z dmax

0
kdmdn�mdd ¼

Z dmax

0
kdndd ¼ kdnþ1

max

nþ 1
ð16Þ
And the work done by the elastic force according to the approximate dynamic Eq. (6) is
Z dmax

0
kdmbdn�mdd ¼ kdmþ1

max
bdn�m

mþ 1
ð17Þ
Thus, based on the rule of energy equivalence, the equivalent indentation bd can be derived
bdn�m ¼ mþ 1
nþ 1

dn�m
max ð18Þ
Then let’s consider the restitution phase. Similarly, the equivalent indentation and the equivalent velocity of the restitu-
tion phase can be deduced. Integrating Eq. (9) over the restitution phase, we obtain
cr _d �ð Þ
� �2

� _d
2 ¼

2k bdn�m þ bkb_dr

� �
m0 mþ 1ð Þ dmþ1 ð19Þ
where b_dr is the equivalent velocity of the restitution phase. Substituting _d ¼ 0 into Eq. (19) yields
dmþ1
max ¼ m0 nþ 1ð Þ

2k bdn�m þ bkb_dr

� � cr _d �ð Þ
� �2

ð20Þ
Since the velocities are in opposite directions in the restitution and compression phases, the relationship between defor-
mation velocity _d and indentation depth d during the restitution phase can be derived from Eqs. (19) and (20):
_d ¼ �cr _d �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

dmax

� �mþ1
s

ð21Þ
Then the work done by the dissipative force in the restitution phase can be obtained based on the system dynamic Eqs. (4)
and (21), it should be noted that Eq. (21) is derived from the approximate dynamic equation,
DEr ¼
Z 0

dmax

kdm _ddd ¼ �
Z 0

dmax

kdmcr _d �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

dmax

� �mþ1
s

dd ¼ kdmþ1
max

mþ 1
� 2cr

_d �ð Þ

3
ð22Þ
In addition, the work done by the dissipative force in the restitution phase can be calculated based on the approximate
dynamic Eq. (6):
DE�
r ¼

Z 0

dmax

kdmbkb_drdd ¼
Z 0

dmax

kdmb_drdd ¼ � kdmþ1
max

mþ 1
b_dr ð23Þ
Then based on the rule of energy equivalence, the equivalent velocity in the restitution phase can be derived from Eqs.
(22) and (23).
b_dr ¼ �2cr _d �ð Þ

3
ð24Þ
On the other hand, the work done by the elastic force in the restitution phase can be obtained based on the system
dynamic Eq. (4),
Z 0

dmax

kdndd ¼ � kdnþ1
max

nþ 1
ð25Þ
And the work done by the elastic force according to the approximate dynamic Eq. (6) is
6
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Z 0

dmax

kdmbdn�mdd ¼ � kdmþ1
max
bdn�m

mþ 1
ð26Þ
Thus, the equivalent indentation can be derived based on the rule of energy equivalence, which is the same as Eq. (18),
bdn�m ¼ mþ 1
nþ 1

dn�m
max ð27Þ
As described above, based on the rule of energy equivalence, the equivalent velocities b_dc ,
b_dr and the equivalent inden-

tation bd can be calculated, thus the approximate dynamic equation can be obtained by substituting Eqs. (15), (18), (24)
and (27) into Eq. (6):
m0
€dþ mþ1

nþ1 d
n�m
max þ bk 2 _d �ð Þ

3

� �
kdm ¼ 0Compression phase

m0
€dþ mþ1

nþ1 d
n�m
max � bk 2cr _d �ð Þ

3

� �
kdm ¼ 0Restitution phase

8><>: ð28Þ
The corresponding approximate contact force equation can be obtained by substituting Eqs. (15), (18), (24) and (27) into
Eq. (7):
Fc ¼
k mþ1

nþ1 d
n�m
max þ bk 2 _d �ð Þ

3

� �
dm ¼ 0Compression phase

k mþ1
nþ1 d

n�m
max � bk 2cr _d �ð Þ

3

� �
dm ¼ 0Restitution phase

8><>: ð29Þ
Therefore, the expressions for approximate dynamic equation and approximate contact force equation are determined
based on the rule of energy equivalence. From Eqs. (28) and (29) it can be seen that the approximate dynamic equation
and the corresponding approximate contact force equation are in the form of piecewise functions and no longer contain
the nonlinear coupling term dm _d as described in Eqs. (1) and (4). In terms of physical meaning, the approximate form of con-
tinuous model has an elastic term but no damping term, as illustrated in Fig. 2 and Eq. (29). Due to the initial velocity _d �ð Þ is
set to greater than zero, the stiffness coefficient in the compression phase is larger than that in the restitution phase. In gen-
eral, it can be deduced from Eq. (29) that the contact forces in the compression phase are larger than that in the restitution
phase. Thus, the magnitude of separating velocity _d þð Þ is smaller than the magnitude of initial velocity _d �ð Þ, which represents
the onset of energy dissipation. From the above analysis, the approximate contact force equation and the approximate
dynamic equation shown in Eqs. (28) and (29) simulate the energy dissipation by setting different stiffness coefficients in
the compression phase and restitution phase. As shown in Fig. 2, the approximate contact force equation adopts the form
of ‘‘Rigid spring in compression phase + Soft spring in restitution phase” to simulate energy dissipation, which avoids the
nonlinear damping term in the continuous model. The approximate contact force equation is similar to Hertz model, except
for the differences in stiffness coefficient.

The comparisons between compliant continuous contact force model and approximate contact force equation are illus-
trated in Table 2. It can be seen that the approximate contact force equation avoids the nonlinear coupling between the
deformation velocity and indentation depth in the damping term, therefore the relationship between deformation velocity
_d and indentation depth d can be deduced based on the approximate dynamic equation. This is a major advantage of the
approximate contact force equation and approximate dynamic equation. As it is almost impossible to obtain an analytical
solution of _d dð Þ based on compliant continuous contact force model and system dynamic equation.
(a)                       (b)                              (c)

Schematic diagram of compliant continuous contact force models: (a) Hertz model; (b) Compliant continuous contact model; (c) Approximate
force equation.
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Table 2
Comparisons between compliant continuous contact force model and approximate contact force equation.

Compliant continuous contact force model Approximate contact force equation

Expression of contact force Fc ¼ kdn þ kdm _d Fc ¼ kbdn�mdm þ kb_ddm
Elastic force kdn kbdn�mdm

Dissipative force k _ddm kb_ddm
Dynamic equation m0

€dþ kdn þ kdm _d ¼ 0 m0
€dþ bdn�m þ bkb_d� �

kdm ¼ 0

_d dð Þ Analytical solution has not been found
_d ¼ _d �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

dmax

� �mþ1
r

J. Zhang, C. H. , L. Zhao et al. Mechanical Systems and Signal Processing 159 (2021) 107808
2.3. The primary formula of the hysteresis damping factor

The primary formula of the hysteresis damping factor k can be obtained based on the system dynamic equation and the
function _d dð Þ which is derived from the approximate dynamic equation.

Firstly, according to the law of conservation of linear momentum and energy balance, the total energy loss DEloss can be
expressed in terms of the coefficient of restitution cr [48],
DEloss ¼ 1
2
m0 1� c2r
	 


_d �ð Þ2 ð30Þ
Based on Eqs. (13) and (22), we can obtain
DEc

DEr
¼ 1

cr
ð31Þ
It can be noted that the derivation of Eqs. (13) and (22) is based on the system dynamic equation and the function _d dð Þ
which is derived from the approximate dynamic equation.

Due to DEloss ¼ DEc þ DEr , substituting Eq. (31) into Eq. (30), it can be deduced that
DEc ¼ m0
_d �ð Þ2 1� crð Þ

2
ð32Þ
The elastic potential energy DEk stored from t �ð Þ to tm can be derived based on the system dynamic equation,
DEk ¼
Z dmax

0
kdndd ¼ kdnþ1

max

nþ 1
ð33Þ
According to the energy balance to the period from t �ð Þ to tm, we can obtain:
m0
_d �ð Þ2

2
¼ kdnþ1

max

nþ 1
þm0

_d �ð Þ2 1� crð Þ
2

ð34Þ
Then the maximum indentation can be deduced,
dnþ1
max ¼

crm0 nþ 1ð Þ _d �ð Þ2

2k
ð35Þ
Combining Eqs. (13), (32) and (35), the description of the hysteresis damping factor can be deduced,
k ¼ 3m0 mþ 1ð Þ 1� crð Þ _d �ð Þ

4
crm0 nþ 1ð Þ _d �ð Þ2

2k

 !�mþ1
nþ1

ð36Þ
Therefore, an analytical solution for the hysteresis damping factor k is obtained based on the system dynamic equation
and the function _d dð Þ which is derived from the approximate dynamic equation.

Similarly, combining Eqs. (14), (32) and (35), the description of the hysteresis damping factor with respect to the equiv-

alent velocity b_dc can be deduced,
k ¼ m0 1� crð Þ mþ 1ð Þ _d �ð Þ2

2b_dc

crm0 nþ 1ð Þ _d �ð Þ2

2k

 !�mþ1
nþ1

ð37Þ
Combined with Eq. (15), it can be found that Eq. (37) is completely consistent with Eq. (36). As m = n, the simplified
expression of Eq. (36) is the same as the Eq. (42) in literature [19].
8
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2.4. Simulations of the system dynamic equation and the approximate dynamic equation

For the exploration of the approximate dynamic equation deviations from the system dynamic equation, a series of
numerical examples is conducted. As described above, by introducing equivalent indentation and equivalent velocities,
the approximate dynamic equation for the system dynamic equation is proposed based on the rule of energy equivalence.
Substituting Eq. (35) into Eq. (28), the expression for the approximate dynamic equation can be described as:
m0
€dþ k mþ1ð Þ

nþ1
crm0 nþ1ð Þ _d �ð Þ2

2k

� �n�m
nþ1 þ k 2 _d �ð Þ

3

� �
dm ¼ 0 Compression phase

m0
€dþ k mþ1ð Þ

nþ1
crm0 nþ1ð Þ _d �ð Þ2

2k

� �n�m
nþ1 � k 2cr _d �ð Þ

3

� �
dm ¼ 0 Restitution phase

8>>><>>>: ð38Þ
The numerical examples are conducted based on the system dynamic Eq. (4) and the approximate dynamic Eq. (6). The
relevant parameters (k, n, m, cr,m0, _d �ð Þ; k and the time step) should be given out before the simulation. These parameters can
be determined by experiment (cr,m0, _d �ð Þ), contact force models (m andk) or relevant contact mechanics theory (k and n). The
relevant parameters in this section were set as follows: k equals 2.41E11pa�m1/2, n equals 1.5, _d �ð Þ equals 2.8 m/s, m0 equals
0.1 kg, the time steps are set to 1E-8 s, the values of the restitution coefficient cr are set to 0.2, 0.5 and 0.8, and according to
previous studies [7,14,19–24,26–37], the values of the damping term exponent m are set to 2.0, 1.5, 1.0, 0.65, 0.5 and 0.25.
The values of hysteresis damping factor k are calculated through Eq. (36). The four-order-Runge-Kutta method is applied to
solve Eqs. (4) and (38).

The simulation results are illustrated in Figs. 3–8. The numerical results from the system dynamic Eq. (4) are deemed
accurate, and the results from the approximate dynamic Eq. (38) are deemed approximate.

It can be seen that the approximate dynamic equation achieves a good approximation of the system dynamic equation,
and it reveals that it is feasible to derive the hysteresis damping factor based on the system dynamic equation and the rela-
tionship between deformation velocity _d and indentation depth d, which is derived from the approximate dynamic equation.
From Figs. 3–8, it can be seen that whenm equals 1.5, simulation results are among the best. From the analysis of the approx-
Fig. 3. Simulation results of the system dynamic equation and the approximate dynamic equation with m = 2.0.

Fig. 4. Simulation results of the system dynamic equation and the approximate dynamic equation with m = 1.5.
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Fig. 5. Simulation results of the system dynamic equation and the approximate dynamic equation with m = 1.0.

Fig. 6. Simulation results of the system dynamic equation and the approximate dynamic equation with m = 0.65.

Fig. 7. Simulation results of the system dynamic equation and the approximate dynamic equation with m = 0.5.
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imate contact force Eq. (7), it can be seen that when bothm and n are equal to 1.5, the approximate term kbdn�mdm in Eq. (7) is
strictly equal to the elastic force term kdn of the continuous contact force model, this may explain why the best simulation
results are obtained when m = 1.5.

It can also be seen that the approximate dynamic equation does not perfectly match the system dynamic equation. The
greater the difference between the value of m and 1.5, the greater the difference between the simulation results based on
Eqs. (4) and (38). This is because when n equals 1.5, the greater the difference between the value of m and 1.5, the greater
10



Fig. 8. Simulation results of the system dynamic equation and the approximate dynamic equation with m = 0.25.
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the deviation between the approximate term kbdn�mdm in Eq. (7) and the elastic force term kdn in Eq. (1). The simulation
results in Figs. 3 and 5–8 also show that obvious differences exist for the duration time. The results analysis reveals that
the maximum relative error of maximum indentation is 3.85% but the maximum relative error of duration time is 26.38%.
This occurs whenm equals 0.25 and cr equals 0.2. As described in Section 2.2, the approximate dynamic equation is proposed
based on the rule of energy equivalence in the period from 0 to dmax and from dmax to 0. The duration time is not involved in
the derivation of the approximate dynamic equation, this is likely to result in obvious differences in duration time. It can also
be seen that the simulation results based on the approximate dynamic equation are closer to those based on the system
dynamic equation in the compression phase than in the restitution phase. This should be related to the relatively longer
duration of the restitution phase, but the exact reasons for this remain to be explored.

2.5. Establishing the new models via modification

Considering the deviation in the description of the system dynamic behavior between the approximate dynamic equation
and the system dynamic equation, a more accurate model can be developed by modifying the primary formula of the hys-
teresis damping factor as illustrated in Eqs. (36) and (37). It can be seen from Eq. (37) that the analytical expression for the

hysteresis damping factor contains the equivalent velocity b_dc , which is an approximate variable. Based on nondimensional
analysis [33], the modification can be conducted by slightly adjusting the equivalent velocity.

The non-dimensional variables x ¼ d=dmax and s ¼ t= dmax= _d �ð Þ
� �

are introduced [33], it can be deduced that
dd
dt

¼ dd
dx

� dx
ds

� ds
dt

¼ dmax

_d �ð Þ

dmax

dx
ds

¼ _d �ð Þ dx
ds

ð39Þ

d2d

dt2
¼ d dd

dt

	 

dt

¼
d _d �ð Þ dx

ds

� �
ds

� ds
dt

¼
_d �ð Þ
� �2
dmax

d2x
ds2

ð40Þ
Substituting x ¼ d=dmax and Eqs. (39) and (40) into Eq. (6) produces the dimensionless form of the system dynamic
equation:
m0
_d �ð Þ
� �2
dmax

€xþ kdnmaxx
n þ kdmmaxx

m _d �ð Þ _x ¼ 0 ð41Þ
By denoting k� ¼ kdnþ1
max

m0
_d �ð Þð Þ2 and k� ¼ kdmþ1

max
m0

_d �ð Þ, Eq. (41) can be rewritten as the following form:
€xþ k�xn þ k�xm _x ¼ 0 ð42Þ
Substituting Eqs. (35) and (37) into k� ¼ kdnþ1
max

m0
_d �ð Þð Þ2 and k� ¼ kdmþ1

max
m0

_d �ð Þ, it can be deduced that,
k� ¼ cr nþ 1ð Þ
2

ð43Þ
11
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k� ¼ 1� crð Þ mþ 1ð Þ _d �ð Þ

2b_dc

ð44Þ
Considering the deviation in the description of the system dynamic behavior between the approximate dynamic equation
and the system dynamic equation, the description of the hysteresis damping factor can be modified by a minor reduction of

the approximate variable b_dc: By introducing a modification parameter a, Eq. (44) can be rewritten as,
k� ¼ 1� crð Þ mþ 1ð Þ _d �ð Þ

2ab_dc

ð45Þ
Substituting Eq. (15) into Eq. (45), we obtain
k� ¼ 3 1� crð Þ mþ 1ð Þ
4a

ð46Þ
It can be seen that the nondimensional parameters k* and k* depend on the exponent n and m, the coefficient of restitu-
tion cr, and the modification parameter a.

Block diagram of the modification is shown in Fig. 9. The initial and final values of _x are denoted as _x �ð Þ and _x þð Þ, respec-
tively. When the parameters n, m, cr, aand _x �ð Þ are set, numerical simulations can be conducted based on the dimensionless
form of the system dynamic Eq. (42).

In this paper, the set value of the restitution coefficient, which is provided before the simulation for calculating k�, is
defined as the pre-restitution coefficient. Based on the simulation results, an numerical restitution coefficient can be calcu-
lated through dividing _x þð Þ by _x �ð Þ, the numerical restitution coefficient is defined as the post-restitution coefficient. Previous
studies have shown that there is a deviation between the values of the pre-restitution coefficient and the post-restitution
coefficient, which should theoretically be the same [2,7,26,27]. The smaller the deviation is, the higher the model accuracy,
because this deviation represents the deviation of the numerical separating velocity from the actual separating velocity and
the deviation of the output predicted by the model from the actual behavior of the system. Therefore, the consistency of the
post- and pre-restitution coefficients is considered an important criterion for modifying the model [19,27]. On the basis of
Fig. 9. Block diagram of the modification.
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this criterion, the optimum values of the modification parameter a for different values of the restitution coefficient cr can be
obtained by a series of simulation experiments.

The expressions for the fitting function of the optimum values of the modification parameter a when n = 1.5 are as fol-
lows. According to previous studies [7,14,19–24,26–37], the exponent m is set to 2.0, 1.5, 1.0, 0.65, 0.5 and 0.25.

If m = 2.0,
a ¼ 1:363cr3 � 2:136cr2 þ 0:8356cr þ 0:9404 ð47Þ

If m = 1.5 [19],
a ¼ 0:6181e�3:52cr þ 0:899e0:09025cr ð48Þ

If m = 1.0,
a ¼ 1:514e�14:14cr þ 1:289e�0:2474cr ð49Þ

If m = 0.65,
a ¼ 2:5891e�20:41cr þ 1:417e�0:3188cr ð50Þ

If m = 0.5,
a ¼ 2:9191e�22:63cr þ 1:468e�0:3505cr ð51Þ

If m = 0.25,
a ¼ 2:911e�23:87cr þ 1:517e�0:356cr ð52Þ

The relationship between the post- and pre-restitution coefficients before and after the modification is illustrated in

Fig. 10. It can be seen that after modification, the differences between the post- and pre-restitution coefficients are
significantly reduced, which indicate that the model accuracy has been improved through the modification.

The modification method used above is also suitable for other value of m and n; therefore, a new type of continuous
contact force model with an arbitrary damping term exponent m and arbitrary elastic term n is developed in this work.

By substituting the relevant formula of the modification parameter a into Eq. (36), the description of the modified
hysteresis damping factor in the new type of continuous contact force model can be obtained
k ¼ 3m0 mþ 1ð Þ 1� crð Þ _d �ð Þ

4a
crm0 nþ 1ð Þ _d �ð Þ2

2k

 !�mþ1
nþ1

ð53Þ
The expression of contact force in the new model can be expressed as
Fc ¼ kdn þ 3m0 mþ 1ð Þ 1� crð Þ _d �ð Þ

4a
crm0 nþ 1ð Þ _d �ð Þ2

2k

 !�mþ1
nþ1

dm _d ð54Þ
Therefore, a new type of continuous contact force model is proposed in this research, in which the value of the elastic
term exponent n and the damping term exponent m can be arbitrary.
Fig. 10. Relation between the post- and pre-restitution coefficients before and after the modification.
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3. Comparisons of the simulation and experimental results

The model proposed in Section 2 is constructed based on the consistency of the post- and pre-restitution coefficients and
thus can provide a good simulation of the velocity changes before and after a collision and the system kinematics. We then
further examine the performance of the models to obtain the description of the system dynamics. The change in velocity
before and after the impact, the duration time and the peak contact force are the key description factors of impact modeling
[19]. Experimentally investigating the model for the simulation accuracy of these three factors can validate the new models
and evaluate the effect of different m-values on the accuracy of the continuous contact force model.

The experimental results published by Zhang and Sharf [49], which have been used in previous studies to compare several
continuous contact force models [13,49], are utilized to validate and compare the contact models described in Section 3. A
sketch of the experimental setup is shown in Fig. 11. A steel ball (mass m0 = 0.54 kg) is released from the initial stationary
position, and then a direct central normal impact occurs between the ball and the cylindrical specimen C2 with a preimpact
velocity ranging from 0.0938 m/s � v0 � 0.5 m/s. The contact force and duration time are measured by an accelerometer, and
the restitution coefficient is obtained by the dropweight tower experiment. The power exponent n = 1.5 and the stiffness
coefficient k = 2.4144E10 N/Ln are given in [49].

Based on Eqs. (4) and (38), simulation experiments with different values of exponentm and preimpact velocity v0 are con-
ducted based on the four-order-Runge-Kutta method, and the time steps are set to 1E-8 s. The comparisons of the simulation
and experimental results are listed in Table 3, and the relative errors between the simulation and experimental results are
plotted in Fig. 12.

It can be seen that the newmodel constructed in this paper has reached a high accuracy with respect to the consistency of
the post- and pre-restitution coefficients, duration time T and peak contact force Fmax. The relative errors between the sim-
ulation and experimental results are less than 5%, which demonstrates the validity and potential of the new models. The
effect of different m-values on the model accuracy can also be revealed by the comparison between the simulation and
experimental results. As illustrated in Fig. 12, the relative errors on the consistency of the post- and pre-restitution coeffi-
cients are very low, less than 2%. The relative errors on the duration time are stable within approximately 4%, in most cases
and variations in the value of m have little effect on the relative error. Relatively speaking, the peak contact force is most
affected by the value of m. As seen in Table 3, the larger the m value is, the greater the calculated peak contact force. But
it does not exist that the larger the m value is, the larger or smaller the absolute values of the relative errors on the peak
contact force will be. Therefore, it can be found that there does not exist an optimal m value that minimizes the absolute
values of the relative errors on the peak contact force.

Based on the above comparison and analysis, the validity and accuracy of the models constructed in this paper are tested,
and it can also be seen that the value of m has little influence on the accuracy of the continuous contact force model, espe-
cially on the duration time and the consistency of the post- and pre-restitution coefficients. Moreover, there is no optimal
value of m that maximizes the accuracy of the model. Therefore, the influence of the value of m on the model accuracy
can be considered to be negligible.
Fig. 11. The sketch of the experimental setup.
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Table 3
Comparisons between the simulation and experimental data.

Experiment results Values of damping term exponent m

m = 2 m = 1.5 m = 1 m = 0.65 m = 0.5 m = 0.25

v0 = 0.0938 m/s
cr 0.9166 0.9176 0.9166 0.9140 0.9126 0.9113 0.9105
T(10E-4 s) 2.76 2.8648 2.8648 2.8654 2.8655 2.8658 2.8658
Fmax (N) 660.2 630.7 628.0 625.3 623.9 623. 1 622.3
v0 = 0.1500 m/s
cr 0.8892 0.8896 0.8892 0.8864 0.8848 0.8833 0.8822
T(10E-4 s) 2.52 2.6179 2.6175 2.6178 2.6178 2.6181 2.6180
Fmax (N) 1076.6 1097.5 1089.9 1082.8 1078.9 1076.9 1074.8
v0 = 0.2060 m/s
cr 0.8612 0.8608 0.8611 0.8586 0.8569 0.8551 0.8538
T(10E-4 s) 2.39 2.4674 2.4664 2.4663 2.4661 2.4663 2.4661
Fmax (N) 1533.1 1594.3 1577.4 1562.7 1554.6 1550.8 1546.4
v0 = 0.2989 m/s
cr 0.8234 0.8219 0.8232 0.8214 0.8197 0.8178 0.8162
T(10E-4 s) 2.23 2.3049 2.3031 2.3022 2.3016 2.3016 2.3011
Fmax (N) 2447.9 2476.2 2435.3 2401.3 2382.4 2374.0 2363.8
v0 = 0.3910 m/s
cr 0.7899 0.7877 0.7896 0.7887 0.7872 0.7852 0.7835
T(10E-4 s) 2.10 2.1980 2.1953 2.1935 2.1924 2.1923 2.1913
Fmax (N) 3303.3 3409.5 3332.4 3269.4 3234.3 3219.4 3200.6
v0 = 0.5000 m/s
cr 0.7568 0.7542 0.7564 0.7566 0.7555 0.7535 0.7517
T(10E-4 s) 2.0700 2.1068 2.1032 2.1003 2.0985 2.0981 2.0968
Fmax (N) 4364.6 4581.1 4447.7 4338.4 4277.5 4252.7 4220.2

Fig. 12. Comparisons of the relative errors between the simulation and experimental data.
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4. Conclusions

More than twenty continuous contact force models with several different values of damping term exponent have been
presented for modeling contact-impact problems. How much does the value of damping term exponent affect the model
accuracy? Is there an optimal value of damping term exponent that can provide the best model accuracy? To address these
issues, this paper proposes a new type of continuous contact force model, in which the damping term exponent and elastic
term exponent can be arbitrary. And the effect of the value of damping term exponent on the model accuracy is investigated
based on the new model.

As it is almost impossible to obtain an analytical solution based on the system dynamic equation, based on the rule of
energy equivalence, an approximate dynamic equation is developed by introducing the equivalent indentation and equiva-
lent velocity. Then, a primary formula for the hysteresis damping factor of the model is derived based on the system dynamic
equation and the approximate dynamic equation. The new model is constructed by modifying the primary formula through
nondimensional analysis. The validities of the new model are demonstrated by the comparison between the simulation
results and published experimental data. The comparison also reveals that the value of the damping term exponent has little
influence on the accuracy of the model, especially on the duration time and the consistency of the post- and pre-restitution
coefficients, and there is no optimal value of the damping term that maximizes the accuracy of the model.
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