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a b s t r a c t 

The instabilities of thermocapillary liquid layers with two free surfaces are examined by linear stability 

analysis. The surface tension is big enough to keep the liquid surfaces non-deformable. The effect of ver- 

tical temperature difference between two interfaces ( Q ) is considered. The critical parameters of preferred 

modes are determined, which depend on the Prandtl number ( Pr ) and Biot number ( Bi ). When Q = 0, the 

preferred modes are the oblique wave at small Pr and the streamwise wave at large Pr . The perturba- 

tion is symmetric and anti-symmetric at small and large Pr , respectively. When Q > 0, the preferred mode 

changes from the oblique wave to the streamwise wave, and finally the spanwise stationary mode with 

the increase of Pr . The instability mechanism is discussed. Comparisons are made with the liquid layer 

with a single free surface and previous results by numerical simulations and experiments. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Thermocapillary convection refers to the fluid motion driven by 

he temperature-induced surface tension gradient. It has received 

uch attention due to its great practical importance in crystal 

rowth [1] , inkjet printing [2] , droplet migration [3] , microfluidics 

4] and additive manufacturing [5] . The flow becomes unstable 

nce the temperature gradient exceeds a threshold. A great deal 

f theoretical and experimental works on thermocapillary instabil- 

ties have been carried out in the last four decades, which have 

een reviewed by Davis [6] , Schatz & Neitzel [7] and Lappa [8] . 

In theoretical studies, the model of thermocapillary liquid layer 

roposed by Smith & Davis [9] is widely used. They suggest that 

here are two kinds of thermocapillary instabilities. The first one is 

he convective instability, which is driven by mechanisms within 

he bulk of the layer and does not depend on the surface de- 

ormation [6] . The stationary rolls and travelling waves of con- 

ective instability predicted by the modal stability theory have 

een observed in both experiments [10] and numerical simulations 

11] . The energy analysis shows the convective instability at small 

randtl number ( Pr ) is purely hydrodynamic, while that at large Pr 

s hydrothermal [12–13] . 

The second one is related to the surface deformation. Smith & 

avis [14] have considered the two-dimensional traveling waves 
∗ Corresponding author. 
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hat couple the interfacial deflection to the underlying shear flow. 

t was found that the surface-wave instability is most prominent 

t low Pr and hydrodynamic in nature [6] . This work has been 

eneralized to three-dimensional waves by Patne, Agnon & Oron 

15] . The general linear stability analysis they performed reveals 

 stabilization effect of the imposed horizontal component of the 

blique temperature gradient (OTG) on the long-wave instabilities 

ntroduced by the vertical component of the OTG. 

In recent years, some authors have investigated thermocapil- 

ary instabilities in some new fields, such as non-Newtonian fluid 

ows [16–19] , the layer on an inclined plane [13] , non-modal sta- 

ility [20] , droplet migration [21] , sideband thermocapillary insta- 

ility [22] and bifurcation routes to chaos [23–24] . However, the 

bove works mainly focus on the liquid layer with a solid bound- 

ry, which only has a single free surface. 

There have been a few studies devoted to the thermocapillary 

nstability in the liquid layer with two free surfaces. NASA astro- 

aut Pettit [25] has performed a series of microgravity experiments 

f oscillatory thermocapillary flows on the International Space Sta- 

ion, where a liquid film of water in a ring is exposed to a non-

niform temperature distribution. These experiments suggest that 

he free liquid film has a potential to obtain a new kind of crystal- 

ization process of materials [26] . Ueno & Torii [27] have examined 

he thermocapillary-driven flow in a thin liquid film sustained in a 

ectangular hole by numerical and experimental approaches. Lim- 

ukhawat et al. [28] have performed three-dimensional numerical 

imulations on a thermocapillary-driven flow in a free liquid film 

ustained in a hole. Messmer et al. [29] have reported the exper- 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121217
http://www.ScienceDirect.com
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Fig. 1. Schematic of the thermocapillary liquid layer with two free surfaces. Here, d

is half the depth of layer, τ13 is the shear stress on the surface and U 0 is the velocity 

field. 
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ments on double free-surface films with thermocapillary forcing, 

hich show two basic flow structures at low Marangoni Numbers. 

amamoto et al. [30–31] have carried out numerical simulations 

f oscillatory thermocapillary flows under zero gravity in a cir- 

ular liquid film with concave free surfaces. They found that the 

ater film geometry is an important parameter and gives rise to 

hree oscillatory flow structures in the film. Watanabe, Kowata & 

eno [26] have experimentally investigated the thermocapillary- 

riven flow in a free liquid film with two gas-liquid interfaces, 

hich shows that the flow exhibits a transition from the two- 

imensional steady flow state to the three-dimensional oscillatory 

tate. The above works have presented many unique flow patterns 

hich cannot be found in the layer with a single free surface. 

However, to the best of our knowledge, the stability of thermo- 

apillary layer with two free surfaces has not been discussed the- 

retically. The instability mechanism in such flows is also not well 

nderstood. In order to study its physical properties and mecha- 

ism, we perform three-dimensional linear stability analysis on the 

onvective instability in the thermocapillary layer with two gas- 

iquid interfaces in this paper. The temperature difference between 

wo interfaces is considered. The results at different Prandtl num- 

ers and Biot numbers are presented. 

The paper is organized as follows. The physical model and 

athematical formulations are presented in Section 2 . The di- 

ensionless governing equations and boundary conditions are de- 

ived. Section 3 is dedicated to the modal analysis. The preferred 

odes are displayed and the energy mechanism is studied. Then, 

ection 4 is devoted to the instability mechanism and comparisons 

ith previous works. Finally, the conclusions are summarized in 

ection 5 . 

. Problem formulation 

We consider the thermocapillary liquid layer displayed in Fig. 1 , 

here a layer with two free surfaces is subjected to a constant 

emperature gradient b = −d T / d x > 0 on its upper and lower sur-

aces. We choose the reference frame where the flux in the x di- 

ection is zero. x, y, z are the streamwise, spanwise and normal di- 

ection, respectively. The surface tension ˆ σ changes with the tem- 

erature T as ˆ σ = ˆ σ0 − γ ( T − T 0 ) , where γ = −d ̂  σ/ d T > 0 . Thus, a

onvection is driven by the Marangoni forces on the free surfaces 

hile the surface tension is big enough to keep two surfaces flat. 

.1. Governing equations 

Suppose the liquid is an incompressible Newtonian fluid, whose 

iscosity E k , density 3 . 37 × 1 0 5 , thermal diffusivity 4 . 10 × 1 0 3 , 

hermal conductivity E T and unit thermal surface conductance 

 . 74 × 1 0 −4 are constants. We choose the scales of length, velocity, 
2 
tress and temperature difference as d , ˆ U 0 = bγ d/μ, γ b and bd , re- 

pectively. The Reynolds number, Marangoni number, Prandtl num- 

er and Biot number are defined as R = ρ ˆ U 0 d/μ, Ma = bγ d 2 / ( μχ) ,

 r = μ/ ( ρχ) and Bi = ̂

 h d/ ̂ k , respectively. The relation between Ma

nd R is: Ma = R · P r. 

The dimensionless governing equations are given below, which 

re the continuity equation, momentum equation and energy 

quation, respectively. 

 · u = 0 , (2.1) 

 

(
∂u 

∂t 
+ u · ∇u 

)
= −∇p + ∇ · τ, (2.2) 

∂T 

∂t 
+ u · ∇ T = 

1 

Ma 
∇ 

2 T . (2.3) 

ere, u , p, T and τ stand for the velocity, pressure, temperature 

nd stress tensor, respectively. For Newtonian fluid, 

= S , (2.4) 

here S = ∇u + ( ∇u ) T is the strain-rate tensor. 

In the present work, we neglect the surface deformation and 

estrict our attention to the convective instability. The magnitude 

f the surface deformation can be measured by the capillary num- 

er: Ca = μ ˆ U 0 / ̂  σ0 . The assumption of non-deformable surfaces is 

easonable when Ca << 1. In reality, this can be satisfied for many 

iquid layers, such as the liquid silicon [9] ( Pr = 0.023, O ( Ca ) ≈ 10 −4 )

nd the silicone oil [10] ( Pr = 13.9, O ( Ca ) ≈ 10 −3 ). 

The boundary conditions of stress and velocity on the upper 

urface ( z = 1 ) are 

13 + 

∂T 

∂x 
= 0 , τ23 + 

∂T 

∂y 
= 0 , w = 0 . (2.5a) 

ere, the first two equations stand for the relation between the 

emperature gradient and the shear stress caused by thermocapil- 

ary effect [6] , while the last is due to no surface deformation. The 

alance of heat flux on the surface leads to [9] 

∂T 

∂z 
= Bi · ( T − T u ∞ 

) + 

˜ Q 1 . (2.5b) 

Similar equations can be obtained on the lower surface ( z = 

1 ), 

13 − ∂T 

∂x 
= 0 , τ23 − ∂T 

∂y 
= 0 , w = 0 , (2.5c) 

∂T 

∂z 
= Bi ·

(
T − T d ∞ 

)
+ 

˜ Q 2 . (2.5d) 

ere, T u ∞ 

, T d ∞ 

are the temperatures of bounding gas near the upper 

nd lower surfaces, respectively. ˜ Q 1 , ˜ Q 2 are the imposed heat fluxes 

o the environment, which are introduced for the energy balance 

nd can be determined by the basic-state solution. 

We assume that the basic flow is fully developed, so the veloc- 

ty distribution of basic flow is parallel while the temperature is 

inear in x plus a distribution in z, 

 = ( U 0 ( z ) , 0 , 0 ) , T 0 ( x, z ) = −x + T b ( z ) . (2.6a) 

ere, the subscript 0 stands for the basic flow and T b is the verti- 

al temperature distribution. Similar to the layer in Ref. [9] , T u ∞ 

, T d ∞ 

ave 

 

u 
∞ 

= −x + T b ( 1 ) , T d ∞ 

= −x + T b ( −1 ) . (2.6b) 

ubstituting (2.6) into governing equations, the solutions of the ba- 

ic flow can be derived as U 0 (z) = C 1 z 
2 + C 2 z + C 3 , where C 1 , C 2 , C 3 

re constants. Because γ b is chosen as the scale of stress, the di- 

ensionless value of shear stress on the upper surface τ (1) for 
13 



K.-X. Hu, C.-Z. Zhao, S.-N. Zhang et al. International Journal of Heat and Mass Transfer 173 (2021) 121217 

Fig. 2. The temperature distributions in the vertical direction for basic flow at 

Ma = 100. 
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Fig. 3. The variation of Ma c with Pr at Q = 0.The curves correspond to oblique 

waves: (a), (c), (d), (g); and streamwise waves: (b), (e), (f), (h). Both axes are loga- 

rithmic. 
he basic flow is 1, which can also be derived by substituting the 

econd equation of (2.6a) into the first equation of (2.5a). Thus, the 

oundary conditions of velocity U 0 are D U 0 (1) = 1 = −D U 0 ( −1 ) ,

here D = d / d z. In addition, there is zero mass flux in the ver-

ical section 

∫ 1 
0 U 0 (z) d z = 1 . Then, the solution of U 0 (z) can be

etermined in (2.7). T b (z) is obtained in (2.8) by the equation 

U 0 (z) = 

1 
Ma D 

2 T b (z) and its boundary conditions in (2.5). 

 0 ( z ) = 

1 

2 

(
z 2 − 1 

3 

)
, (2.7) 

 b ( z ) = Ma 

(
− 1 

24 

z 4 + 

1 

12 

z 2 − 1 

24 

− Qz 

)
, (2.8) 

ere, Q = 

T d ∞ 

−T u ∞ 

2 Ma is a measure of vertical temperature difference 

etween two surfaces and we assume that T b (1) = 0 when Q = 0 .

inally, ˜ Q 1 , ˜ Q 2 are derived by (2.5), 

˜ 
 1 = − ˜ Q 2 = MaQ . (2.9) 

The distributions of velocity and temperature are displayed in 

igs. 1 & 2 . It can be seen that when Q = 0 , T b is symmetric with

espect to z = 0 and the surface is hotter than the interior. The in-

rease of Q leads to the asymmetry of T b . When Q ≥ 0 . 075 , T b al-

ays decrease with z . 

.2. Modal analysis 

Suppose an infinitesimal perturbation in the normal mode form 

s added to the basic flow, 

 

u , T , P, τ) = ( u 0 , T 0 , P 0 , τ0 ) + δ, (2.10a) 

= 

(
� 

u , 
� 

v , 
� 

w , 
� 

T , 
� 

P , 
� 

τ
)

exp [ i ( −ωt + αx + βy ) ] . (2.10b) 

ereafter, the variables without subscript 0 stand for the pertur- 

ation. The mode has a complex frequency ω = ω r + i ω i and the 

ave numbers α, β in the x and y directions, respectively. The 

otal wave number k = 

√ 

α2 + β2 and the propagation angle θ = 

an 

−1 ( β/α) are used in the following. ψ = −ωt + αx + βy is the

erturbation phase and c = | ω r | /k is the phase speed of perturba-

ion wave. 

We can obtain the linearized perturbation equations by substi- 

uting (2.10) into the governing equations (2.1) -( 2.4 ) and boundary 

onditions (2.5), 

α
� 

u + iβ
� 

v + D 

� 

w = 0 , (2.11) 
3 
 

[ 
β
(

� 

w D U 0 + U 0 iα
� 

u 

)
− α

(
U 0 iα

� 

v 
)] 

β
(
iα

� 

τ 11 + iβ
� 

τ 12 + D 

� 

τ 13 

)
+ α

(
iα

� 

τ 12 + iβ
� 

τ 22 + D 

� 

τ 23 

)
 Riω 

(
β

� 

u − α
� 

v 
)
, 

(2.12) 

α
(

D 

� 

w · D U 0 + 

� 

w D 

2 U 0 + D U 0 · iα
� 

u + U 0 iαD 

� 

u 

)
 Rβ

(
D U 0 · iα

� 

v + U 0 iαD 

� 

v 
)

− Ri k 2 
(

U 0 iα
� 

w 

)
(
i α2 D 

� 

τ 11 + 2 iαβD 

� 

τ 12 + αD 

2 
� 

τ 13 + i β2 D 

� 

τ 22 + βD 

2 
� 

τ 23 

)
 i k 2 

(
iα

� 

τ 13 + iβ
� 

τ 23 + D 

� 

τ 33 

)
 Riω 

(
αD 

� 

u + βD 

� 

v − i k 2 
� 

w 

)
, 

(2.13) 

 a 

(
� 

u 

∂ T 0 
∂x 

+ 

� 

w 

∂ T 0 
∂z 

+ U 0 iα
� 

T 

)
+ 

(
α2 + β2 

)� 

T − D 

2 
� 

T = M aiω 

� 

T , 

(2.14) 

 

11 − 2 iα
� 

u = 0 , (2.15a) 

 

22 −
(

2 iβ
� 

v 
)

= 0 , (2.15b) 

� 

13 + iα
� 

T = 0 , 
� 

τ 23 + iβ
� 

T = 0 , 
� 

w = 0 , D 

� 

T + Bi 
� 

T = 0 , z = 1 . (2.16)

� 

13 − iα
� 

T = 0 , 
� 

τ 23 − iβ
� 

T = 0 , 
� 

w = 0 , D 

� 

T − Bi 
� 

T = 0 , z = −1 . 

(2.17) 

Indeed, (2.12) & (2.13) are obtained by eliminating 
� 

p from the 

ollowing equations, which are three components of the momen- 

um equation, 

 

(
−iω 

� 

u + 

� 

w D U 0 + U 0 iα
� 

u 

)
= −iα

� 

p + iα
� 

τ 11 + iβ
� 

τ 12 + D 

� 

τ 13 , 

(2.18) 

 ( −iω 

� 

v + U 0 iα
� 

v ) = −iβ
� 

p + iα
� 

τ 12 + iβ
� 

τ 22 + D 

� 

τ 23 , (2.19) 
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Fig. 4. The (I) wave number, (II) wave propagation angle, (III) wave speed and (IV) frequency corresponding to the modes in Fig. 3 . 
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(
−iω 

� 

w + U 0 iα
� 

w 

)
= −D 

� 

p + iα
� 

τ 13 + iβ
� 

τ 23 + D 

� 

τ 33 . (2.20) 

We compute ω numerically by the Chebyshev collocation 

ethod [ 32 ], where N c Gauss-Lobatto points are set in the flow re-

ion z = cos ( jπ
N c +1 ) , j = 1 ∼ N c while 2 points z = ±1 are set at the

oundaries. The perturbation quantities are expanded in Cheby- 

hev polynomials, such as 

� 

 = 

N c +2 ∑ 

j=1 

a j H j−1 ( z ) , (2.21) 

here H j−1 (z) = cos ( ( j − 1 ) cos −1 (z) ) is the ( j − 1 ) −th Chebyshev 

olynomial and a j is the coefficient. Substituting these Chebyshev 

olynomials into (2.11)-(2.17), we can write the perturbation equa- 

ions in the form of Wg = ω Zg , where W , Z are two matrices, ω is

he eigenvalue and g = ( a 1 , a 2 ..., a 10 N C +8 ) 
T is the eigenvector of co- 

fficients. The eigenvalues are obtained by using the QZ algorithm 

vailable in the Matlab-software package [33] . In present work, the 

esults are sufficiently accurate when 80~120 Chebyshev nodes are 

sed. 
4 
In order to valid our code, we have computed some critical pa- 

ameters of thermocapillary liquid layers with a single free sur- 

ace, which can be realized by changing the boundary condition 

f the lower surface. Comparisons are made with reference values 

n Table 1 . It is found that our results agree well with those in Ref.

9] . Here, φ = 180 ◦ − θ , and c = | ω r | /k . 

. Numerical results 

For the neutral mode ( ω i = 0 ), the Marangoni number M a N is a

unction of α, β, P r, Q and Bi . The critical Marangoni number M a c 
an be defined as the global minimum of M a N for all ( α, β) , 

 a c ( P r, Q, Bi ) = min 

α,β
M a N ( α, β; P r, Q, Bi ) . (3.1) 

This means that all modes are stable ( ω i < 0 ) at M a < M a c . On

he contrary, there are unstable modes ( ω i > 0 ) for some ( α, β) 

hen Ma > M a c . When Q = 0 , both the velocity and temperature

istributions are symmetric with respect to the central plane z = 0. 

e will discuss the cases at Q = 0 and Q > 0 separately. Our com-

utation suggests that there are four kinds of preferred modes, 
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Table 1 

Some critical parameters of the thermocapillary liquid layer with a single free surface. Here, “a” and “b” stand 

for the results of Ref. [9] and present work, respectively, while “...” means the data is not available. 

Flow Pr Bi 

Ma k φ c 

a b a b a b a b 

Linear flow 0.01 1 14.6 14.5 ... 1.2 ... 8 6 ◦ ... 0.0101 

100 0 15.6 15.62 0.73 0.725 9 0 ◦ 9 0 ◦ 0 0 

Return flow 0.01 1 19.3 19.4 ... 1.20 ... 8 2 ◦ ... 0.0150 

100 0 376 375.3 2.50 2.48 7 . 6 ◦ 7 . 5 ◦ 0.0624 0.0622 

Fig. 5. The streamlines and isothermals of preferred modes at Q = 0: (I) Pr = 0.01, 

Bi = 0; (II) Pr = 0.01, Bi = 1; (III) Pr = 100, Bi = 1. 
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hich are the downstream streamwise wave ( θ = 0 ◦), the up- 

tream streamwise wave ( θ = 18 0 ◦), the spanwise stationary mode 

 θ = 9 0 ◦, ω = 0 ) and the upstream oblique wave ( θ ∈ ( 9 0 ◦, 1 80 ◦) ). 

.1. Q = 0 

The variation of Ma c with Pr at Q = 0 is displayed in Fig. 3 .

hen Bi = 0, there are two kinds of preferred modes, which are the 

pstream oblique wave ( θ∈ (90 °, 180 °) at Pr < 1.1 and downstream

treamwise wave ( θ= 0 °) at Pr > 1.1. Generally, Ma c increases with

r . However, there is a slight decrease of Ma c at 1.1 < Pr < 1.4. 

When Bi > 0, Ma c increases with Bi . However, the increase is 

ore significant at small Pr . For example, when Pr = 0.01, Ma c in-

reases from 2.01 at Bi = 0 to 8.52 at Bi = 1, while for Pr = 100, Ma c 
ncreases from 164 at Bi = 0 to 181 at Bi = 1. This property is similar

o that of return flow [9] . For the preferred mode, the streamwise 

ave at large Pr changes from downstream [ θ= 0 °, curves (b) & (e)]

o upstream [ θ= 180 °, curves (f) & (h)] when Bi increases. 
5 
The wave number k , propagation angle θ , wave speed c and fre- 

uency ω corresponding to the preferred modes in Fig. 3 are dis- 

layed in Fig. 4 . It can be seen that when Bi = 0, k, c and ω at large

r are much larger than those at small Pr . For Bi = 5, the propaga-

ion angle of oblique wave increases from θ= 94 ° to θ= 180 ° when 

r increases. On the contrary, the variation of θ with Pr is not ob- 

ious for the same mode at Bi = 0 and Bi = 1. 

The streamlines and isothermals of preferred mode at Q = 0 are 

lotted in Fig. 5 . It can be seen that the symmetry of basic flow

eads to the symmetry of perturbation. In Fig. 5 I & II, the pertur- 

ations at Pr = 0.01 are symmetric with respect to the central plane 

 = 0. There are four rolls in one cycle and the temperature changes 

ittle in the vertical direction. On the contrary, the perturbation is 

nti-symmetric at Pr = 100 ( Fig. 5 III). There are only two rolls in

ne cycle, and the amplitude of temperature appears in the inte- 

ior of flow region. When Bi > 0, the perturbation temperature near 

he surface decreases ( Fig. 5 II & III) and the rolls at small Pr be-

ome oblique ( Fig. 5 II). 

.2. Q > 0 

The variation of Ma c with Pr at Q = 0.05 is displayed in Fig. 6 .

hen Bi = 0, there are three kinds of preferred modes, which are 

he upstream oblique wave at Pr < 1.2, downstream streamwise 

ave at 1.2 < Pr < 49 and spanwise stationary mode ( θ= 90 °, ω = 0 )

t Pr > 49. For small Pr, Ma c increases with Pr , while the opposite

ase appears at large Pr . The preferred modes are similar to those 

n the linear flow for the liquid layer on the plane[9]. However, 

he streamwise wave of the latter is upstream( θ= 180 °), which is 

pposite to the case of curve (b) in Fig. 6 . When Bi = 1, there are

wo kinds of streamwise waves, which travel upstream[curve (f)] 

nd downstream[curve (g)], and two kinds of oblique wave[curves 

d) & (e)]. 
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Fig. 7. The (I) wave number, (II) wave propagation angle, (III) wave speed and (IV) frequency corresponding to the modes in Fig. 6 . 
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The wave number, propagation angle, wave speed and fre- 

uency corresponding to the preferred modes in Fig. 6 is displayed 

n Fig. 7 . When Pr < 10, k significantly increases with Pr at Bi = 0.

owever, all wave numbers have the same order for all Pr at Bi = 1.

enerally, both c and ω increase with Pr for the oblique waves and 

treamwise waves. 

The streamlines and isothermals of preferred modes at Q = 0.05, 

i = 0 are plotted in Fig. 8 . For Pr = 3 ( Fig. 8 I), the hot spot appears

n the free surface and there are two rolls in one cycle. For Pr = 100

 Fig. 8 II), the hot spot is in the interior and there are four rolls in

ne cycle. However, due to the asymmetry of temperature distribu- 

ion in the basic flow, the upper and lower rolls are not symmet- 

ic. The perturbation fields at small Pr are similar to the cases in 

ig. 5 . 

It can be seen from the perturbation equations that Q is only 

elated to 
∂ T 0 
∂z 

in (2.14). Fig. 2 suggests that when Q ≥ 0 . 075 , the

ariation of T b with z is monotonous, and a larger Q only leads to 

 larger temperature gradient. In addition, our computation shows 

hat the critical modes at Q > 0 . 05 are similar to those at Q ≤ 0 . 05

nd there is no qualitative change for the instability. Thus, the re- 

ults at larger Q are nor presented. 
m

6 
.3. Energy analysis 

We examine the energy growth of perturbation by the evolu- 

ion equation of kinetic energy [16] , 

∂ E k 
∂t 

= − 1 

2 R 

∫ 
(τ : S ) d 3 r + 

1 

R 

∫ 
u · τ · n d 2 r −

∫ 
u · ((u · ∇) u 0 ) d 

3 r 

= −N + M + I, (3.2) 

here N is the viscous dissipation, M is the work done by 

arangoni forces on the surfaces and I is the energy from the 

asic flow. Here, 
∫ 

f d 2 r and 

∫ 
f d 3 r stand for the surface and vol- 

me integrals, respectively. In Table 2 , we list the terms in (3.2) at 

ifferent parameters, which are normalized by the kinetic energy 

 E k = 

∫ | u | 2 d 3 r = 1 . 

It can be seen that when Bi = 0, most of the perturbation energy 

omes from the Marangoni forces caused by perturbation tempera- 

ure on the surfaces, while I is small enough to be neglected. How- 

ver, when Bi ≥ 1 , I becomes the main energy source for the per- 

urbation at Pr = 0.01. The importance of I increases with Bi but de- 

reases with Pr. The increase of Q has little effect on the energy 

echanism. 
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Table 2 

The terms in (3.2) for the preferred modes at different parameters. 

Pr -N M I Preferred mode 

Q = 0, Bi = 0 100 -2.446421 2.453128 -0.006698 streamwise wave 

10 -0.789956 0.801094 -0.011134 

1 -0.242951 0.242833 0.000119 oblique wave 

0.01 -0.037253 0.037222 0.000033 

Q = 0, Bi = 1 0.01 -0.004117 0.001158 0.002963 

Q = 0, Bi = 5 0.01 -0.002118 0.000201 0.001919 

Q = 0.05, Bi = 1 0.01 -0.004135 0.001157 0.002983 

Q = 0.05, Bi = 0 100 -16.492175 16.477791 0.014385 spanwise stationary mode 

Q = 0.05, Bi = 1 100 -12.426678 12.407012 0.019669 

Fig. 8. The streamlines and isothermals of preferred modes at Q = 0.05, Bi = 0: (I) 

Pr = 3; (II) Pr = 100. 

4

a

a

c

4

fl

i

w

l  

M  

T  

p

w

t

a  

t  

w  

l  

s

t

o

w

Fig. 9. The liquid film sustained in a rectangular hole. 
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. Discussion 

In this section, first, we compare our results with the layer with 

 single free surface. Then, comparisons are made with numerical 

nd experimental works. Finally, the instability mechanism is dis- 

ussed. 

.1. Comparisons with the layer with a single free surface 

The velocity distribution in Fig. 2 is similar to that of return 

ow [9] . In addition, the vertical temperature distribution at Q = 0 

n Fig. 3 indicates that the surface is hotter than the interior region, 

hich is also the same as the case of return flow. So we would 

ike to compare the layer at Q = 0 with the return flow. When Bi = 0,

a c of the latter is about three times that in Fig. 3 for fixed Pr .

his is reasonable as the layer of return flow is placed on a rigid

lane, which increases the constraint and stabilizes the flow. The 

ave number and frequency of the latter are also much larger than 

hose of the former. Meanwhile, the downstream streamwise wave 

t large Pr [curves (b) & (e) in Fig. 3 ] cannot be found in the lat-

er. For small Pr , the isothermals are nearly vertical lines in Fig. 5 ,

hich are the same as those of the latter [33] . In Table 2 , I is neg-

igible at small Pr at Bi = 0. On the contrary, I is the main energy

ource for the latter[12,13]. 

When Q > 0 , the temperature distribution in Fig. 3 suggests 

hat the layer is heated from below, which is the same as the case 

f linear flow [9] . Three preferred modes in the linear flow (oblique 

ave, streamwise wave and spanwise stationary mode) are also 
7 
etected in Fig. 6 . However, the propagation directions of stream- 

ise waves for two layers are opposite. 

.2. Comparisons with numerical simulations and experiments 

There have been some numerical and experimental works on 

he thermocapillary convection with the geometry shown in Fig. 9 , 

here a liquid film with two free surfaces is sustained in a rect- 

ngular hole. L x is the distance between the different temperature 

ontrolled end walls, while L y is the distance between two side 

alls which are adiabatic. The flows with different aspect ratios 

 L x /2 d, L y / L x ) have been examined with numerical and experimen-

al approaches [26–28] . When L x , L y >> 2 d, the flow away from

alls corresponds to the case considered in Fig. 1 . So we could 

ake a comparison of our results with theses works. 

The numerical simulation by Limsukhawat et al. [28] shows 

hat the perturbation field at Pr = 68.4, L x /2 d = 6.67, L y / L x = 1.5 is anti-

ymmetric about the central plane, and the hot spots are in the in- 

erior of flow region. The distributions of perturbation temperature 

gree well with those in Fig. 5 (c). However, the critical Marangoni 

umber determined in the simulation has M a c ≈ 1900 , which is 

uch larger than our results in Fig. 3 . The reason may be at- 

ributed to the difference in their geometries. The layer in this pa- 

er is assumed to be infinite. However, the liquid film in the sim- 

lation is sustained in a hole with end walls in the streamwise 

nd spanwise directions. As compared with the depth of the layer, 

he lengths in these two directions are not large enough. Thus, the 

onstraints of end walls are obvious, which significantly increase 

 a c . 

Watanabe, Kowata & Ueno [26] reported the experiment of 

hermocapillary liquid film for silicone oil of 5 cSt ( Pr = 68.4 at 

5 °C) at L x /2 d = 3.33, L y / L x = 6. It shows that M a c ≈ 368 , and the hy-

rothermal waves propagate steadily from the cold wall to the hot 

all at θ ≈ 1 5 ◦, k ∼ 2 . 5 , c ∼ 0 . 15 , f = ω/ ( 2 π) ∼ 0 . 06 . This corre-

ponds to θ ≈ 16 5 ◦, k ∼ 1 . 25 , c ∼ 0 . 3 , ω ∼ 0 . 375 in our definition

we define the length scale as half the depth of the layer). The 

ropagation angle is close to that at high Pr and Bi > 0. Other pa-

ameters have the same orders as those in Fig. 4 . The differences 

f critical parameters can be attributed to not only the geometry, 

ut also the buoyancy effect in the experiment. 
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.3. Instability mechanism 

.3.1. Q = 0 

For small Pr , the propagation angle θ ≈ 9 0 ◦. So we could con- 

ider the spanwise wave for simplicity. When Bi = 0, the energy 

nalysis indicates that the Marangoni force is crucial for the in- 

tability while the inertial effect of basic flow is negligible. There- 

ore, the key to the mechanism is the streamwise flow on the sur- 

ace, which heats the hot spot by convection( u 
∂ T 0 
∂x 

< 0 ). Here, u > 0

or the hot spot on the surface, which is opposite to the case of 

eturn flow [33] . The heat diffusion and viscous dissipation can 

e significantly increased by the increase of wave number, which 

tabilizes the flow. Thus, k is very small for curve (a) in Fig. 4 (I).

hen Bi > 0, the perturbation temperature decreases while the im- 

ortance of I increases. When I becomes the main energy source, 

he key to the mechanism changes to the inertial-driven stream- 

ise flow [33] , which has u < 0 for the hot spot on the surface. 

For large Pr , the instability is caused by the heat convection. 

he hot spot in the flow region is mainly heated by the stream- 

ise convection ( U 0 T ) at Bi = 0 and the vertical convection ( w 

∂ T 0 
∂z 

)

t Bi > 0 (see Fig. 5 (III)). Then, the surface is heated by the interior

ot spot by conduction and the Marangoni force drives the insta- 

ility. 

.3.2. Q > 0 

For small Pr , the mechanism and perturbation flow field at Q > 0 

re similar to those at Q = 0. For moderate Pr , Fig. 8 (I) suggests that

he key to the mechanism is the hot spot on the surface, which is 

eated by the streamwise convection ( u 
∂ T 0 
∂x 

). It can be inferred that 

he temperature at the perturbation phase ψ = 5 will increase by 

he convection. This makes the wave travelling downstream. 

For large Pr , it seems that the spanwise stationary mode is sim- 

lar to the Marangoni convection in the layer heated from below. 

owever, the temperature distribution in Fig. 8 (II) is very different 

rom that in the linear flow, which has vertical isothermals. This 

an be explained as follows. The convection of the lower vortices 

ecreases the temperature below the hot spot. Meanwhile, | ∂ T 0 
∂z 

| is 
elatively small at z > 0, thus the effect of vertical convection be- 

omes weak. This is the reason why the perturbation of tempera- 

ure is not obvious in the upper and lower region of the hot spot. 

herefore, the instability is caused by the vertical convection in the 

nterior and the heat conduction near the surfaces. 

In many applications of non-isothermic liquid layers, such as 

olutions [ 34 , 35 ] and binary mixtures [36] , the Marangoni stress

nduced by the concentration gradient is comparable to that 

aused by the temperature gradient. So the solutocapillary effect 

s also important for the convection. The instability becomes very 

omplex due to the competing contributions of thermal and solu- 

al Marangoni stress [37] . In crystal growth, the crystal can play 

n active role in coupled thermo-solutal capillary instabilities [38] . 

e plan to investigate the thermo-solutal capillary convection of 

ouble free-surface film in future works. 

. Conclusion 

We examine the convective instability in the thermocapillary 

ayer with two free surfaces by linear stability analysis. The param- 

ters of preferred modes are obtained at different Prandtl numbers 

 Pr ) and Biot numbers ( Bi ). The effect of vertical temperature dif-

erence between two interfaces ( Q ) is considered. 

When Q = 0, the preferred modes are the oblique wave at small 

r and the streamwise wave at large Pr . The former always trav- 

ls upstream while the propagation direction for the latter de- 

ends on Bi and Pr . The perturbation flow fields at small Pr are

ymmetric with respect to the central plane. There are four rolls 
8 
n one cycle and the perturbation temperature changes little in 

he vertical direction. On the contrary, the perturbation is anti- 

ymmetric at large Pr . There are only two rolls in one cycle and 

he amplitude of perturbation temperature appears in the interior 

f flow region. When Bi = 0, the wave number, wave speed and fre- 

uency at large Pr are much larger than those at small Pr . The key

o the mechanism is the streamwise convection. When Bi > 0, the 

erturbation temperature on the surface decreases and the rolls 

ecome oblique. The instability is mainly caused by the inertial- 

riven streamwise flow at small Pr and the vertical convection at 

arge Pr . 

When Q > 0, the preferred modes include the oblique wave at 

mall Pr , the streamwise wave at moderate Pr and the spanwise 

tationary mode at large Pr . For Bi = 0, the streamwise wave is 

ownstream, while for Bi > 0, it can be either upstream or down- 

tream. Due to the asymmetry of temperature distribution in the 

asic flow, the perturbation fields are not symmetric. The hot spot 

s on the free surface at moderate Pr and in the interior of flow 

egion at large Pr . 

Energy analysis suggests that when Bi = 0, the perturbation en- 

rgy mainly comes from the Marangoni force while the energy 

rom the basic flow ( I ) is negligible. When Bi > 0, the importance

f I increases with Bi but decreases with Pr. I becomes the main 

nergy source for small Pr when Bi is large enough. The increase 

f Q has little effect on the energy mechanism. 

Comparing the double free-surface layer with the single free- 

urface one, we can find that the temperature distribution of the 

ormer at Q = 0 is similar to that of return flow. However, when 

i = 0, the critical Marangoni number, wave number and frequency 

f the former are much smaller than those of the latter. In addi- 

ion, their energy mechanisms at small Pr are totally different. The 

emperature distributions at Q > 0 is more similar to that of lin- 

ar flow. However, there are many differences in their instability 

echanisms and perturbation flow fields. 
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