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a b s t r a c t 

The dynamic programming interface reconstruction (DPIR) method introduced by Dumas et al.[1] is a 

volume-preserving and continuous interface reconstruction method. It is a two-step method, which com- 

prises of an optimized step and a correction step. At first, in the optimized step, it minimizes a target 

function by the dynamic programming method to obtain a continuous interface. Then, it corrects the 

interface in each mixed cell to preserve the conservative of the volume fraction. However, only the differ- 

ence of volume fraction is considered, and the interface normal is neglected in the target function. These 

make it easy to obtain different optimal results in the optimized step, and hence the resulting continu- 

ous interfaces always suffer from oscillations (i.e., the ‘wave effects’ [1] ). In this paper, to suppress the 

continuous interfaces’ oscillations in the optimized step and improve its accuracy, we constructed a non- 

dimensional target function based on the moment-of-fluid method’s objective function, and also proposed 

a new correction method. Finally, several numerical tests are performed to show the new method’s su- 

periority over the original one of Dumas et al. [1] . 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

There is a variety of interface reconstruction methods for multi- 

aterial flows. Among all of them, the volume-of-fluid (VoF) 

ethod [2] can preserve the mass of each component, and for 

 wide range of applications, the importance of mass conserva- 

ion on a discrete level outbalances all the disadvantages associ- 

ted with VoF methods [3] . In the VoF method, an approximate 

iecewise linear interface ( � n · � x + d = 0 ) in the mixed cell is con-

tructed in two steps, determining the direction of the interface 

i.e., the normal � n ) and calculating the location of the interface (i.e., 

he constant d). The constant d in the second step can be uniquely 

alculated as long as � n and volume fraction are given [3,4] . Hence, 

he estimation of � n is much more critical, it will significantly influ- 

nce the accuracy of interface reconstruction [5] . There are many 

ifferent algorithms to derive the interface normal [2–4,6–11] . The 

oment-of-fluid (MoF) method [3] is one of the most accurate ap- 

roaches among these VoF methods [5] , and it can resolve inter- 

ace details as small as the mixed cell itself [3] . 

However, it is well known that these VoF methods suffer from 

iscontinuity of interface shape across the cell boundaries. To 
∗ Corresponding author. 

E-mail address: guo_shaodong@iapcm.ac.cn (S. Guo). 
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vercome this deficiency, Dumas et al. [1] introduced a volume- 

reserving and continuous interface reconstruction method, which 

s denoted as DPIR. It is a two-step method containing an opti- 

ized step and a correction step. In the optimized step, a con- 

inuous interface can be obtained by minimizing a target function 

ith the dynamic programming (DP) method. And then, in the cor- 

ection step, the interface in each mixed cell is corrected to pre- 

erve the conservative of the volume fraction(i.e., guarantee the 

ass conservation). This target function is quite important for the 

PIR method since it will significantly influence the accuracy of 

he reconstructed continuous interface in the optimized step and 

he robustness in the correction step. As the numerical results have 

hown [1] , the continuous interface obtained by the target function 

uffers from oscillation(.i.e., the ’wave effects’ observed in [1] ). To 

olve this problem, Dumas et al. [1] introduced a tunable penalty 

erm to the target function. Recently, Chollet et al. [12] found that 

his penalty term may have very different scales with the target 

unction and added a second penalty term to fix this problem. 

As our numerical tests showed, both the penalty terms 

1,12] are insufficient to suppress the artificial oscillation in the 

ontinuous interfaces. Furthermore, we notice that the penalty 

erms introduced in [1] and [12] for the target function have dif- 

erent dimension units. As is well known, all equations must be di- 

ensionally consistent (also called dimensional homogeneity), i.e., 

https://doi.org/10.1016/j.compfluid.2021.104960
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2021.104960&domain=pdf
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Fig. 1. The interface curve(red points M i ) with the internal (black point I i ) and ex- 

ternal (blue points E i ) curves. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. The local correction of volume fraction. 

Fig. 3. Several optimal solutions of the target function (1) in this mixed cell. 
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he units should be the same on both sides of an equation, other- 

ise, some spurious phenomena will be generated (see [13] for an 

xample). 

In addition, the target function [1] only bases on the volume 

ractions and does not consider the effect of the interface normal 

  , it is difficult to maintain the uniqueness of the continuous inter- 

ace, and hence an oscillatory interface may be generated. In this 

aper, to suppress oscillations of the continuous interfaces, a non- 

imensional target function, which contains both the effects of the 

nterface normal and volume fractions, is designed. And a correc- 

ion step is also proposed to improve its accuracy and robustness. 

inally, several tests are presented to show the superiority of the 

ew method over the original one [1] . 

This paper is organized as follows: the DPIR method is briefly 

ntroduced in Section 2 . Our new method is given in Section 3 .

n Section 4 , several tests are presented to demonstrate the good 

erformance of the new method. Concluding remarks are given in 

ection 5 . 

. DPIR method 

DPIR method is a two-step method. In the optimized step, dy- 

amic programming (DP) is used to minimize a target function to 

btain the continuous interface. And in the correction step, a lo- 

al correction is made on each mixed cell to preserve the volume 

onservation. 

.1. The optimized step 

First, the interface is assumed to be piecewise linear in each 

ell. As shown in Fig. 1 , the minimization problem consists of find- 

ng a finite number of points ( � M i , 0 ≤ i ≤ N) located on the edges

f mixed cells. The points �
 M i are bounded in the external and in- 

ernal points, i.e., � E i and 

�
 I i . By taking �

 M i = x i · � I i + (1 − x i ) · �
 E i , with

 < x i < 1 , Dumas et al. [1] designed a target function as follows,

f = 

N−1 ∑ 

i =0 

f i , f i (x i , x i +1 ) = | vol ( � M i , � M i +1 ) − vol r | p (1)

here, vol r is the exact volume fraction of the internal material 

here, the materials separated by the interface are denoted as in- 

ernal and external ones), and vol ( � M i , 
�
 M i +1 ) is the one computed 

hrough the polygon ( � I i − �
 M i − �

 M i +1 − �
 I i +1 ). And the power p = 2 

s suggested [1] . Since the function f i have two continuous vari- 

bles x i and x i +1 , in order to implement the dynamic programming 
2 
ethod, Dumas et al. discrete each x i into a finite set of points, i.e., 

 i ∈ (0 , 1) = > x i ∈ (x 1 , x 2 , . . . , x N k −1 ) , x j = 

j 

N k 

, (2)

nd then by fixing the value of x 0 = x N , they can optimize the oth-

rs as the same as the shortest path problem. After iterating the 

ptimized solutions for all the possible values of x 0 = x N , they get

he optimized solution, i.e., an optimal continuous interface made 

p of the points �
 M 0 − �

 M 1 − . . . − �
 M N . Please refer to [1] for more 

etails. 

However, the continuous interface obtained by Eq. (1) often os- 

illates between mixed cells. To fix this problem, Dumas et al. add 

 penalty term to the target function (1) , 

f i (x i , x i +1 ) = | vol ( � M i , � M i +1 ) − vol r | p + λ · || � M i +1 − �
 M i || (3)

here, || � M i +1 − �
 M i || is the distance between points �

 M i and 

�
 M i +1 . 

s their tests showed, the values of λ have a great influence on the 

esults, and a weak penalization with λ = 0 . 01 is suggested [1] . 

In [12] , Chollet et al. add another penalty term to the target 

unction (3) , 

f i (x i , x i +1 ) = | vol ( � M i , � M i +1 ) − vol r | p + λ · || � M i +1 − �
 M i || 

+ 

| vol r − vol ( � M i , � M i +1 ) | 
vol ( � M i , � M i +1 ) 

(4) 

f the calculated volume fraction vol ( � M i , 
�
 M i +1 ) is too small with 

espect to the correction part ( | vol r − vol ( � M i , 
�
 M i +1 ) | ), the second 
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Fig. 4. The new local correction method. 
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enalty term will be a much big number, and hence it will not be

hosen by the minimization. 

However, we notice that the unit of the second part (unit of 

istance) for the target function in Eqs. (3) and (4) differs from the 

thers (unit of 1). As mentioned previous, dimensional inconsistent 

quations may result in spurious solutions, hence this penalty term 

ay limit its applications. 

.2. The correction step 

This step is to make the remaining error ( | vol r − vol ( � M i , 
�
 M i +1 ) | )

n volume fractions disappear after the optimized step. It is per- 

ormed locally by adding a control point in each mixed cell. As 

hown in Fig. 2 , with the point � P i , lying on the perpendicular bi-

ector of each segment �
 M i − �

 M i +1 , the corresponding volume frac- 

ion defined by the triangle ( � M i − �
 P i − �

 M i +1 ) will be equal to the re- 

aining error. First, we can obtain the height of this triangle with 

he remaining error, then we can get the location of � P i by geomet- 

ic relation. 

To obtain a curved interface for specific cases (circle, for in- 

tance), Chollet et al. [12] introduced a curved interface correction 

ethod. They also suggested moving the control point along the 
Fig. 5. Left: the initial mesh and interface; R

3 
irection of the cell center instead of the perpendicular bisector. 

his may ensure more space available, and thus make the correc- 

ion step more robust. Please refer to [12] for more information. 

. The new method 

We find out that without the interface normal, the VoF method 

s no longer guaranteed uniqueness, and hence the target function 

q. (1) may have multiple solutions. For example, as the mixed 

ell ( vol r = 0 . 5 ) shown in Fig. 3 , for all these lines | vol ( � M i , 
�
 M i +1 ) −

ol r | p = 0 are satisfied, and hence any of these lines may be re- 

arded as optimal solution of the function (1) . That is why the re- 

ulting interface suffers from oscillations. 

In this section, to overcome this problem, we design a non- 

imensional target function to suppress the oscillations. 

.1. The new target function 

We noticed that the moment-of-fluid method [3] could obtain 

iecewise linear interfaces by solving the optimal solution of the 

bjective function, 

(θ ) = || � x c (θ ) − �
 x c 
∗|| 2 2 (5) 

here, θ is the polar angle which can specify the interface normal 

  . �
 x c (θ ) and 

�
 x c 
∗ are the centroids of the calculated and exact ma- 

erial’s volume, respectively. As the analysis has shown in [3] , the 

ptimal solution of (5) is unique. And as a side benefit, the amount 

f information carried by the volumes and centroids is sufficient to 

efine the piecewise linear interface without exchanging data be- 

ween the neighbor cells [3] . It means that the objective function 

5) can be evaluated by a function of x i and x i +1 , and hence be

asily implemented in the DPIR method as the original function. 

Considering the influence of the volume fraction and the objec- 

ive function (5) , a new dimensionless target function is designed 

s follows, 

f = 

N−1 ∑ 

i =0 

f i , f i (x i , x i +1 ) = 

( || � x c ( � M i , � M i +1 ) − �
 x c 
∗|| 2 

A r 
· 1 

vol r 

)p 

(6) 

here p = 1 / 5 , �
 x c ( � M i , 

�
 M i +1 ) and 

�
 x c 
∗ are the calculated and refer-

nce centroids of the target material, A r and vol r are the volume 
ight: two possible solutions of DPIR-O. 
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Fig. 6. Left: the solutions of DPIR-P1; Right: the possible solutions of DPIR-P2. (Blue- λ = 0 . 01 , Green- λ = 0 . 5 ). 

Fig. 7. The solution of DPIR-N. Left: the optimized interface in the first step; Right: the corrected interface in the second step. 

Fig. 8. Left: the solution on the original mesh; Right: the solution on the amplified mesh. (DPIR-P1 with λ = 0 . 01 is used). 

4 
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Fig. 9. Left: the initial mesh and interface; Right: two possible solutions of DPIR-O. 

Fig. 10. Left: the possible solutions of DPIR-P1; Right: the possible solutions of DPIR-P2. (Blue- λ = 0 . 01 , Green- λ = 0 . 5 ). 

Fig. 11. The solution of DPIR-N. Left: the optimized interface in the first step; Right: the corrected interface in the second step. 

5 
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Fig. 12. Left: the initial mesh and interface; Right: the solution of DPIR-P1. 

Fig. 13. Left: the solutions of DPIR-N1; Right: the solutions of DPIR-N. 

Fig. 14. Left: the initial mesh and interface; Right: the solution of DPIR-P1. 

6 
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Fig. 15. Left: the solutions of DPIR-N2; Right: the solutions of DPIR-N. 

Fig. 16. The solutions of DPIR-N. Left: with simple correction method [1] ; Right: with the new correction method. 

Fig. 17. A small change in the discretization of N k . 
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ial is always the one with a smaller fraction, 

 

 

 

 

 

( � x c ( � M i , � M i +1 ) , � x c 
∗
, A r , vol r ) refers to the internal material , 

if vol I < vol E 

( � x c ( � M i , � M i +1 ) , � x c 
∗
, A r , vol r ) refers to the external material , 

otherwise . 

(7) 

here, vol I and vol E is the exact volume fraction of the 

nternal and external materials. For example, if vol < vol , 
I E 

7 
�
  c ( � M i , 

�
 M i +1 ) , � x c 

∗, A r will be calculated through the polygon ( � I i −
�
 

 i − �
 M i +1 − �

 I i +1 ) as shown in Fig. 2 . 

It is easy to know that, the optimized solution of Eq. (6) is 

omposed of a set of approximate solutions of (5) . Especially for 

 piecewise linear interface, due to its uniqueness, the optimized 

olution is identical to the results of the MoF method and hence 

void the ‘wave effects’. Although in the present state of our 

nowledge, it is difficult to verify the uniqueness property for a 

urved interface, various numerical tests show that the new func- 

ion is sufficient to suppress the oscillatory of the continuous in- 

erfaces. 

.2. The new local correction method 

Unlike the simple correction method in [1] , we try to find an 

ptimal correction point � P ∗
i 

in the second step. As shown in Fig. 4 , 

t is easy to know that the correction points �
 P i and 

�
 P ∗
i 

should 

e located on the solid blue line, which is parallel with the line 
�
 

 i − �
 M i +1 . As same as the MoF method, the objective function g(θ ) 

5) is used to find the optimal correction point on the blue line, 

nd the only difference is that in a DPIR method, the mixed cell is 

eparated by �
 M i − �

 P ∗
i 

− �
 M i +1 instead of a linear line. 
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Fig. 18. Left: the initial mesh and interface; Right: the solution of DPIR-N with uniform N k = 60 . 

Fig. 19. Left: the solutions of DPIR-N with uniform N k = 260 ; Right: the solutions of DPIR-N with new discretization method of N k = 60 . 
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. Numerical examples 

In this section, we first discuss the benefits of our new tar- 

et function and the advantages of the new correction method. 

hen, we present several tests to show the superiority of the new 

ethod. For simplicity, the original DPIR method with target func- 

ion (1) is denoted as DPIR-O. The ones with penalty terms (3) and 

4) are denoted as DPIR-P1 and DPIR-P2, respectively. And the im- 

roved one in this work is called DPIR-N. 

.1. The benefits of the new target function 

In this subsection, several cases are used to show the advan- 

ages of the new target function, and for easy of comparison be- 

ween different tar get functions, the simple correction method of 

1] is implemented. 

.1.1. Case 1 circle 

First, we test the behavior of these functions on a circle in- 

erface (radius = 1, center = (2.5,2.5)) with a uniform mesh. Figs. 5–

 show the results. As mentioned above, the results of DPIR-O are 

on-uniqueness, and both the red and blue interfaces can be the 
8 
ptimal solution ( Fig. 5 ). And, Fig. 6 shows that the parameter λ in

he first penalty term has a great influence on DPIR-P1. Although 

he second penalty term limits its influence, the solutions of DPIR- 

2 are virtually the same as the ones of DPIR-O (For simplicity, 

nly one of its optimal solutions is plotted). As shown in Fig. 7 ,

he optimal solution of our new target function is unique, and its 

orrection interface is much better than the others. 

To show the drawback of the penalty term (3) , which has a dif- 

erent dimension unit with the others, Fig. 8 compares the solu- 

ions of DPIR-P1 with λ = 0 . 01 on the original case and a 10 times

mplified case (a circle interface with radius = 10, center = (25,25)). 

t can be seen that the two solutions do not maintain the principle 

f dynamic similarity, i.e., this method will generate different so- 

utions if different dimensionless quantities (for instance, the unit 

f length, millimeter or centimeter) are used for a fluid dynamics 

roblem. The behavior of the new DPIR-N method for this magni- 

ed problem is virtually the same as the original ones in Fig. 7 ,

ence the results are not shown. 

.1.2. Case 2 square 

The square interface (rectangular (-1.95,0) - (0,-1.95) - (1.95,0) 

 (0,1.95)) with a uniform grid is used. The solutions are shown 
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Fig. 20. Split the filament cell. 
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n Figs. 9 - 11 . As Figs. 9 and 10 illustrate, the first penalty term

3) can reduce the ‘wave effects’, and the result of λ = 0 . 5 (the

reen one) is very close to the exact square interface. The same as 

he previous case, the second penalty term diminished the impact 

f the first one. 

As shown in Fig. 11 , once the reference interface in a mixed cell

s linear, it will be reconstructed exactly, hence, the optimized so- 

ution of DPIR-N can reconstruct those mixed cells quite well, after 

mplementing the simple correction step, its solutions preserve the 

quare pretty well and free of oscillation. 

Since it is quite difficult to decide a perfect value of λ for com- 

lex problems, λ = 0 . 01 will be used for all the cases below, as

ecommended in [1] . The DPIR-O will not be studied below. The 

ehavior of DPIR-P2 is quite similar to DPIR-P1, hence it will not 

e discussed in the following too. 

.1.3. Case 3 circle 

The circle interface (radius = 1 and center = (2.55,2.55)) on a uni- 

orm mesh is used to further test the new function’s behavior on 

ixed cells that contain large fractions of internal material, i.e., 

ol I � vol E . As shown in Fig. 12 , the DPIR-P1 method generates 

 spurious interface in this mixed cell. For comparison, we give 

he result of DPIR-N1 in Fig. 13 . In the DPIR-N1 method, we only
Fig. 21. Left: the initial mesh and interfa

9 
se the internal material for all the mixed cells in Eq. (6) , i.e.,

 

�
 x c ( � M i , 

�
 M i +1 ) , � x c 

∗, A r , vol r ) is computed only by the internal mate-

ial. It can be found out that, with the role of 1 / vol r in (6) , the use

f a small fraction can raise the corresponding mixed cell’s weight 

n the whole target function, and obtain a smaller remaining error 

n the optimized step for this mixed cell. And hence, the DPIR-N 

an get a smoother interface than the DPIR-N1. 

.1.4. Case 4 combined 

The combined interface on a unit uniform mesh is tested to 

how the advantage of the power parameter in (6) . The initial in- 

erface and solution of DPIR-P1 are plotted in Fig. 14 . The solutions 

f DPIR-N2(the DPIR-N with power parameter p = 1 ) and DPIR-N 

re presented in Fig. 15 . As we can see, with a parameter p = 1 / 5 ,

t can reduce the influence of the trouble cell marked in gray on its 

eighbor cells marked in yellow. That is because, with the power 

unction p, the value of the target function f i of this trouble cell 

ill be much larger than its neighbor’s, and hence it can decrease 

ts influence during the optimized step. As we can see, the DPIR-N 

erforms better and free of oscillation near this trouble cell. 

.2. The benefits of the new correction method 

In this subsection, the combined interface in Case 4 is also used 

o show the benefits of the new correction method. The solutions 

re shown in Fig. 16 . It can be seen that with the new correction

ethod, the DPIR-N can resolve the trouble cell marked in gray 

uch better. 

.3. Implementation of the DPIR method 

A new discretization to reduce the computational cost and a 

trategy to handle the filament cells are introduced. 

.3.1. The new discretization method 

As pointed out in [1] , the complexity of the dynamic program- 

ing part of a DPIR method is O (N · N 

3 
k 
) . Hence, a large value of

 k in Eq. (2) is much expensive. However, to solve the cell that 

ontains a pretty large or small fraction of internal material, if a 

niform discretization method is used, a large value of N k will be 

eeded to obtain a smooth interface in the correction step. To re- 

uce the computational cost, we suggest using a small value of 

 k and only refined the discretization points near the internal and 
ce; Right: the solution of DPIR-P1. 
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Fig. 22. The solution of DPIR-N. Left: the optimized interface in the first step; Right: the corrected interface in the second step. 

Fig. 23. Left: the initial mesh and the interface; Right: the correction interface of DPIR-P1 in the mixed cell. 

Fig. 24. The solutions of DPIR-P1 obtained by Dumas et al. [1] . Left: T = 1 ; Right: T = 2 . 

10 
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Fig. 25. The reference solutions. Left: T = 1 ; Right: T = 2 . 

Fig. 26. The solutions of DPIR-N. Left: T = 1 ; Right: T = 2 . 

Fig. 27. The solution at T = 1 . 011 of DPIR-P1 obtained by Dumas et al. [1] . 

Table 1 

CPU time with differ- 

ent N k for DPIR-N. 

N k CPU time 

60 4.7176E-2 

260 6.8108 

e

w  

n

p

 

c

c

c

s

m  

T  

t

b

11 
xternal points ( I i and E i ) to obtain the smooth interface for cells 

ith large or small fractions. See Fig. 17 , we first discrete x (2) into

 2 uniform parts, then divide segments [ I i , x 
1 ] and [ x n 2 , E i ] into n 1 

arts. 

As shown in Figs. 18 and 19 , a circle interface (radius = 0.25 and

enter = (0.5+1/35,0.5)) on a unit uniform mesh contains a mixed 

ell which has a very small fraction of internal material. This mixed 

ell may need a uniform discretization of N k = 260 to achieve a 

mooth correction interface. While, with the new discretization 

ethod, N k = 60 ( n 1 = 10 and n 2 = 40 ) is sufficient. As shown in

able 1 , with a small value of N k it can save much time, and hence

his new discretization method is used for all the DPIR methods 

elow. 
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Fig. 28. The solutions at T = 2 with mesh of 50 × 50 . Left: tracking technique; Middle: DPIR-N; Right: MoF. 

Fig. 29. The solutions at T = 2 with mesh of 30 × 30 . Left: DPIR-N; Right: MoF. 
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Table 2 

Errors of DPIR-P1 and DPIR-N. 

Mesh 

DPIR-P1 DPIR-N 

total maximum total maximum 

10 × 10 1.711E-3 2.065E-4 9.393E-4 1.008E-4 

20 × 20 6.235E-4 3.333E-5 2.237E-4 1.556E-5 

40 × 40 1.583E-4 6.718E-6 5.483E-5 1.841E-6 

80 × 80 6.268E-5 1.519E-6 2.225E-5 4.748E-7 

160 × 160 - - 9.239E-6 3.126E-8 

s  

m  

c

o

1

4

w

l

t

4

 

t

.3.2. Strategy for filament cell 

It is easy to know that, for the current DPIR method, it is not 

asy to set the external and internal points for those filament cells, 

n which the interface crosses the same cell boundary twice. Du- 

as et al. [1] suggest using the local refinement technique or relax 

he continuity property to overcome this difficulty. In this paper, 

nstead of refining the filament cell, we split it into two parts to 

et the external and internal points. As shown in Fig. 20 , the fil-

ment cell is split into two parts by adding the red line (for ex- 

mple, set l 1 = l 2 ), and then we can set the external and internal

oints for both parts. 

A particular interface ( Fig. 21 ) containing a filament cell is de- 

igned to test the DPIR-N method. The solutions are shown in 

ig. 22 . As we can see, the filament cell is divided into two parts

marked in gray and blue, respectively), and the DPIR-N method 

an solve this interface well. 

.4. Accuracy test 

In the following tests, the DPIR-P1 method [1] with (3) and 

= 0 . 01 and our DPIR-N method with (6) are tested. The improved

iscretization with N k = 60 is used. The original simple correction 

ethod is used for DPIR-P1, and the new local correction method 

s used for our DPIR-N. 

Same as in [3] , a circle interface (radius = 0.25, center = (0.5+1/17,

.5+1/41)) on a uniform grids ( [0 , 1] × [0 , 1] ) is used to test the ac-

uracy of these methods. The way to quantify the interface recon- 
12 
truction error is given in Section 4 of [3] . The total errors of the

ixed cells and the maximum ones are shown in Table 2 . As we

an see, the errors of DPIR-N is much smaller. The DPIR-P1 method 

btained a correction point out of the mixed cell with a mesh of 

60 × 160 (See Fig. 23 ), and hence no results can be obtained. 

.5. Dynamic test 

In this section, we tested the performance of the new method 

ith a Lagrange+Remap technique. And we also compared our so- 

utions with those obtained by Dumas et al. [1] in a similar condi- 

ion. 

.5.1. Test1: Reversible interface 

As in [1] , the advection of a disc in a single vortex field is

ested. It is a circle centered at (0.5,0.75) with radius = 0.15 and ad- 
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ects with a velocity field: 

u 

v 

)
= 

(
−sin 

2 
(πx ) sin (2 πy ) 

sin 

2 
(πy ) sin (2 πx ) 

)
cos 

(
πt 

2 

)
(8) 

n a unit uniform mesh of 50 × 50 . 

The solutions of DPIR-P1 at T = 1 and T = 2 from Fig. 14 in

1] are shown in Fig. 24 . The interfaces at T = 1 and T = 2 obtained

ith tracking technique [3] are given as the reference solutions 

see Fig. 25 ), and the solutions of DPIR-N are plotted in Fig. 26 .

s we can see, both DPIR methods preserve the shape well. 

.5.2. Test2: Oneway interface 

In the oneway test, the circle is advected with a velocity field: 

u 

v 

)
= 

(
sin 

2 
(πx ) sin (2 πy ) 

−sin 

2 
(πy ) sin (2 πx ) 

)
(9) 

n a unit domain. First, as in [1] , a uniform mesh of 50 × 50 is

sed. The solutions of DPIR-P1 at T = 1 . 011 from Fig. 15 in [1] are

hown in Fig. 27 . The solution of DPIR-N at T = 2 is plotted in

ig. 28 . And as a comparison, the solutions of MoF [3] and the

racking technique are also given. As mentioned in [1] , the DPIR- 

1 method failed near T = 1 . 011 and no results can be obtained

fter then. While, our DPIR-N still preserves a continuity interface 

nd remains in one block after T = 2 . 

The solutions at T = 2 with a coarse mesh of 30 × 30 of DPIR-N

nd MoF are also given in Fig. 29 . It can be seen that, even with

 coarse grid, DPIR-N still preserves the continuity property well, 

ut the interface of MoF has already separated. 

. Conclusion remarks 

The continuous interfaces obtained by the DPIR methods de- 

eloped in [1,12] suffer from ’wave effects’. That is because the 

arget functions do not take into account the effect of the inter- 

ace normal, resulting in multiple results in the optimized step. 

o overcome this problem, in this paper, we first design a non- 

imensional target function to suppress the oscillation of the inter- 

ace based on the objective function of the MoF method. Then we 

ropose a new local correction method to improve its accuracy and 

obustness. The numerical results showed that the new continuity- 
13 
reserving DPIR method behaves better than the original one and 

an suppress the wave effects well. 
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