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A B S T R A C T   

In-situ quasistatic tension experiments inside scanning electron microscope were performed to study shear- 
banding behaviors of a Zr-based bulk metallic glass composite with the 50% volume fraction of dendritic pha
ses. It was observed that the shear band initiates at the interface of metallic glass matrix and dendrites, and then 
propagates in the glass matrix. Dendrites change the propagation direction of shear bands or terminate the shear 
band within them. Both modes facilitate the multiplication of shear bands in the glass matrix between dendrites. 
Upon further loading, shear bands preferentially develop into cracks in the matrix, but the dendrites significantly 
improve the crack resistance. This work provides the first-hand information of shear-banding and failure of the 
Zr-based metallic glass composite with dendrites.   

1. Introduction 

The lack of long-range order endues metallic glasses (MGs) with 
unique mechanical behaviors [1–3]. The room-temperature plastic 
deformation of MGs is usually dominated by a single or limited number 
of shear bands [4–6], which usually incur catastrophic failure with 
macroscopic brittleness. Various methods [7–15] have been developed 
to improve global plasticity of MGs. Among these methods, introducing 
in situ crystalline phases into MG matrix to form composites is proved to 
be effective [16–21]. These in situ crystalline phases can be either B2 or 
dendritic phases. Upon loading, the B2 phases usually undergo 
martensitic transformation [7] or twinning [9,22] to contributing the 
global plasticity of composites. Furthermore, by in-situ scanning elec
tron microscopy (SEM) tensions, Jiang et al. [23] have revealed that 
Youngs’ modulus and volume fraction of B2 phases can significantly 
affect shear band behaviors in MG matrix and thus turn the tensile 
ductility. In MG matrix composites with in-situ dendrites, both multiple 
shear bands in matrix and deformation bands or dislocations in den
drites contribute to the plastic deformation. In the past decades, 
extensive efforts [18–21,24–26] have been made to optimize the 
trade-off between the strength and plasticity or ductility of the com
posites by modifying chemical components and topological structures of 
both dendritic phases and MG matrix. In the aspect of deformation 

mechanism, it is well accepted that dendritic phases facilitate nucleation 
of shear bands at their interfaces with the glass matrix, and meanwhile 
act as obstacles to fast propagation of shear bands. In a Ti-based MG 
composite with dendrites, Qiao et al. [21] have found that fragmenta
tion of dendrites induced by multiple shear bands is responsible for the 
high tensile ductility of the composite. Very recently, combining digital 
image correlation method with finite element analysis, Liu et al. [27] 
have studied the strain filed evolution and shear banding of a Zr-based 
MG matrix composite with in-situ dendrites. However, the precise 
shear-band process in this type of composites still remains unclear due to 
the limited spatial resolution, whereas in-situ microtests inside SEM 
provide such possibility [23,28]. 

In this work, we perform an in-situ tension of a Zr-based MG matrix 
composite containing homogeneously distributed dendrites under a 
quaistatic strain rate. We focus on effects of dendritic phases and their 
interfaces with glass matrix on the initiation and multiplication of shear 
bands, which can provide direct evidence for the deformation and fail
ure mechanism of this composite under tension. Here, we perform ten
sion tests because the tensile ductility is more important than 
compressive plasticity, but meanwhile is difficultly achieved. 
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2. Experimental procedure 

A typical MG composite with nominal components [29], 
Zr60Ti12Nb8Ni4.5Cu5.5Be10 (at. %), was adopted as the model material. 
Master ingots of this composite were prepared by arc melting the 
mixture of high purity Zr, Ti, Nb, Cu, Ni and Be with a purity higher than 
99.9% under the protection of a Ti-gettered argon atmosphere. The in
gots were remelted at least 5 times and then suctioned into a copper 
mold. The as-cast plates have a dimension of about 60 × 20 × 2 mm3. 
The phases and structures of the as-cast composites were checked by 
X-ray diffraction (XRD, Rigaku Smartlab 9) using CuKα radiation with a 
step size of 0.02◦, high revolution transmission electron microscope 
(HRTEM, FEI G20) and SEM (FEI Sirion400nc). 

The as-cast plate was machined into dog-bone shaped specimens for 
tensions. The dimension of the gauge section is 3 × 1.5 × 1 mm3. Then 
single edge notch of 0.2 mm in width and 0.5 mm in depth was cut by 
tungsten filament at the center of the tensile specimens to ensure that 
the deformation occur at the middle region of the specimens. All spec
imens were mechanically ground and carefully polished in 1 µm dia
mond suspension, and then electro-etched by an alcohol solution 
containing 5% volume fraction of HClO4. The in-situ tensile tests were 
carried out by the FEI Sirion400nc with the Gatan Microtest2000 tensile 
stage. The tests were performed at room temperature with a displace
ment rate of 0.1 mm/min. We repeated 6 tests, but only show a repre
sentative one. 

3. Results and discussion 

3.1. Morphology and tension property 

Fig. 1(a) shows the XRD profile of the as-cast MG composite. It can be 
seen that the sharp peaks of the body-centered cubic (BCC) crystalline 
phase are superimposed on the broad diffuse scattering maximum of the 

metallic glass matrix with the amorphous structure. The microstructural 
morphology and phase structures of this composite are further checked 
by SEM (Fig. 1(b)) and HRTEM (Fig. 1(c and d)) observations. As shown 
in Fig. 1(b), the dark area is the MG matrix, and the light colored phases 
are the BCC dendrites. The individual dendrite size is about 50 µm and 
the secondary branches are 4.7±1.7 µm in length. These dendrites are 
homogeneously distributed in the matrix. The volume fraction of den
drites is estimated to be about 50%. Fig. 1(c) shows the TEM image of 
both MG and BCC dendrites, and the insets are their corresponding 
selected-area electron diffraction (SAED) patterns. Fig. 1(d) shows the 

Fig. 1. The structural and phase characterizations of the as-cast MG composite with dendrites. (a) XRD profile, (b) TEM image, (c) TEM image, and (d) HRTEM 
image. Insets of (c) are the corresponding SAED patterns 

Fig. 2. The force-displacement curve of the composite under the quasi
static tension. 
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HRTEM image of a region marked by ‘d’ in Fig. 1(c). It is clear to see an 
interface between the MG matrix and a crystalline dendrite. These ob
servations are consistent with the previous study [18]. 

The representative force-displacement of the MG composite under 
in-situ SEM tension is shown in Fig. 2. It can be seen that this composite 
undergoes a deformation displacement of about 0.6 mm, and eventually 
fails at a loading of about 413N. The corresponding fracture strain and 
strength are about 21.5% and 929 MPa, respectively. Compared to 
typical pure MGs [30], the composite generally shows a certain tensile 
ductility. This is further evidenced by the flow serration appearing in the 
stress-strain curve (the inset of Fig. 2). The serrated flow usually implies 
multiplication of shear bands in samples [31], rather than a single, 
dominated one. 

3.2. In-situ observation of shear bands 

In order to in-situ obverse shear bands, we stop the tensile loading at 
different stages that are marked by the red arrows in Fig. 2. Fig. 3(a–f) 
shows the shear bands and cracks corresponding to the six stop stages, 
where we focus on the region in front of the notch tip. It is indeed seen 
that multiple shear bands dominate the plastic deformation. These shear 
bands nucleate at the notch tip or the interfaces between the matrix and 
the dendrites. The former offers relatively low nucleation energy for 
shear-banding instability. For the latter, there is remarkable stress 
concentration due to a mismatch of structure and property between the 
matrix and the dendrites. The stress concentration also facilitates the 

shear-banding instability. After that, shear bands will preferentially 
propagate in the MG matrix. This is because that the shear band 
toughness in the MG is much lower than that of the soft dendrites [32]. 
The shear-band toughness is a physical quantity that measures the 
critical plastic energy dissipated in a shear band from its initiation to 
termination before cracking. Lower shear-band toughness implies the 
relatively easy propagation of shear bands in materials. This concept 
was originally proposed by Grady and Kipp [33,34], and later was 
introduced to MGs or their composites by some of us [5,32]. According 
to our previous study of a composition-similar Zr-based BMG with 
dendrites [32], the shear-band toughness of MG matrix is of the order of 
100–101 MPam1/2, while the soft dendrites have the shear-band tough
ness of about 102 MPam1/2. 

Fig. 4(a and b) shows the enlarged views of the local area marked by 
‘4a’ in Fig. 3(b). It is very clear to observe that a shear band ‘S1’ initiates 
in the MG matrix at its interface with a dendrite ‘D1’. Upon loading, this 
‘S1’ shear band propagates in the matrix until it encounters another 
dendrite ‘D2’. Then the shear band bends at the boundary and causes 
lamellar slip deformation in the ‘D2’ dendrite. Similar behavior is also 
observed for the shear band ‘S2’. The nucleation mode of shear bands 
observed in the present composite is very different from the observation 
by Huang et al [26]. They found that shear bands first nucleate in 
dendritic phases of a ZrTi-based MG composite. The possible reason is 
the very small distance between dendrites due to the higher volume 
fraction and smaller sizes. Actually the nucleation of shear bands be
comes relatively difficult in MGs with smaller characteristic sizes 

Fig. 3. SEM morphologies on the processes of shear bands and crack propagation of Zr60Ti12Nb8Ni4.5Cu5.5Be10 single edge notched specimen by in-situ tension. (a)– 
(f) correspond to the six stop stages of macroscopic deformation, as marked by red arrows in Fig. 2. 
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[35–37]. Fig. 4(c and d) shows the enlarged views of the local area 
marked by ‘4c’ in Fig. 3(b). The multiplication of shear bands can be 
observed in the MG matrix between two dendrites. For example, the 
shear band ‘S3’ is a new one that is formed between the dendrites ‘D3’ 
and ‘D4’. Another new shear band ‘S4’ is formed between the dendrites 
‘D4’ and ‘D5’. Fig. 4(e and f) shows the enlarged views of the local area 
marked by ‘4e’ in Fig. 3(d). We observe two different modes how a shear 
band is blocked by the dendrite. The first mode can refer to the shear 
band ‘S5’. Its propagation is stopped by the dendrite ‘D6’. With further 
deformation, this shear band changes its direction and propagates along 
the boundary between the matrix and the dendrite. The second mode is 
exemplified by the shear band ‘S6’. After it reaches the dendrite ‘D7’, 
this shear band enters the dendrite. Significant plastic deformation oc
curs within this dendrite. The ‘S6’ shear band ultimately terminates in 
the ‘D7’ dendrite. The two block-modes of shear bands by dendrites 
should dissipate much plastic work, thus contributing to the macro
scopic ductility. In addition, the strong interaction between shear bands 
and dendrites will redistribute the stress and strain fields in the com
posite, and further affects the modulus or hardness of both phases. This 

issue deserves further study in the future work. 

3.3. Fracture features 

Fig. 5(a) shows morphology of the sample surface near the main 
crack plane of this composite after final fracture. As magnified in Fig. 5 
(b and c), there are many multiple shear bands accompanying the main 
crack. According to contrast of both phases in SEM, dendrites ‘D8-D11’ 
can be identified, as marked in Fig. 5(c). These dendrites ultimately fail 
by shear-band-induced cracks. We can see that there are many lamella 
cracks in the dendrites ‘D8’ and ‘D9’, although the two dendrites still 
maintain integrity. These cracks should be induced by propagation of 
shear bands around the dendrite. The dendrites ‘D10’ and ‘D11’ lose the 
integrity, because they are passed through by the main crack. 

Fig. 6 presents the fracture patterns of main crack plane of the 
composite. From Fig. 6(a), we can see that the fracture surface is obvi
ously divided into three zones: smooth slip-shear zone, river-like plastic 
zone and dimple-characterized fracture zone. The typical characteristics 
of the three zones are shown in Fig. 6(b–d), respectively. The smooth 

Fig. 4. In-situ SEM observations of shear bands. (a and b) corresponds to a local region marked by ‘4a’ in Fig. 3(b), (c and d) corresponds to a local region marked by 
‘4c’ in Fig. 3(b), and (e and f) corresponds to a local region marked by ‘4d’ in Fig. 3(b) 
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shear lip area is near the sample surface and closely connected with the 
shear band propagation. The following two zones are formed due to the 
shear-band-induced cracking. Rough veins are the typical fracture pat
terns. These vein patterns become much rougher and deeper along the 
cracking direction, indicating the high resistance to fracture [38]. The 
observed vein patterns in this composite are very different from the 
flower-like patterns during fracture of the pure Zr-based MGs under 
quasistatic tensions [30,39,40]. In the latter, the facture is usually 
dominated by single shear band, whereas in the present composite 
multiple shear bands control the final failure. In Fig. 6(d), equiaxed 
dimples with small cavities occupy the central region of the fracture 
surface. Both deep vein patterns and dimple provide solid evidence that 
the dendrites have interrupted the propagation of shear bands and in
crease tensile ductility of the composite [41,42]. 

4. Conclusions 

The shear-banding behaviors in a Zr-based bulk metallic glass 

composite with dendrites are observed by in-situ SEM tension. It is found 
that shear band preferentially nucleate at the interface between the glass 
matrix and dendrites, and then propagate into the matrix. There are two 
different modes of how dendrites block the shear bands. In the first 
mode, dendrites alter the propagation direction of shear bands that 
propagate along the boundary between the matrix and dendrites. The 
second block mode is that shear band in the glass matrix terminate in 
dendrites. In addition, the existence of dendrites significantly improves 
the crack resistance, which is evidenced by deep vein patterns and rough 
dimples observed on the main crack surface. 
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