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A B S T R A C T

Buckling damage is one of the biggest safety issues for subsea pipelines. Buckling behaviors of the subsea
pipeline with integral buckle arrestors under external pressure are studied experimentally and numerically
herein. Pressure chamber tests of four full-sized pipeline with identical thickness and different diameters are
presented. An emerging vector form intrinsic finite element method (VFIFE) is introduced to simulate the
whole buckling process both in dynamic and quasi-static cases, including local collapse, propagation, buckling
prevention, and crossover. Numerical schemes for multifold nonlinearities and multithreaded computation
are proposed and tested. Results of experiments and numerical simulations, as well as computations of the
traditional finite element method and DNV specifications, are compared. Thusly it is indicated that the VFIFE
model can accurately (within ± 1.5%) predict the buckling loads that initiate local collapse, propagation and
crossover, and simulate the dynamic and quasi-static buckling modes for pipelines with practical range of
diameter-to-thickness ratios greater than 20. For thick parts where integral arrestor with diameter-to-thickness
ratios smaller than 20 located, the VFIFE thin shell element may underestimate the structural strength about
8.0%. The VFIFE can directly simulate the pipeline buckling behavior without special processing for the
iterative calculation and the stiffness matrix convergence, and achieve the parallel efficiency over 90% for a
common computer (12 threads, 4G RAM). Thus, the VFIFE can provide a new, practical and universal analytic
strategy for subsea pipeline buckling analysis.
1. Introduction

Subsea pipelines are exposed to a risk of collapse due to the am-
bient external pressure. Design specifications, DNV-OS-F101 [1] and
API-RP-1111 [2], indicate that subsea pipelines endure only external
pressure in the empty waiting state during installation, maintenance,
and operation. Moreover, local collapse under external pressure may
propagate at high speed and has the potential of destroying the whole
line since the pressure to maintain the buckling failure mode along
the pipeline, called the propagation pressure, is usually less than the
collapse pressure. The buckling of the subsea pipeline will lead to
transportation failure and even an oil spill, causing catastrophic losses
to the large-scale offshore operations and marine ecology [3,4]. Thus,
it is essential to evaluate the collapse strength and analyze the buckling
propagation of subsea pipelines.

After nearly one hundred years of research, collapse experiment
and its theory on the cylindrical shell under external pressure has
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been conducted systematically. Considerable researches ranged from
single-walled pipes (Khalipasha and Albermani [3]; Kyriakides and
Corona [6]; Yu et al. [7]; Fan et al. [8]) to the pipe-in-pipe system
(Karampour et al. [9]; Gong [10]; Alrsai et al. [11]). The most represen-
tative work can be found in the research done by Kyriakides’s team [6].
They conducted a series of pipeline collapse tests and developed numer-
ical methods considering both geometric and material nonlinearities
in the large collapse deformation. Recently, Yu et al. [7,12–16] also
conducted a series of reduced-scale and full-scale pipeline tests and
revealed the influence of the diameter-to-thickness ratio, ovality, yield
strength, corrosion defects for pipeline collapse. Shortly after the dis-
covery of the pipeline buckling propagation phenomenon, the research
on buckle arrestors started and three typical types of buckle arrestors
have been proposed: integral arrestor, spiral arrestor, slip-on arrestor
and welded arrestor [17,18]. Within these arrestors, the cost-effective
and excellent performance of the integral arrestor has been highly
valued, especially for increasing prosperous deep-water exploration and
https://doi.org/10.1016/j.tws.2021.107533
Received 10 September 2020; Received in revised form 8 January 2021; Accepted
Available online 23 April 2021
0263-8231/© 2021 Elsevier Ltd. All rights reserved.
1 February 2021

https://doi.org/10.1016/j.tws.2021.107533
http://www.elsevier.com/locate/tws
http://www.elsevier.com/locate/tws
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tws.2021.107533&domain=pdf
mailto:lizhenmian@tju.edu.cn
https://doi.org/10.1016/j.tws.2021.107533


Y. Yu, Z. Li, J. Yu et al. Thin-Walled Structures 164 (2021) 107533
Fig. 1. Full-size pressure chamber in Tianjin University. (a) Picture of the pressure chamber, (b) Schematic diagram of the pressure chamber.
Table 1
Difference between the FEM and VFIFE [5].

FEM VFIFE

Discretization method Finite elements. Finite mass particles and their connections.
Computational process Specific techniques for nonlinear and discontinuous

problems.
Directly solution and available intervention in
boundary conditions.

Pure deformation Indirect extraction by derivation. Direct extraction by translation and rotation.
Stiffness matrix Global matrix assembled by element matrices. None.
Ultimate principle Weak form. Variation principle for holistic structure. Strong form. Newton’s law for each mass particle.
i
o

s
m

the improved submarine welding technology. Park and Kyriakides [19]
conducted a large number of integral arrestor tests with different
diameter-to-thickness ratios of pipelines. Netto et al. [20,21] and Lee
et al. [22] carried out the dynamic crossover test of the integral arrestor
and simulated the dynamic crossover under vacuum conditions. Similar
results can also be found in the work of Toscano and Mantovano [23].

Different numerical discretization methods are developed for more
accurate pipe structure analysis, especially practical simulation of col-
lapse, propagation and buckle crossover behaviors. Early in 1997,
Tassoulas et al. [24] summarized many useful numerical discretization
methods for a pipe of uniform thickness. Li Tianyu [25] developed
a pipe element for a pipe structure with variable wall thickness and
analyzed complicated problems with geometrical nonlinearity well.
More effectively and universally, commercial finite element method
(FEM) software products [26] such as ANSYS, ABAQUS, and ADINA
have been successfully used and proved feasible and reliable. One of
the major challenges in such FEM simulation is the possible compu-
tation failure caused by the structural nonlinearities, including the
material nonlinearity, large deformation, and the contact condition.
A successful try of solution to this challenge is to adopt a revision
strategy with the help of calculation skills, such as gradually relaxing
the basic theoretical assumptions according to the needs of specific
behaviors or replacement of calculation modules during iterations [27].
Hereof, the author seeks to develop a newer and simpler analytic strat-
egy for buckling simulation of the subsea pipelines by introducing a
newer numerical method, called the vector form intrinsic finite element
(VFIFE).

The VFIFE is a new type of finite element method proposed in recent
years [5,28,29]. Different from mathematical function description and
partial differential equation in the FEM’s framework, the VFIFE is based
on the basic principles of Newtonian mechanics and uses mass points
to describe the physical quantities, such as force, torque, displacement,
velocity and acceleration. As illustrated in Table 1, the VFIFE can
avoid computing failure due to the ill-conditioned matrix and has
great advantages in dealing with discontinuous or nonlinear problems,
such as large deformation, large displacements, elastoplasticity, col-
lapse and collision. Up to now, various elements such as beam [30],
membrane [31], plate and thin shell [32,33] have been developed. For
thin shell elements, Wu [32] established the basic theory of triangular
2

thin-shell elements and verified its accuracy and reliability in the non-
linear analysis of overall large displacement, large deflection, nonlinear
material, and collision contact. In the field of ocean engineering, VFIFE
related applications are mainly the beam elements and the use of
shell element is rare. It is mainly used in offshore platform dynamic
analysis [34], platform-ship collision analysis [35], subsea pipeline
mechanics analysis [36], marine riser dynamic analysis [37,38] and
other aspects. Especially, local buckling behavior of the subsea pipeline
studied by the VFIFE has not been reported.

In this paper, the VFIFE thin shell element is introduced to the com-
plicate problem of subsea pipeline buckling behaviors, including the
whole simulation of the collapse, propagation, and crossover. In Sec-
tion 2, four sets of full-scale experiments are presented with identical
thickness and different diameters. Then, the basic theory of the VFIFE
shell elements and numerical schemes for multifold nonlinearities are
presented and tested in Section 3.1. The VFIFE model of a subsea
pipeline with an integral buckle arrestor is proposed in Section 3.2.
Section 4 details the experimental results as well as numerical results
of the dynamic and quasi-static cases. Discussion about the feasibility
and reliability of the simulation is presented in Section 5. Section 6 lists
the conclusions of the study along with the further research directions.

2. Experimental test

The pressure chamber [12] shown in Fig. 1 is used to perform
pipeline buckling experiments. The chamber includes one main cham-
ber body with 1.0 m internal diameter, sealing hatch and hatch cover.
There is a watertight transducer, an exhaust valve, a water inlet, a drain
outlet, and a pressure release valve. The chamber can hold an 8.0 m
long pipe and has a pressure capacity of 43.00 MPa.

Two sets of pipes are selected with different diameters of 325 mm
and 406 mm and the same thickness of 10 mm. Two pipes marked as
F1 and F3 are prepared for local collapse and buckling propagation
tests. The other two marked as F2 and F4 for buckling propagation and
crossover tests. Especially, for F2 and F4, an ovality of about 𝛥1 = 8.0%
s preset near one end of the pipe to induce the local collapse. Details
f the four pipes are listed in Table 2.

The experimental procedure of pressure tests for full-size pipes is
hown in Fig. 2. The procedure mainly includes pretreatment, equip-
ent and sample installation, pressure test, pressure relief and
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Fig. 2. Experimental procedure of pressure test for full-size pipes.
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able 2
eometry parameters of pipelines tested.
No. 𝐷, mm 𝑡, mm 𝛥0, % 𝛥1, % 𝐿𝑎, mm 𝐿𝑢, m 𝐿𝑑 , m ℎ, mm

F1 325 10 0.06 – – 4.00 4.00 –
F2 8.0 160 3.92 3.92 20

F3 406 10 0.05 – – 4.00 4.00 –
F4 8.0 200 3.90 3.90 20

drainage, and post-processing. The pretreatment includes sample prepa-
ration, flange welding at both ends and measurement of main param-
eters of the samples. Then, the pipes will be sent into the chamber by
a crane and fixed in the chamber by flanges. After shutting down the
hatches, the chamber will be filled with water and watertight check
is carried out before pressurization using a high-pressure water pump.
During pressurization, the maximum loading speed is 2.0 MPa/min and
the measurement accuracy of pressure sensors is ± 0.2%. According to
the change of water pressure, it can be clearly judged whether pipeline
buckling occurs by tracking pressure changes within the chamber.
After the pressurization is completed, the pressure will be relieved
and the water will be drained. Finally, the test sample will be taken
out to observe the morphology. Due to the slow water injection, the
loading method is quasi-static and all measured critical pressures are
quasi-static buckling loads. It should be noted that more attention is
paid to the minimum hydrostatic pressure that initiates or maintains
buckling propagation after the local collapse in theoretical research
and engineering applications although pipeline buckling is a dynamic
process. Therefore, the quasi-static load measured is valuable and the
strain rate effects can be ignored.

Sample pieces for material testing are obtained from the test pipes
by the slow wire cutting method. Then the quasi-static tensile test
method is used to measure the material parameters. The broken pieces
and the stress–strain curves are shown respectively in Fig. 3(a) and
(b). The nonlinear Cowper–Symonds (C–S) material model [39] is used
to describe the constitutive relationship of materials, as shown in the
following equation:

𝜎𝑝 = 𝐴𝐶−𝑆 + 𝐵𝐶−𝑆𝜀
𝑛𝐶−𝑆
𝑝

[

1 +
( 𝜀̇
𝐶

)1∕𝑝
]

(1)

where 𝜎𝑝 is the dynamic yield stress; 𝐴𝐶−𝑆 is the quasi-static yield
stress, and 𝑛𝐶−𝑆 are the strain hardening parameters under quasi-static
conditions; C and p are the material parameters related to the strain
rate effect. As mentioned above, the strain rate effect was neglected and
imperative material parameters were gained by fitting experimental
curves (see Table 3).
⎩

3

Table 3
Geometry parameters of pipelines tested.

No. 𝐸, GPa 𝜇 𝐴𝐶−𝑆 , MPa 𝐵𝐶−𝑆 , MPa 𝑛𝐶−𝑆

F1 2.06 0.3 448.05 427.80 0.3108F2

F3 2.07 0.3 447.72 520.72 0.5237F4

3. Methods and materials

This section firstly introduces briefly the basic theory of the VFIFE
thin shell element. Then, numerical schemes for multifold nonlin-
earities including geometrical, material and boundary nonlinearities
are proposed. A FORTRAN procedure of the VFIFE 3D shell element
is developed and validated. The Open Multi-Processing (Open MP)
techniques is introduced and tested. Finally, a specific VFIFE model
is proposed for subsea pipeline. Refer to literatures [32,33] for details
about the VFIFE method.

3.1. Basic theory of VFIFE thin shell element

3.1.1. Nodal motion equations
In the VFIFE method, the structure will be modeled by a set of

mass particles and massless elements, as shown in Fig. 1. Mass particles
are used to describe the kinematics and dynamics of the structure and
elements constrain spatial motion of those mass particles. During the
time 𝑡0 ≤ 𝑡 ≤ 𝑡𝑘, the motion of an arbitrary particle i in shell can be
llustrated by a motion trajectory which is identified by a series of time
nstants 𝑡𝑗 , 𝑗 = 0, 1, 2, . . . , n-1, n, . . . , k. The trajectory segment of
𝑛−1 ≤ 𝑡 ≤ 𝑡𝑛 is referred to as a path element of particle i. The motion of
particle along a path element can be directly formulated by Newton’s

aw, namely

𝑴 𝑖𝒙̈𝑖 + 𝛼𝑴 𝑖𝒙̇𝑖 = 𝑭 𝑖

𝑰 𝑖𝜽̈𝑖 + 𝛽𝑰 𝑖𝜽̇𝑖 = 𝑭 𝜃,𝑖

(2)

here 𝑴 𝑖 and 𝑰 𝑖 are the mass and mass moment of inertia, 𝒙𝑖 is the
ranslational displacement, and 𝜽𝑖, 𝑭 𝑖 and 𝑭 𝜃,𝑖 denote the rotational
ngle, applied force vectors and moment vectors of particle i. 𝛼 and 𝛽
re the damping parameters for translation and rotation, usually 𝛼 = 𝛽.

Using the central different method, Eq. (2) can be rewrote as

𝒙𝑛+1𝑖 = 𝑐1𝑴−1
𝑖 𝑭 𝑛

𝑖 (𝛥𝑡)
2 + 2𝑐1𝒙𝑛𝑖 − 𝑐2𝒙𝑛−1𝑖

𝜽𝑛+1𝑖 = 𝑐1𝑰−1
𝑖 𝑭 𝑛

𝜃,𝑖 (𝛥𝑡)
2 + 2𝑐1𝜽𝑛𝑖 − 𝑐2𝜽𝑛−1𝑖

(3)
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Fig. 3. The quasi-static tensile test. (a) Pieces after test, (b) Stress–strain curves.
Fig. 4. Motion of particle i in a solid described by mass points.

here the superscripts, n-1, n, and n+1, denote the time steps, 𝛥𝑡 the
time step, 𝑐1 and 𝑐2 are damping parameters.

.1.2. Pure deformation calculation
The motions solved by Eq. (3) include rigid body motions and pure

eformations. In vector form analysis, pure deformations are essential
or s evaluation of trains within the elements. During time iteration,
ure deformations for each element are calculated by the inverse
otion method [32,33] and then used to gain the internal force vectors

nd moment vectors.
As shown in Fig. 5, a triangular shell element (defined by three mass

articles,
(

𝑚𝑎, 𝑚𝑏, 𝑚𝑐
)

) moves from
(

𝑚𝑛−1
𝑎 , 𝑚𝑛−1

𝑏 , 𝑚𝑛−1
𝑐

)

to
(

𝑚𝑛
𝑎, 𝑚

𝑛
𝑏 , 𝑚

𝑛
𝑐
)

long a path element, say 𝑡𝑛−1 ≤ 𝑡 ≤ 𝑡𝑛. The position of these
articles changes from

(

𝒙𝑛−1𝑖 ,𝜽𝑛−1𝑖
)

to
(

𝒙𝑛𝑖 ,𝜽
𝑛
𝑖
)

so that the increment is
𝛥𝒙𝑖,𝜽𝒙𝑖

)

=
(

𝒙𝑛𝑖 − 𝒙𝑛−1𝑖 ,𝜽𝑛𝑖 − 𝜽𝑛−1𝑖
)

, i = a, b, c. Take 𝑚𝑎 as the reference
oint, the inverse motion travels through

(

𝑚𝑛
𝑎, 𝑚

𝑛
𝑏 , 𝑚

𝑛
𝑐
)

→
(

𝑚′
𝑎, 𝑚

′
𝑏, 𝑚

′
𝑐
)

→

𝑚′′
𝑎 , 𝑚

′′
𝑏 , 𝑚

′′
𝑐
)

→
(

𝑚′′′
𝑎 , 𝑚′′′

𝑏 , 𝑚′′′
𝑐
)

→
(

𝑚𝑛−1
𝑎 , 𝑚𝑛−1

𝑏 , 𝑚𝑛−1
𝑐

)

after imposing the re-
erse translation, the reverse out-plane rotation, and the reverse in-
lane rotation.

After the reverse translation with respect to 𝑚𝑎, these mass particles
rrives

(

𝑚′
𝑎, 𝑚

′
𝑏, 𝑚

′
𝑐
)

, and its position is

𝒙′𝑖 = 𝒙′𝑛𝑖 − 𝛥𝒙′𝑎

𝜽′𝑖 = 𝜽𝑛𝑖
, 𝑖 = 𝑎, 𝑏, 𝑐 (4)

hen the mass particles should return to the same plane of
(

𝑚𝑛
𝑎, 𝑚

𝑛
𝑏 , 𝑚

𝑛
𝑐
)

y the reverse out-plane rotation. The out-plane rotation angle and
4

Fig. 5. Space movement of a triangular shell element.

direction vector are

⎧

⎪

⎨

⎪

⎩

𝜃𝑜𝑝 = cos−1
(

𝒏′ ⋅ 𝒏′′
|𝒏′| |𝒏′′|

)

, 𝜃𝑜𝑝 ∈ [0, 𝜋]

𝒏𝑜𝑝 =
𝒏′ × 𝒏′′
|𝒏′| |𝒏′′|

=
[

𝑙𝑜𝑝, 𝑚𝑜𝑝, 𝑛𝑜𝑝
]𝑇

(5)

where 𝒏′ and 𝒏′′ are the normal vectors of
(

𝑚𝑛
𝑎, 𝑚

𝑛
𝑏 , 𝑚

𝑛
𝑐
)

and
(

𝑚𝑛−1
𝑎 , 𝑚𝑛−1

𝑏 , 𝑚𝑛−1
𝑐

)

.

Therefore, the position of
(

𝑚′′
𝑎 , 𝑚

′′
𝑏 , 𝑚

′′
𝑐
)

is

⎧

⎪

⎨

⎪

⎩

𝒙′′𝑖 = 𝒙′𝑖 +𝑹∗
𝑜𝑝
(

−𝜃𝑜𝑝
)

⋅
(

𝒙′𝑖 − 𝒙′𝑎
)

𝜽′′𝑖 = 𝜽′𝑖 − 𝜃𝑜𝑝 ⋅ 𝒏𝑜𝑝
, 𝑖 = 𝑎, 𝑏, 𝑐 (6)

where

𝑹∗
𝑜𝑝
(

−𝜃𝑜𝑝
)

=
[

1 − cos
(

−𝜃𝑜𝑝
)]

𝑨2
𝑜𝑝 + sin

(

−𝜃𝑜𝑝
)

𝑨𝑜𝑝,

𝑨𝑜𝑝 =

⎡

⎢

⎢

⎢

⎢

0 −𝑛𝑜𝑝 𝑚𝑜𝑝

𝑛𝑜𝑝 0 𝑙𝑜𝑝

⎤

⎥

⎥

⎥

⎥

.

⎣

𝑚𝑜𝑝 𝑙𝑜𝑝 0
⎦
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Fig. 6. Nodal forces and moments within an element.

The in-plane rotation angle and direction vector are

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜃𝑖𝑝 = 𝑠𝑖𝑔𝑛−1
[(

𝒙′′𝑎 − 𝒙′′𝑖
)

×
(

𝒙𝑛−1𝑎 − 𝒙𝑛−1𝑖
)

⋅ 𝒏′′
]

×
|

|

|

|

|

|

|

cos−1
⎡

⎢

⎢

⎣

(

𝒙′′𝑎 − 𝒙′′𝑖
)

×
(

𝒙𝑛−1𝑎 − 𝒙𝑛−1𝑖
)

|

|

|

𝒙′′𝑎 − 𝒙′′𝑖
|

|

|

|

|

|

𝒙𝑛−1𝑎 − 𝒙𝑛−1𝑖
|

|

|

⎤

⎥

⎥

⎦

|

|

|

|

|

|

|

, 𝜃𝑖𝑝 ∈ [−𝜋, 𝜋]

𝒏𝑖𝑝 = 𝒏′′ =
[

𝑙𝑖𝑝, 𝑚𝑖𝑝, 𝑛𝑖𝑝
]𝑇

(7)

Therefore, the configuration of
(

𝑚′′′
𝑎 , 𝑚′′′

𝑏 , 𝑚′′′
𝑐
)

is

𝒙′′′𝑖 = 𝒙′′𝑖 +𝑹∗
𝑖𝑝
(

−𝜃𝑖𝑝
)

⋅
(

𝒙′′𝑎 − 𝒙′′𝑖
)

𝜽′′′𝑖 = 𝜽′′𝑖 − 𝜃𝑖𝑝 ⋅ 𝒏𝑖𝑝
, 𝑖 = 𝑎, 𝑏, 𝑐 (8)

Where 𝑹∗
𝑖𝑝
(

−𝜃𝑖𝑝
)

and 𝑨𝑖𝑝 are similar to 𝑹∗
𝑜𝑝
(

−𝜃𝑜𝑝
)

and 𝑨𝑜𝑝 respectively.
After above inverse motion, the pure deformation of the element

can be written as
{

𝛥𝒙𝑝𝑖 = 𝒙′′′𝑖 − 𝒙𝑛−1𝑖

𝛥𝜽𝑝𝑖 = 𝜽′′′𝑖 − 𝜽𝑛−1𝑖

, 𝑖 = 𝑎, 𝑏, 𝑐 (9)

3.1.3. Internal force calculation
As shown in Fig. 6, the pure deformation presented in Eq. (9) can

be descried within the element by a transform operator 𝑨𝑔𝑙 from the
global coordinate 𝑜𝑥𝑦𝑧 to the local coordinate 𝑜̂𝑥̂𝑦̂𝑧̂ as
{

𝛥𝒙̂𝑝𝑖 = 𝑨𝑔𝑙𝛥𝒙
𝑝
𝑖

𝛥𝜽̂𝑝𝑖 = 𝑨𝑔𝑙𝛥𝜽
𝑝
𝑖

, 𝑖 = 𝑎, 𝑏, 𝑐 (10)

ctually, the thin shell element with the local coordinate is a plane
hell element after inverse motion. For a plane shell element, its dis-
lacement vector can be expressed after ignoring zero component as

̂ =
{

𝑦̂𝑏, 𝑥̂𝑐 , 𝑦̂𝑐 , 𝜃̂𝑎𝑥̂, 𝜃̂𝑎𝑦̂, 𝜃̂𝑏𝑥̂, 𝜃̂𝑏𝑦̂, 𝜃̂𝑐𝑥̂, 𝜃̂𝑐𝑦̂
}𝑇 (11)

Then, the internal force of the particles are solved based on the
ollowing virtual work equation.

𝑼̂ ⋅ 𝒇̂ = ∫𝑆
𝛿 (𝛥𝜺̂) ⋅ 𝝈𝑑𝑆 (12)

here 𝜺̂ and 𝝈̂ are the strain vector and stress vector, 𝒇̂ is the nodal
orces and moments vector, 𝒇̂ =

{

𝑓𝑏𝑦̂, 𝑓𝑐𝑥̂, 𝑓𝑐𝑦̂, 𝑚̂𝑎𝑥̂, 𝑚̂𝑎𝑦̂, 𝑚̂𝑏𝑥̂, 𝑚̂𝑏𝑦̂,
𝑚̂𝑐𝑥̂, 𝑚̂𝑐𝑦̂

}𝑇 .
For an arbitrary shell element, the internal forces and moments

nder the local coordinate can be gained by solving the following static
quilibrium equations
∑

𝐹𝑥̂ = 0,
∑

𝑓𝑖𝑥̂ = 0, 𝑖 = 𝑎, 𝑏, 𝑐 (13)
∑

̂
∑

̂
𝐹𝑦̂ = 0, 𝑓𝑖𝑦̂ = 0, 𝑖 = 𝑎, 𝑏, 𝑐 (14)

5

∑

𝐹𝑧̂ = 0,
∑

𝑓𝑖𝑧̂ = 0, 𝑖 = 𝑎, 𝑏, 𝑐 (15)
∑

𝑀̂𝑥 = 0, 𝑚̂𝑎𝑥̂ + 𝑚̂𝑏𝑥̂ + 𝑚̂𝑐𝑥̂ + 𝑓𝑐𝑧̂𝑦̂𝑐 = 0 (16)
∑

𝑀̂𝑦 = 0, 𝑚̂𝑎𝑦̂ + 𝑚̂𝑏𝑦̂ + 𝑚̂𝑐𝑦̂ − 𝑓𝑏𝑧̂𝑥̂𝑏 − 𝑓𝑐𝑧̂𝑥̂𝑐 = 0 (17)
∑

𝑀̂𝑧 = 0, 𝑓𝑏𝑦̂𝑥̂𝑏 + 𝑓𝑏𝑥̂𝑥̂𝑏 + 𝑓𝑐𝑥̂𝑦̂𝑐 − 𝑓𝑐𝑦̂𝑥̂𝑐 = 0 (18)

Finally, the internal forces and moments 𝒇 int will be used for Eq. (1)
after conversion of the two coordinate systems, namely

𝒇 int =
(

𝑹∗
𝑖𝑝 + 𝑰

)𝑇 (

𝑹∗
𝑜𝑝 + 𝑰

)𝑇
𝑨𝑇

𝑔𝑙𝒇̂ 𝑖, 𝑖 = 𝑎, 𝑏, 𝑐 (19)

3.2. Numerical schemes for multifold nonlinearities

3.2.1. Geometrical nonlinearities
As mentioned in Section 3.1, VFIFE is based on the basic princi-

ples of Newtonian Mechanics and uses mass points to describe the
physical quantities such as force, torque, displacement, velocity and
acceleration. Since the geometric and positional changes of the struc-
ture are included and naturally displayed in the displacement of the
particles, no special correction processing is required for possible large
displacement or large deformation.

3.2.2. Material nonlinearities
For common materials, such as steel, the stress–strain relationship

will be nonlinear when the external load reaches a certain value, called
plasticity. Moreover, there is irreversible inelastic deformation in the
plastic part of the structure. To deal with such material nonlinearities,
VFIFE needs an elastoplastic correction to obtain the accurate stress
and strain state of the structure. The correction is executed after the
pure deformation calculation (see Section 3.1.2) and then used for the
calculation of internal forces (see Section 3.1.3).

As shown in Fig. 7, the elastoplastic correction mainly includes three
steps, elastic prediction, elastoplastic judgment and plastic correction.
The process is as follows

Step 1 Elastic prediction. Calculate strain increment 𝛥𝜺 using the
pure deformation presented in Eq. (10). Assuming that the material is
in an elastic state, calculate the stress increment 𝛥𝝈 and stress at next
timestep 𝝈𝑛+1 = 𝝈𝑛+1 + 𝛥𝝈.

Step 2 Elastoplastic judgment. Calculate the values of the yield
function, 𝐹

(

𝝈𝑛+1, 𝜺𝑛𝑝
)

and 𝐹
(

𝝈𝑛+1, 𝜺𝑛𝑝
)

, and determine the elasticity
factor 𝑚.

• If 𝐹
(

𝝈𝑛+1, 𝜺𝑛𝑝
)

≤ 0, the time step is elastic loading or elastic
unloading from plasticity. For this case, there is none plastic strain
and 𝑚 = 1.

• If 𝐹
(

𝝈𝑛+1, 𝜺𝑛𝑝
)

> 0 and 𝐹
(

𝝈𝑛+1, 𝜺𝑛𝑝
)

< 0, the time step is in
transition state from elastic to plastic. For this case, the elasticity
factor 𝑚 is calculated using Von Mises yield criterion [27] and
given as

𝑚 =
(

−𝑎1 +
√

𝑎21 − 4𝑎0𝑎2

)

∕2𝑎2 (20)

Where 𝑎0 = 𝐹
(

𝝈𝑛, 𝜺𝑛𝑝
)

, 𝑎1 =
(𝑛𝑺, 𝛥𝒙̂𝑝

)𝑇 𝑛𝑺, 𝑎2 = 0.5𝛥𝑺
𝑇
𝑺, 𝑺 and

𝛥𝑺 are deviatoric stress and its increment.
• If 𝐹

(

𝝈𝑛+1, 𝜺𝑛𝑝
)

> 0 and 𝐹
(

𝝈𝑛, 𝜺𝑛𝑝
)

= 0, the time step is plastic
loading from plasticity. For this case, there is none elastic strain
and 𝑚 = 0.

Step 3 Plastic correction. Calculate plastic stress increment 𝛥𝝈𝑝 using
the C–S material model (see Eq. (1)). Update the plastic strain 𝜺𝑛+1𝑝 and
stress 𝝈𝑛+1 for next time steps.

The above elastoplastic correction is often used in traditional FEM
calculations, and it is also effective for VFIFE. The difference is that
VFIFE does not need to calculate the elastoplastic element stiffness
matrix (usually higher order than the elastic stiffness matrix and
deformation-dependent) and assemble overall stiffness matrix after the
elastoplastic correction. This can reduce the computational workload
and avoid the trouble of matrix solving.
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Fig. 7. Elastoplastic correction of the plastic strain and stress for integration points.
Fig. 8. Collision correction for each particle.
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.2.3. Boundary nonlinearities
The boundary nonlinearities discussed in this paper are mainly two

roblems. One is that the magnitude and direction of the external force
n the force boundary depends on the deformation, and the other
s the collision problem. For the former case, boundary detection is
equired. Each triangular shell element (see Fig. 4) will be traverse and
heir normal vectors as well as areas will be calculated based on the
oordinates of their three particles. Then, the pressure can be accurately
oaded on the constantly changing surface.

For the collision problem, collision detection and collision response
rocessing are needed. The correction procedure for each particle
ollided with the rigid surface is shown Fig. 8, described as
Step 1 Collision detection. Calculate the normal vector 𝒏𝑛𝑅 using

he coordinates of three nodes of a certain element of rigid surface.
alculate the distances from the particle to the rigid surface at time
tep n and n+1, marked as 𝒅𝑛 and 𝒅𝑛+1. Determine whether there is a
ollision by the value of 𝑠𝑖𝑔𝑛

(

𝒅𝑛 ⋅ 𝒅𝑛+1).
Step 2 Collision response. Calculate the displacement correction 𝜹.

• If 𝑠𝑖𝑔𝑛
(

𝒅𝑛 ⋅ 𝒅𝑛+1) > 0, none collision occurs and 𝜹 = 0.
• If 𝑠𝑖𝑔𝑛

(

𝒅𝑛 ⋅ 𝒅𝑛+1) ≤ 0, collision occurs and 𝜹 ≥ 0. This paper con-
siders the smooth collision and the penalty function method [40]
is used to calculate 𝜹.

Step 2 Collision correction. Correct the particle displacement using
.

The above collision correction is similar to the explicit solution of
oundary nonlinear problems in traditional FEM [27,40]. The explicit
olution is popular with respect the implicit solution in FEM since it
ses the equivalent nodal force vector to avoid unsymmetrical stiffness
atrix and adjoint calculation problem. But because of this, the explicit

olution is inapplicable for buckling simulation as the stiffness matrix
oes change during boundary nonlinear processing. For VFIFE, the
bove explicit algorithm is convenient and effective because VFIFE
tself is an explicit method. There is none stiffness matrix for VFIFE
nd above simple operations are all based on the coordinates of the
articles.

.3. Computations implementation and validation

As described in Eq. (3), the governing equations of mass particles
re two sets of second-order differential equations. During each time

tep, the internal force calculation is performed after pure deformation

6

s gained by the inverse motion method. As shown in Fig. 9, the main
omputational flow is listed in the following two main modules:

• Particle Motion Calculation. Compute the motions (𝒙𝑛+1𝑖 and 𝜽𝑛+1𝑖 )
by Eq. (3).

• Element Force Evaluation. Pure deformation is obtained by the
inverse motion method and separated for the thin membrane
elements and thin plate elements (see Eq. (8)). Then, the internal
force integrations are carried out based on the virtual work princi-
ple (see Eq. (12)) and elastoplastic correction (see Section 3.2.2).
The internal force vectors are assembled by the linear superposi-
tion of the two different elements. The external force vectors are
loaded after boundary detection (see Section 3.2.3).

The basic calculation of VFIFE is the particle traversal and element
raversal. Therefore, the VFIFE is convenient for entire structural be-
aviors tracking and fine for massively parallel computation [41]. In
his study, the computations are implemented by Fortran programs,
ptimized by the Open Multi-Processing (Open MP) techniques [42]
nd processed by Matlab programs for visualization.

Before modeling and analyzing the subsea pipeline, a short cylindri-
al shell under axial compression [33] is tested as a verification case.
he cylindrical shell structure with an axial length 0.5 m, a constant
hickness 2.0 mm, and a middle surface radius 0.1 m, is meshed by
0×32 particles (40 in the circumference and 32 in the length). The
oung’s modulus is 201 GPa and the Poisson’s ratio is 0.3. The bottom
ide of the structure is fixed and the top side only allows the axial
isplacement. The loading speed on the top side is 40 m/s and the time
tep is set as 1.0×10−6 s. The calculation is executed using 12 threads.
he computer configuration is as follows: Intel(R) Core (TM) i7-8700
PU @3.20 GHz and 4.0 GB RAM. As shown in Fig. 10(a), the first three
uckling behaviors were simulated and compared with the published
esult [33] as well as the result of ABAQUS. It is obviously that
he loading–shortening curves are much the same and the first three
uckling loads had a margin of error of 0.84%, 9.57% and −0.22%

with respect to ABAQUS. The error of the second buckling load may be
caused by the strong form requirement of VFIFE. Fig. 10(b) shows that
the significant speedup has been obtained when using multithreads,
and the parallel implementation efficiency preponderates over 90%
(𝑇 = 334.35 s for one thread).
1
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Fig. 9. Calculation flow of the VFIFE shell model.
Fig. 10. Cylindrical shell under axial compression. (a) Result validation, (b) Parallel implementation efficiency.
.4. VFIFE model of subsea pipeline

Fig. 11 shows the VFIFE model of a subsea pipeline with an integral
rrestor. Triangulation is used for mass particles and elements mesh
eneration. The pipeline is divided into three parts: the upstream
ection, the arrestor, and the downstream section. For the above three
arts, their length and thickness are 𝐿𝑢, 𝐿𝑎, 𝐿𝑑 and t, t and h. The
iameter of the pipeline is D and its initial ovality is 𝛥0. As there

are two symmetry axes for an ellipse, only a quarter of the model is
needed. In the coordinate system oxyz, plane oyz and oxz are symmetry
lanes where mass particles located are subject to symmetric boundary
onditions. Mass particles with 𝑧 = 𝐿𝑢 +𝐿𝑎 +𝐿𝑑 are rigidly fixed while

mass particles with 𝑧 = 0 are also set symmetrical about the plane oxy
to induce local collapse.

The above boundary conditions can simplify the model and improve
computational efficiency. The expected result is that local collapse
occurs in the cross-section at 𝑧 = 0 and propagates along the upstream
pipeline until encounters the arrestor. Then, the collapse will travel
across the arrestor and propagate within the downstream pipeline.
When the local collapse occurs, the upper and lower wall of the
pipeline may collide and will directly affect the subsequent buckling
propagation and crossover behaviors. Therefore, the planes oxz and
oyz should be first defined as rigid planes to prevent penetrations. This
approach is often used in ABAQUS simulation [14,16,26]. Accurately,
the influence of wall thickness should be considered so that the radial
bending displacement of all parts of the pipeline is limited within

(D-t)/2.

7

4. Results

4.1. Experimental results

Fig. 12 shows the pressure–time curves of the four tests. The red
curves are the pre-selected plans with the maximum loading speed (2
MPa/min) and limited maximum pressures, 15 MPa for two collapse
and propagation tests and 10 MPa for two propagation and crossover
tests. At first the actual water pressures in the chamber rose slowly
and then increased rapidly with a maximum speed about 2 MPa/min.
For Fig. 12(a), the collapse pressure could be determined when the
water pressure dropped dramatically during the pressurization process.
This is due to the local collapse of the pipeline which leads to a
sudden increase in the water volume within the chamber. It is first
stage of pipeline buckling and can also be found in Fig. 12(b). Then,
pressurization continued to induce propagation. Different from the first
pressurization process, the water pressure would keep a stable value for
some time after a slight increase. It is the second stage of the tests and
the stable value is the propagation pressure. During this stage, the local
collapse traveled along the pipeline. When the collapse reached the end
of the pipeline, the water pressure would rise again since there was no
more deformations. For Fig. 12(b), the water pressure experienced a
significant rise and fall again after propagation. The reason is that the
propagation was firstly stopped by the arrestor. Crossover happened
in the second rise and fall of water pressure. Therefore, the second
pressure peak is the crossover pressure of the integral arrestor.

As shown in Fig. 12(a), the collapse pressures of F1 and F2 are 11.59
and 6.23 MPa while their propagation pressures are 2.67 and 1.57 MPa.
The main reason for the differences in their anti-pressure capabilities
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Fig. 11. VFIFE model of a subsea pipeline with an integral buckle arrestor.
Fig. 12. Water pressure–time curves. (a) Collapse and propagation tests, (b) Propagation and crossover tests.
is the diameter–thickness ratio. Likewise, the collapse, propagation and
crossover pressures of F3 and F4 can be found in Fig. 12(b). The
collapse pressures of F3 and F4 went an apparent decline because of
the preset large ovality. Due to the limited space within the chamber,
the water pressure rose faster during pressurization and dropped to a
lower level when collapse and crossover happened for pipelines with
larger diameters (F2 and F4).

The morphology of pipelines after tests are shown in Fig. 13. After
the collapse and propagation tests, pipelines F1 and F2 were flattened
overall. As often occurs [19,20], the cross-sectional shape of the col-
lapsed pipelines is dumbbell-like and it travels along the pipeline after
propagation. In Fig. 13(b), the dumbbell-like deformation went through
the arrestors and the whole structure was crushed. It can be found that
pipelines with a larger diameter–thickness ratio had a more pronounced
arc in its cross-sections. The reason is that lower water pressure after
collapse does not sufficiently flatten the tube.

4.2. Numerical results

4.2.1. Dynamic buckling
According to the basic theory presented in Section 3.1, the VFIFE

is an explicit dynamic method. For pipeline buckling analysis, determi-
nation of quasi-static loading speed, just as the experimental pressure
speed, is necessary for computing the minimum critical load. On the
other hand, to reduce computational time, the speed of quasi-static
loading should be set as large as possible.

As shown in Fig. 14, specific nodal displacements under different

loading speeds are monitored. The selected particles are located at

8

both ends of the cross-section 𝑧 = 0 and their initial coordinates are
(

𝐷max∕2, 0, 0
)

and
(

𝐷min∕2, 0, 0
)

. Six loading speeds, 𝑃𝑣= 50.0, 40.0,
30.0, 20.0, 15.0, 10.0 MPa/s, were tested. As shown in Fig. 14(a), the
nodal displacements would suddenly change when the external pres-
sure reached a certain value. Using the Budiansky–Roth (B–R) dynamic
buckling criterion [43], the buckling pressure can be determined when
a small increase in loads results in a huge change in the structural
responses. The collapse pressures with different loading speeds are
11.70, 11.64, 11.60, 11.58, 11.56, and 11.55 MPa, shown by red square
dots and dotted lines in Fig. 14(a). Therefore, the pressure speed for
quasi-static loading was identified as 10 MPa/s. Another two particles
located in the midsection of the arrestor were selected and their nodal
displacements history is drawn on Fig. 14(b). Similar changes can also
be found and indicated that crossover appeared shortly after the local
collapse and propagation in the upstream pipeline.

The deformation and Von Mises Stress distribution under different
pressures are shown in Fig. 15. At the beginning of the collapse (①∼④),
the deformations are not evident. Because of the larger projected areas
on the plane 𝑜𝑥𝑦, stress around the ends of the short axis is higher than
that around the ends of the long axis (see ② in Fig. 15, 5.00 MPa). Then,
the stress around the ends of the long axis would rise after the stresses
around the ends of the short axis reached to the critical yield surface.
And the lower stress occurred in the middle ground between the two
ends of the short and long axis (see ③ in Fig. 15, 10.00 MPa). Along
with the increase of the pressure, the stress distribution was trending
collapse: the stresses around the ends of both the long and short axis
reached to critical yield surface (see ④ in Fig. 15, 11.55MPa). In this
state, a small increase in pressure lead to local large deformation and
cross-sections near 𝑧 = 0 became flat (see ⑤ in Fig. 15, 11.61 MPa).
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Fig. 13. Pipe morphology after tests. (a) Collapse and propagation tests, (b) Propagation and crossover tests.
Fig. 14. Time history curves of nodal displacements and external pressure. (a)
(

𝐷max∕2, 0, 0
)

and
(

𝐷min∕2, 0, 0
)

, (b)
(

𝐷max∕2, 0, 𝐿𝑢 + 𝐿𝑎∕2
)

and
(

𝐷min∕2, 0, 𝐿𝑢 + 𝐿𝑎∕2
)

.

Fig. 15. Deformation and Von Mises Stress distribution of pipeline A in different external pressure. ①0.00 MPa, ②5.00 MPa, ③10.00 MPa, ④11.55 MPa, ⑤11.61 MPa, ⑥11.64
MPa, ⑦11.70 MPa, ⑧11.73 MPa, ⑨11.79 MPa.
When the pressure continued to increase slightly, the local collapse

spread throughout the pipeline at a very fast speed. Materials became
9

plastic when the cross-sections were collapsing and would return to a

low-stress level after propagation. It should be noted that the buckling
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⑧

Fig. 16. A sequence of calculated contours of mass particles in the dynamic case. ①0.00 MPa, ②5.00 MPa, ③10.00 MPa, ④11.55 MPa, ⑤11.61 MPa, ⑥11.64 MPa, ⑦11.70 MPa,
11.73 MPa, ⑨11.79 MPa.
Fig. 17. Nodal displacement history pipeline A. (a) Buckling, (b) Propagation, and (c) crossover.
behavior is called ‘‘dynamic buckling’’ since the external pressure keeps
with regardless of the large deformation of the pipeline [20,21].
10
Further analysis of the deformed configurations and the cross-
section ovalities are as follows. The contours shown in Fig. 16 from
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Fig. 18. Deformation and Von Mises Stress distribution of pipeline A in different external pressure. ①1.50 MPa, ②1.50 MPa, ③2.00 MPa, ④2.63 MPa, ⑤2.76 MPa, ⑥3.00 MPa,
4.31 MPa, ⑧4.35 MPa, ⑨4.40 MPa.
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op to bottom are deformed configurations of the mass particles at
= 0 and 𝑦 = 0, and the cross-section ovalities. At the beginning of

he collapse stage (①∼④), particles at 𝑥 = 0 and 𝑦 = 0 occurred certain
adial displacement which decreased with the increase of 𝑧 coordinate.
hen collapse occurred, the particle at (𝑥 = 0, 𝑧 = 0) reached the

ymmetry plane 𝑦 = 0 and put the near particles in a downward
otion. Because of the arrestor, the profiles at 𝑥 = 0 and 𝑦 = 0 were

ecoming steeper (⑤∼⑦) when the collapse propagated in the upstream
ipe. Then, crossover happened and propagation continued (⑧∼⑨). The
ropagation length is defined by the nearest distance (along 𝑧 direction)
etween the particle which just reaches the symmetry plane 𝑥 = 0
nd the particle which is about to collapse. Obviously, the propagation
ength will be reduced when propagation approaches the arrestor as
ell as propagation continues in the downstream pipeline.

Another important feature of the dynamic buckling behavior is that
nverse ovalities occur in the downstream pipeline. As shown in Fig. 16,
articles at 𝑥 = 0 and 𝑦 = 0 in the downstream pipeline moved in
he direction against that of nodes in the upstream pipeline (⑦∼⑨).
he reason for this feature is that upstream propagation leads to axial
ompression and results in a radial expansion in the downstream.

.2.2. Quasi-static buckling
Another procedure for quasi-static buckling behaviors simulation is

escribed in this section. In present calculations, an additional subrou-
ine for collapse identification and monotonical pressure change was
dded. Once the collapse at 𝑧 = 0 happened, the external pressure
ould be adjusted to a lower value, like the turning point observed in

ests (see Fig. 12). Moreover, there is a cooling-off stage to relieve the
nfluences of inertial force and stress wave. Then, the pressure would
ncrease again for propagation and crossover simulation.

As shown in Fig. 17, displacements of mass particles at
(

𝐷max∕2, 0, 0
)

nd
(

𝐷min∕2, 0, 0
)

changed suddenly when the pressure curve dropped
rom 11.55 to 1.50 MPa. Different from that shown in Fig. 14(a),
article at

(

𝐷max∕2, 0, 0
)

did not move adequately when particle at
𝐷min∕2, 0, 0

)

reached the symmetry plane 𝑦 = 0. It means that the cross

ection at 𝑧 = 0 had not been sufficiently flatted due to the synchronous c

11
ressure change. Despite that, the deformation was mainly plastic and
id not bounce back. The other two particles at

(

𝐷max∕2, 0, 𝐿𝑢∕3
)

and
𝐷min∕2, 0, 𝐿𝑢∕3

)

were monitored and there were two sudden changes
n their displacement curves. The first one occurred when collapse hap-
ened and the cross section was not flatted. The second one happened
hen propagation began and the cross section became the same shape
s that at 𝑧 = 0 (see Fig. 17(a)). Two particles located in the midsection
f the arrestor (

(

𝐷max∕2, 0, 𝐿𝑢 + 𝐿𝑎∕2
)

and
(

𝐷min∕2, 0, 𝐿𝑢 + 𝐿𝑎∕2
)

) were
elected for crossover identification and their displacements history
as drawn on Fig.17(c). They experienced unconspicuous elastic de-

ormation in the collapse stage and returned to their original position
hen the external pressure dropped. The particles moved a limited
ut plastic distance when propagation approached and achieved similar
isplacements after crossover (see Fig. 17(a) and (b)). The propagation
nd crossover pressures are eventually identified to be 2.63 and 4.31
Pa.

The sequences of the deformation and Von Mises Stress distribution
fter the collapse are shown in Fig. 18. At the beginning of the cooling-
ff stage (①), the stress in the slope near 𝑧 = 0 was very high and
arrow high-stress regions were also found in the downstream pipeline.
fter the cooling-off stage, the stress distribution would become smooth
nd steady (see ② in Fig. 18). Residual stresses are mainly distributed
ear the cross-section at 𝑧 = 𝐿𝑢∕3. The lowest stress region was in
he arrestor and the downstream pipeline was also in low-stress level.
article at

(

𝐷min∕2, 0, 0
)

reached the symmetry plane and the cross-
ection at 𝑧 = 0 was dumbbell-like. Then, the stress around the slope
as rising along with the increase of the external pressure (③∼④).
ropagation happened when the pipe-segment in the slope was all in
lastic as shown by ④ in Fig. 18. In this state, a small increase in
xternal pressure lead to dumbbell-like deformation traveled along the
pstream pipeline (⑤∼⑥). The propagation would be stopped by the
rrestor (⑥) and the crossover happened until the external pressure
eached the crossover pressure (⑦). Then, the propagation continued
nd the downstream pipe became flat (⑧∼⑨).

Similar contours as Fig. 16 are shown in Fig. 19 for the quasi-static
ase. In the cooling-off stage (①∼②), particles at 𝑥 = 0 and 𝑦 = 0
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Fig. 19. A sequence of calculated contours of mass particles in the quasi-static case. ①1.50 MPa, ②1.50 MPa, ③2.00 MPa, ④2.63 MPa, ⑤2.76 MPa, ⑥3.00 MPa, ⑦4.31 MPa, ⑧4.35
Pa, ⑨4.40 MPa.
T
C

ould move continuously after the pressure drop due to their inertia
orce and the former would reach the plane 𝑦 = 0. At the beginning
f the second pressurization process, the position of these particles did
ot change obviously (②∼③). When the external pressure approached
he propagation pressure, the displacements of particles in the slope
ould become large and local collapse propagated in the upstream
ipe (④∼⑥). When the external pressure approached the crossover
ressure, the arrestor became flatten and propagation marched (⑦∼⑨)
n the downstream pipe. Different from the dynamic case, the axial
ompression on the downstream was smaller and none obvious inverse
valities were observed.

One important feature is the different propagation modes in the
ownstream and upstream pipelines. As shown in Fig. 18, propagation
ode in the upstream is a dumbbell-like cross-section while that in the
ownstream is flat. Moreover, the cross-sections of the arrestor were
latter than that shown in Fig. 16.

. Discussion

In this paper, an emerging numerical method, VFIFE thin shell
lement,was introduced to analyze buckling behaviors of the subsea
ipeline. Results both in the experiments and numerical calculations in
ection 4 proved the effectiveness of the method adopted. The VFIFE
odel of the subsea pipeline with an integral buckling arrestor in

ection 3.4 can achieve whole simulations of collapse, propagation, and
rossover.

For the pipeline structure buckling analysis, significant emphasis
hould be put on its critical pressures, including the collapse pressure,
he propagation pressure, and the crossover pressure. Comparison of
hose critical pressures in different methods, including the experiments
hown in Section 2, the VFIFE method shown in Section 3, the FEM
ABAQUS, F3D3 and C3D8I elements) [14,15], and the DNV specifica-
ions [1], is listed in Table 4. It is shown that the collapse pressures and
ropagation pressures obtained by different methods are comparable
o each other. The margin of error for these two pressures was within

1.5%. The propagation pressure of F2 is lower than other results

ecause of the preset ovality for collapse induction. As for the crossover

12
able 4
omparison of critical pressures in different methods.
Critical pressure (MPa) No. Experiment VFIFE FEM DNV

Collapse pressure F1 11.59 11.55 11.43 11.84
F2 6.23 6.30 6.34 6.26

Propagation pressure

F1 2.67 2.63 2.56 2.50F2 2.30
F3 1.57 1.58 1.51 1.43F4 1.56

Crossover pressure F3 5.24 4.31 4.72 4.68
F4 2.52 2.62 2.55 2.49

pressure, the value measured in F3 is the maximum while the VFIFE
result is the minimum. The reason for a bigger tested crossover pressure
of F3 may be the smaller ovality of the arrestor which is welded
between two lengths of pipe or the welding quality. Moreover, the
error percentages of the VFIFE method are −8.69% and −7.91% with
respect to the FEM and DNV specifications. But for F4, the crossover
pressures from different methods achieve good agreement. It should be
noted that the diameter–thickness ratios of the buckle arrestor for F3
and F4 are 16.25 and 20.3 respectively. For pipe structures, the thin
shell structures usually refer to those whose diameter–thickness ratios
are larger than 20 while the rest are thick shell structures. The thin
shell elements used in this study ignore the shear bearing capacity of
the thick shell and lead to a certain calculation error of the crossover
pressure. In this sense, it is necessary to develop thick shell elements
or solid elements for thick pipes or segments. Even so, the thin shell
element is accurate enough for thin pipelines which are common in
offshore oil and gas exploitation.

Through the comparison between the calculated and tested mor-
phology of pipelines, two different buckling modes can be simulated by
the VFIFE method. Kyriakides [19,20] also reported the two different
buckling modes respectively in quasi-static propagation and dynamic
propagation (see also Ref. [21, Fig. 4]). For the quasi-static propaga-
tion, the crown points of the collapsed cross-section behind the front
are in contact essentially along an axial line. In the dynamic case,
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the tube behind the buckle is essentially flattened by the much higher
ambient pressure and by the inertial forces. As shown in Figs. 15 and
18, the dynamic case has a much sharper buckle profile (the length is
approximate 4D) than the quasi-static case (the length is approximate
6D). A new phenomenon found in the quasi-static case is that the
propagation configuration in the downstream pipeline after crossover
is similar to that in the dynamic case. This is because there is none
pressure drop when the crossover happened and the subsequent process
is a dynamic case.

The reverse ovalities adjacent to the profile should be also be
focused on. As shown in the enlarged subplots in Figs. 16 and 19,
inverse ovalities are found in the front region near collapse. In the
dynamic buckling case, reverse ovalization is seen to be more obvious
as the propagation passes through the arrestor and approaches to the
fixed ends. The maximum value of the reverse ovality is approximately
3.98% and the length is approximately 1.72D. As for the quasi-static
case, the maximum value of the reverse ovalities are quite smaller
(approximately 0.60%) but the length is longer (approximately 2.09D).
Axial compression during propagation is the cause for such reverse
ovalities and also leaded obvious wrinkle near 𝑧 = 0 in the dynamic
case.

As per the VFIFE thin shell elements, the whole buckling process of
the pipeline with an integral buckle arrestor can be directly simulated
in line with the actual situation. The VFIFE has the advantage of not
requiring special calculation processing for such tough problems like
singular stiffness matrices and can track the entire behavior by inquir-
ing the information of mass particles directly. Thus, the VFIFE can act
as a new and universal analytic strategy for subsea pipelines buckling
simulation and guide its design, construction, and in-situ analysis. It
must be mentioned here that in this paper the fluid–solid coupling
and the material strain rate are ignored as they are not urgent and
major factors for pipeline buckling problem. Further research would
be firstly directed at developing solid elements for the thick segments
for pipelines and then account for the fluid–solid interaction and more
complex material models.

6. Conclusions

In this study, a new procedure was developed based on the VFIFE
thin shell element and achieved buckling analysis for a subsea pipeline
with an integral buckling arrestor. Full-size tests in the pressure cham-
ber were also carried out to measure the critical pressure values of the
collapse, propagation, and crossover process. Comparison of the results
of full-size tests, the VFIFE calculation, the FEM calculation, and the
DNV specification is presented to prove the accuracy of the proposed
method. We also elaborated on the buckling behaviors in two different
loading cases, dynamic and quasi-static buckling.

Results proved that the VFIFE thin shell element can simulate the
collapse, propagation, buckling prevention, and crossover behavior
of subsea pipelines. The VFIFE thin shell elements can accurately
(within ± 1.5%) predict critical pressures for different buckling pro-
cess and simulate the dynamic and quasi-static buckling modes for
thin pipelines (diameter–thickness ratios ≥ 20). For thick pipelines
(diameter–thickness ratios ≤ 20), the predicted critical loads would
be smaller (about - 8.0%) as the thin shell elements ignore the shear
bearing capacity of the thick shell. Moreover, the VFIFE method uses
Newton’s law to achieve strong form description of structure behaviors
and solve the structural deformation and internal force directly with-
out complicated computation techniques. Using Open MP technique,
the parallel implementation efficiency preponderates over 90% for a
common office computer (12 threads, 4G RAM). Therefore, the VFIFE
thin shell element can provide a new, practical and universal analysis
strategy for subsea pipelines buckling analysis.

It is clear that the VFIFE model of the subsea pipeline has not been
fully developed. As the discussion states, the thin shell element may
lead to certain errors for thick pipelines or segments. Further research
should be focused on the development of thick shell element or solid
element for wider and more comprehensive application.
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