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A B S T R A C T   

Accurate simulation of flow behaviors in fractured porous media is challenging. We present a discontinuous 
Galerkin (DG) approximation and continuous Galerkin (CG) approximation for compressible single- and two- 
phase flow in porous media with conducting (high permeable) and blocking (low permeable) fractures using a 
mixed-dimensional approach in which the fracture is described as a reduced-dimensional interface coupled with 
linear transmission conditions. The proposed DG/CG method was first verified with single-phase fractured flow 
benchmark cases and then applied to time-dependent single-phase flow cases. The simulated results demonstrate 
that the DG/CG method is capable of capturing the continuity as well as the jump in pressure between the two 
sides of the matrix-fracture interface. For the two-phase flow cases, we verify the DG/CG method with a reference 
case involving a complex fracture configuration. Subsequently, we analyze several cases to study two-phase flow 
through a single fracture and a discrete fracture network in two dimensions. Overall, the simulation results show 
that the developed DG/CG approach can reliably predict the flow behaviors for single- and two-phase flow in 
fractured porous media.   

1. Introduction 

Modeling of fluid flow in fractured porous media is of significance in 
a variety of applications, such as geothermal extraction (Lepillier et al., 
2019; Salimzadeh and Nick, 2019), geological carbon storage (R March 
et al., 2018; Ren et al., 2017), gas and oil exploitation (Khoei et al., 
2016; Jiang and Yang, 2018; Ma et al., 2020) and contaminant migra
tion in reservoirs (Saiers and Barth, 2012). Fractures are capable of 
forming conductive paths or barriers as a result of different hydraulic 
properties between fractures and the rock matrix. The discontinuous 
material properties as well as spatial scales have a great influence on 
flow paths associated with the injection or production of fluids. 

A series of conceptual models across multiple scales have been 
developed to describe single- and multiphase flow in fractured porous 
media. Generally, two main approaches, continuum models (R March 
et al., 2018; Warren and Root, 1963; Wu et al., 2004) and discrete 
fracture models (Gläser et al., 2019; Gläser et al., 2017; Hoteit and 

Firoozabadi, 2008; Jin and Zoback, 2017), have been proposed. The 
continuum models are categorized into single- and multicontinuum 
models. In single-continuum models, the equivalent permeability of the 
reservoir is calculated with an upscaling technique combined with the 
fracture information involving the surface roughness, aperture and 
orientation (Oda, 1985). In multicontinuum models, the classic 
dual-porosity double-permeability (DPDP) model has been widely used 
for the simulation of fluid flow in unconventional gas extraction (Yang 
et al., 2019) and CO2 sequestration (R March et al., 2018). Although this 
type of approach is efficient with low computational cost, the calcula
tion of the flux exchange between the matrix and fracture remains a 
challenge, especially with consideration of gravity and capillarity in 
two-phase flow (Hoteit and Firoozabadi, 2008; Zidane and Firoozabadi, 
2017). The alternative approach uses the discrete fracture model, where 
the fractures are described individually by lower-dimensional fracture 
elements as the predominant conductive or impeditive impacts on the 
flow path. This method is suitable for the case where the fracture rupture 
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is much smaller than the size of the matrix (Khoei et al., 2016; Ma et al., 
2020; Gläser et al., 2019; Gläser et al., 2017; Jin and Zoback, 2017; 
Brenner et al., 2018; Kadeethum et al., 2020). A reduced-dimensional 
model for the flow along a fracture and suitable coupling conditions 
on the matrix fracture interface were derived for single-phase Darcy 
problems in porous media in the presence of impermeable and perme
able fractures (Martin et al., 2005) and later extended to two phases with 
linear and nonlinear transmission conditions on the interface (Aghili 
et al., 2019). 

Various numerical methods, including the control volume finite 
element, cell-centered finite volume, extended finite element method 
and embedded discrete fracture method, have been developed to model 
fluid flow in fractured porous media. Two types of finite volume ap
proaches have been proposed: the control-volume finite element method 
and cell-centered finite volume (FV) approach. Monteagudo and Fir
oozabadi employed the control-volume finite volume (CVFV) approach 
for two-phase flow in fractured media assuming capillary pressure and 
flux continuity at the matrix–fracture interface (Monteagudo and Fir
oozabadi, 2004). Reichenberger et al. also used the CVFV method to 
model two-phase flow in 2D fractured media. They introduced discon
tinuous approximation functions for saturation to capture the saturation 
discontinuity at the matrix–fracture interface caused by the capillary 
pressure difference between the matrix and fracture (Reichenberger 
et al., 2006); Karimi-Fard et al. introduced a cell-centered FV method 
with a two-point flux approximation (TPFA) and extended it to the 
multipoint flux approximation (MPFA) for the simulation of two-phase 
flow in fractured media (Karimi-Fard et al., 2004). Glaser performed 
discrete fracture-matrix modeling involving highly conductive and 
low-permeability fractures with the MPFA-DFM approach (Gläser et al., 
2019; Gläser et al., 2017). D’Angelo and Scotti implemented the 
extended finite element method for single-phase Darcy flow in fractured 
porous media with nonmatching grids (D’Angelo and Scotti, 2012). 
Fumagalli and Scotti extended the method to a two-phase case by 
considering an additional equation for saturation (Fumagalli and Scotti, 
2013). Additionally, Khoei developed a coupled hydromechanical 
model to simulate two-phase fluid flow through deformable fractured 
porous media using the extended finite element method (Khoei et al., 
2016). Li et al. proposed the embedded discrete fracture method for 
simulating hydrocarbon exploitation (Li and Lee, 2008). Later, this 
method was improved and extended to projection-based EDFM (pEDFM) 
for modeling two-phase flow with a wide range of permeabilities (Jiang 
and Younis, 2017; Ţene et al., 2017). 

Discontinuous Galerkin (DG) methods have the following advan
tages: (1) local mass conservation; (2) flexible mesh discretization; and 
(3) h–p adaptivity. DG methods have recently received substantial 
attention and have been applied to incompressible two-phase flow in 
porous media (D’Angelo and Scotti, 2012; Cappanera and Rivière, 2019; 
Epshteyn and Rivière, 2007) and steady single-phase flow in fractured 
porous media (Antonietti et al., 2019). Klieber and Riviere (Klieber and 
Riviere, 2006) presented adaptivity techniques to sequentially solve the 
wetting phase pressure-saturation equation with DG methods. Based on 
the work of Klieber and Rivier (Klieber and Riviere, 2006), Jamei and 
Ghafouri (Jamei and Ghafouri, 2016) presented a novel sequential im
plicit DG method for two-phase incompressible flow in homogenous and 
heterogeneous media based on velocity conservative projection. Arbo
gast et al. (Arbogast et al., 2013) and Bastian (Bastian, 2014) used DG 
methods to discretize two-phase flow formation with continuous capil
lary pressure and discontinuous capillary pressure, respectively. Later, 
the DG method was extended to simulations of multi-component and 
multi-phase flow problems (Cappanera and Rivière, 2019; Riviere and 
Yang, 2017; Zidane and Firoozabadi, 2020; Ern and Mozolevski, 2012). 
For fluid flow in fractured porous media, Antonietti et al. (Antonietti 
et al., 2019; Antonietti et al., 2020) simulated single-phase flow through 
a fractured porous medium with polygonal and polyhedral grids based 
on the DG method. Zidane and Firoozabadi (Zidane and Firoozabadi, 
2020) studied compositional two-phase flow in a domain with 

non-planar fractures by combining a mixed finite element method and a 
high-order DG method. In previous studies (Hoteit and Firoozabadi, 
2008; Zidane and Firoozabadi, 2017), the DG method was used with a 
mixed finite element approach to simulate incompressible and 
compressible two-phase flow in fractured media. 

In this paper, we present a DG/CG approach for time-dependent 
compressible single-phase and two-phase flow in porous media with 
conducting and blocking fractures. The fluid flow in the porous media 
and fractures is approximated with the discontinuous and continuous 
Galerkin finite element methods, respectively. This paper is organized as 
follows. In Section 2, we first introduce the governing equations and the 
corresponding weak forms of single-phase flow in fractured porous 
media. Subsequently, a steady flow case with a complex fracture 
network is carried out to verify the accuracy of the proposed model. 
Later, we perform several time-dependent cases with a single fracture 
embedded horizontally in porous media. In Section 3, we extend the 
proposed method to two-phase flow in fractured porous media. We 
perform verification cases and then analyze several cases with a single 
fracture and a discrete fracture network in two dimensions. 

2. Single-phase flow in fractured porous media 

2.1. Strong form for single-phase flow in fractured porous media 

The fractured porous media is decoupled into two parts, namely, the 
rock matrix and lower-dimensional fractures. The flow mass balance 
equations for time-dependent single-phase flow in the matrix and frac
tures are expressed as: 

ρmSCm∂pm

∂t
+∇⋅(ρmum) = 0 (1)  

df ρf SCf ∂pf

∂t
+∇T ⋅

(
df ρf uf

T
)
= 0 + [ρmum] (2)  

where pα is the pore pressure, ρα is the fluid density, φα is the porosity, 
and the storage coefficient is SCα = ϕαcα

f + (1 − ϕα)cα
p . cα

f is the 
compressibility of the fluid, and cα

p is the effective compressibility of the 
solid skeleton. The superscript α ∈ {m, f} denotes the matrix and fracture 
variables. dfis the fracture aperture. Neglecting the gravity effect, the 
fluid velocities um and uf

T in the matrix and fracture are described by 
Darcy’s law as follows: 

um = −
km

μm ∇pm (3)  

uf
T = −

kf
τ

μf∇T pf (4)  

where μα is the fluid viscosity, km is the matrix permeability tensor, and 
kf

τ is the tangential fracture permeability tensor. [ρmum] represents the 
fluid mass exchange between the matrix and fracture. The coupling 
conditions at the interface between the fractures and matrix are given by 
(Martin et al., 2005; Antonietti et al., 2019): 

[um] = um+⋅n+ + um− ⋅n− = αΓ
(
pm+ + pm− − 2pf ) (5)  

2{um}⋅n = um+⋅n+ − um− ⋅n− = βΓ(pm+ − pm− ) (6)  

where βΓ = 1
ηΓ

, ηΓ = df

2kf
n
, αΓ = 1

(2ξ− 1)βΓ and kf
n is the normal fracture 

permeability tensor. The parameter ξ yields different boundary condi
tions along the interface Martin et al., 2005). Here, we let the ξ = 0.75. 
The notations [x] and {x} denote a jump and the average of variable x, 
respectively (Antonietti et al., 2019; Antonietti et al., 2016). From Eqs. 
(5) and ((6), we obtain: 
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um+⋅n+ =
1
2
(
ϑΓpm+ + εΓpm− − 2αΓpf ) (7)  

um− ⋅n− =
1
2
(
εΓpm+ + ϑΓpm− − 2αΓpf ) (8)  

where ϑΓ = αΓ + βΓ, εΓ = αΓ − βΓ, um+ and um− denote the flow velocity 
at the two sides of matrix elements m+ and m− neighboring the fracture, 
and n denotes the unit normal vector oriented from element m+ to m− . 

2.2. Weak form for single-phase flow in fractured porous media 

To develop the weak formulation of the governing equations of fluid 
flow in fractured porous media, it is necessary to define the boundary 
conditions of the domain. We consider a two-dimensional domain Ω, 
containing fracture Γ and porous media Ωm = Ω/Γ, with the external 
boundaries ∂Ωe = ∂ΩeN∪

∂ΩeD and ∂ΩeN∩
∂ΩeD = ∅, as depicted in Fig. 1. 

∂ΩeN and ∂ΩeD are defined as Neumann and Dirichlet boundary condi
tions, respectively. The boundaries of the domain are separated into 
three parts: inner mesh boundaries ∂Ωi, exterior boundaries ∂Ωe and 
fracture boundaries ∂Ωl = Ωm∩

Γ. Let χ be the set of the triangular ele
ments E meshed on the domain Ωm. ∂E denotes the set of the total edges 
on boundary. We define the finite element subspace of discontinuous 

piecewise functions as: 

Q(χ) =
{

V ∈ L2(Ωm) : V|E ∈ Pr(E),∀E ∈ χ
}

(9)  

where Pr(E) is the discrete space with the set of polynomials of total 
degree r. We remark that the approximation of the parameters by 
discontinuous polynomials of order r = 2. 

The weak form of the partial differential equations of flow in eq. (1) 
can be obtained by multiplying the test function for matrix pore pressure 
p̃m over the one element E in the domain Ωm. Following Green’s first 
identity and divergence theorem, the weak formulation of the matrix 
flow equation is expressed as: 
∫

Ωm

ρmSCm∂pm

∂t
p̃m dΩm +

∫

∂E

λm∇pm⋅np̃m dS −

∫

E

λm∇pm⋅∇p̃m dV = 0 (10)  

where λm = − ρmkm

μm. Here, we weakly enforce the continuity of fluid 
across the inner mesh boundaries ∂Ωi. In addition, a symmetric bilinear 
form and penalty term are added to guarantee the existence of the 
approximate solution and improve the convergence of the equation 
(Doleǰsí and Feistauer, 2015). After applying the average and jump 
notations introduced above, the second term on the right-hand side in 
eq. (10) is therefore written as 

∫

∂E

λm∇pm⋅np̃m dS

=
∑

∂E∈∂Ωi∪∂ΩeD

∫

∂E

λm{∇pm}
[
p̃m
]
+ ϵλm

{
∇p̃m

}
[pm] +

δp

h
[pm]
[
p̃m
]
dS

+
∑

∂E∈∂ΩeN

∫

∂E

λm∇pm⋅np̃mdS

+
∑

∂E∈∂Ωl

∫

∂E

(
ρm+um+⋅n+p̃m+ + ρm+um− ⋅n− p̃m−

)
dS

(11)  

where δp is the penalty parameter, h is the mesh size, and ε is the sym
metrization parameter. The choice of the parameter ε results in the 
nonsymmetric interior penalty Galerkin (NIPG) method (ε = 1), the 
symmetric interior penalty Galerkin (SIPG) method (ε = − 1), or the 
incomplete interior penalty Galerkin (IIPG) method (ε = 0). Here, ε = 1 
is chosen. After substituting Eq. (11) into Eq. (10), incorporating the 
boundary conditions and summing over all the elements in χ, the weak 
formation of the governing equation is obtained as follows:  

Fig. 1. Illustration of porous media Ωm containing a fracture Γ with boundary 
conditions and the corresponding DG elements. ∂ΩeN and ∂ΩeD are Neumann 
and Dirichlet boundaries, ∂Ωi are inner mesh boundaries, and ∂Ωl = Ωm∩

Γ is the 
inner boundary contiguous with fracture. 

(12)  
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For simplicity, we assume that the pressure across the fracture nodes 
is continuous, and the continuous Galerkin (CG) method is employed to 
discretize the fracture flow equation. We note that the DG approxima
tion for the fracture flow requires additional details without giving an 
in-depth analysis of the problem (Antonietti et al., 2019). By multiplying 
the test function p̃f over the fracture domain Γ and applying the diver
gence theorem and the boundary conditions, the weak form of the 
fracture flow equation is obtained as follows: 
∫

Γ

(

df ρf SCf ∂pf

∂t
p̃f − df λf∇T pf ⋅∇T p̃f − [ρmum]p̃f

)

dΓ+
∫

∂Γ

df λf∇T pf ⋅np̃f d∂Γ=0

(13)  

where um+ • n+ and um− • n− in Eqs. (12) and (13) on two sides of the 
matrix elements adjacent to fractures are calculated with Eqs. (7) and 
(8), respectively. 

3. Implementation of the numerical methods 

Eqs. (12) and (13) are the final weak forms for single-phase flow in 
fractured porous media. The fluids flow models are implemented and 
solved with the general-purpose finite element software COMSOL Mul
tiphysics. The built-in COMSOL modules Weak Form PDE and Weak 
Form Boundary PDE are selected to solve Eqs. (12) and (13), respec
tively. The discontinuous Galerkin method based on quadratic discon
tinuous Lagrange shape function is selected to solve the fluid flow 
problem in porous media with Eq. (12). Fracture flow is implemented 
using the Weak Form Boundary PDE, and the standard Galerkin method 
with a quadratic continuous Lagrange shape function is used to dis
cretize Eq. (13). 

We use an implicit time step method with a backward differentiation 

formula (BDF) and an adaptive time step algorithms for time dis
cretization. The pre-established time step method randomly chooses 
time steps. By default, the first step is 0.1% of the end time, and 
redundant time step histories can be avoided if the end time is changed. 
Changing the time step should not, however, considerably change the 
result if the tolerance is sufficiently tight for automatic time step control. 
The BDF accuracy of discretization varies from one (that is, backward 
Euler) to five. A multifrontal massively parallel sparse (MUMPS) direct 
solver is adopted for the linear system. A fully coupled solver is also 
selected, and this linear solver is applied to nonlinear problems with 
Newton’s single-step method. In each iteration of Newton’s method, we 
implement constant Newton settings and manually specify a constant 
damping factor that is used in all iterations. 

4. Simulation results 

4.1. 2D benchmark case: complex fracture network 

In this section, both conducting and blocking fractures are consid
ered with a complex fracture network to illustrate the capability of the 
proposed model to simulate single-phase flow in fractured porous 
media. The domain and boundary conditions of the simulation are 
shown in Fig. 2. The specific coordinates of the fracture positions are 
taken from reference (Flemisch et al., 2018). The solid and dashed lines 
in the domain represent fractures with a high permeability of 104 and a 
low permeability of 10− 4, respectively. The permeability of the sur
rounding porous media is I. All the fractures are assumed to have the 
same aperture of 10− 4 m. The fluid flows from top to bottom in Case (a) 
and from left to right in Case (b). 

Fig. 3 shows the spatial distribution of pressure associated with the 
pressure profile along the line (0,0.5)-(1.0.9) in Cases (a) and (b) ob
tained with the DG/CG-FEM method and the solutions of other 

Fig. 2. Domain and boundary conditions for a single flow through porous media with conducting and blocking fractures. The matrix permeability km is set to I. The 
fractures have the same permeability values in the normal and tangential directions. The permeabilities of the conducting and blocking fractures are set to 104 and 
10− 4, respectively. The fluid flows from top to bottom in Case (a) and from left to right in Case (b). 
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numerical methods obtained from the benchmark cases (Flemisch et al., 
2018). Here, the reference solutions in Fig. 3 are calculated with 
mimetic finite differences and fine triangular or quadrilateral element 
discretization for both matrix and fracture features. The simulated re
sults for a case with a regular fracture network and a realistic case from 
the benchmark case set (Flemisch et al., 2018) are reported in Appendix 

A. Apparently, the computed results are in agreement with the solutions 
of benchmark cases. Moreover, the DG/CG-FEM method is capable of 
capturing pressure jumps across blocking fractures. 

4.2. Time-dependent cases 

In this section, we analyze three time-dependent cases with different 
fracture permeabilities of 10− 12, 10− 17 and 10− 18 m2, focusing on 
investigating the influence of the permeability ratio between the frac
ture and matrix. In these three cases, the fracture aperture and porosity 
are 0.01 m and 0.4, and the porosity and permeability of the matrix are 
0.1 and 10− 14 m2. The fluid density is 1000 kg/m3, and the viscosity is 
10− 3 Pa . s. The compressibility coefficients of cm

f and cm
p are 3.84 ×

10− 10 Pa− 1 and 1.00 × 10− 8 Pa− 1. The geometry and initial conditions of 
the model are shown in Fig. 4. The simulation domain is 10 m × 10 m 
with a single horizontal fracture residing in the middle. The initial 
pressures in the matrix and fracture are 4MPa. The Dirichlet boundaries 
of pmb = 4MPa and pmb = 5MPa are imposed on the upper right and the 
lower left segments with a length of 0.1 m, respectively. For all cases, the 
simulation time is set to 1 day. 

The spatial distributions of pressure with different permeabilities at t 
= 0.01, 0.10 and 1.00 days are shown in Fig. 5. Fluid is trapped under 
the fracture and moves horizontally in the case where the permeability 
of the fracture is lower than that of the neighboring matrix, which gives 
rise to an obvious decrease in matrix pressure at the two sides of the 
fracture (Fig. 6). With the increase in fracture permeability, fluid tends 
to propagate across the fracture and hence results in a relatively 
continuous pressure at the matrix intersecting with the fracture. The 
evolution of pressure pfat the fracture, pm− at the lower matrix grid cell 
and pm+ at the upper matrix grid cell at point p1(5,5) are shown in Fig. 7. 
The evolution of pressure has similar trends. Pore pressure has different 
values in the cases with low permeability fractures and maintains con
tinuity for the high fracture permeability. 

Fig. 3. Pressure values along the observation line and pressure distribution in Cases (a) and (b) obtained with the DG-FEM. The reference solutions are provided in 
the benchmark study (Flemisch et al., 2018). 

Fig. 4. Description of the geometric configuration and two-dimensional simu
lation domain with initial conditions and boundary conditions. 
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Fig. 5. Pressure distribution at t = 0.01, 0.10 and 1.00 days for the cases with low fracture permeabilities of 10− 12, 10− 17 and 10− 18m2. In all three cases, the 
aperture and porosity of the fracture are 0.01 m and 0.4, respectively. The matrix permeability and porosity are set to 10− 14 m2 and 0.1, respectively. 

Fig. 6. Pressure profile along the diagonal line from the lower left corner to the upper right corner at t = 0.01, 0.10 and 1.00 days for the cases with different fracture 
permeabilities of 10− 12, 10− 17 and 10− 18m2. 
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Fig. 7. Temporal evolution of the pressure pfin the fracture, pm− in the lower matrix grid cell and pm+ in the upper matrix grid cell at point p1 with different fracture 
permeabilities of 10− 12, 10− 17 and 10− 18m2. 

Fig. 8. Geometry and boundary conditions of the model and simulated water saturation. The left figure illustrates the simulation domain and boundary conditions, 
and the right figure shows the water saturation distribution after 25 days of water injection into a nearly saturated oil reservoir with a multifracture configuration. 
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5. Two-phase flow in fractured porous media 

Here, we extend the DG/CG method from single-phase flow to 
compressible two-phase flow in fractured porous media with a mixed- 
dimensional approach. In this section, we present the strong forms 
and the corresponding weak forms for two-phase flow in fractured 
porous media. 

The nonwetting phase pressure pα
nw and saturation wetting phase 

saturation Sα
w are chosen as the primary variables. Without the consid

eration of gravity, the governing equations for immiscible, compressible 
two-phase flow in the matrix, together with the generalized Darcy law, 
are described below (Bjørnarå et al., 2016): 

ϕmSm
w ρm

wcw
∂pm

nw

∂t
+
(
ϕmρm

w − ϕmSm
w ρm

wcw
⃒
⃒pm

c

⃒
⃒
)∂Sm

w

∂t
+∇⋅

(

− ρm
w

kmkm
rw

μw
∇pm

nw

)

− ∇

⋅
(

− ρm
w

kmkm
rw

μw

⃒
⃒pm

c

⃒
⃒∇Sm

w

)

= 0

(14)  

ϕmSm
nwρm

nwcnw
∂pm

nw

∂t
− ϕmρm

nw
∂Sm

w

∂t
+∇⋅

(

− ρm
nw

kmkm
rnw

μnw
∇pm

nw

)

= 0 (15) 

The governing equations in the fractures are (Ma et al., 2020; Ma 
et al., 2017):  

df ϕf Sf
wρf

wcw
∂pf

nw

∂t
+df ( ϕf ρf

w − ϕf Sf
wρf

wcw
⃒
⃒pf

c

⃒
⃒
)∂Sf

w

∂t
+∇T ⋅

(

− df ρf
w
kf

τkf
rw

μw
∇pf

nw

)

− ∇

⋅
(

− df ρf
w
kf

τkf
rw

μw

⃒
⃒pf

c

⃒
⃒∇Sf

w

)

=
[
ρm

wum
w

]

(16)  

df ϕf Sf
nwρf

nwcnw
∂pf

nw

∂t
− df ϕf ρf

nw
∂Sf

nw

∂t
+∇T ⋅

(

− df ρf
nw

kf
τkf

rnw

μnw
∇pf

nw

)

=
[
ρm

nwum
nw

]

(17)  

where ρα
β is the fluid density, and cβ is the compressibility of fluid. β = nw 

and w represent the nonwetting and wetting phases, respectively. 
The capillary pressure pα

c is a function of the effective 
saturation sα

e , which is expressed as pα
c = pα

nw − pα
w = pα

e (sα
e )

− 1/φα
. 

The effective saturation sα
e is equal to Sα

w − Sα
rw

1− Sα
rw − Sα

rnw
. 

. Sα
rβ is 

the residual saturation, pα
e is the entry pressure, and ϕα is the pore size 

distribution index. The van Genuchten-Mualem model of relative 
permeability functions is adopted and shown as follows (Pruess et al., 
1999): 

kα
rw =

⎧
⎨

⎩

̅̅̅̅
sα

e

√ [
1 −

(
1 − sα

e
1/ωα)ωα]2

, if Sα
w < 1

1, if Sα
w > 1

(18)  

kα
rnw =

{
1 − kα

rw, if Sα
rnw = 0

(
1 − sα

e

)2( 1 − sα
e

2)
, if Sα

rnw > 0
(19)  

where kα
rw and kα

rnw are the relative permeabilities of the wetting and 
nonwetting phases, respectively. The flow equations of the matrix and 
fracture are coupled by linear transmission conditions on the interface 
described as (Gläser et al., 2019; Brenner et al., 2018; Aghili et al., 2019; 
Koch et al., 2020):  

um+
β ⋅n+ = −

kf
nkf

rβ

μβ

(
pm+

β − pf
β

df
/

2

)

(20)  

um−
β ⋅n− = −

kf
nkf

rβ

μβ

(
pm−

β − pf
β

df
/

2

)

(21) 

The process of weak form derivation for Eqs. (14)-(17) follows a 
similar process to that of Eqs. (1) and (2), with different numbers of 
unknown variables and equations. Similarly, interior penalty discon
tinuous Galerkin (IPDG) discretization for two-phase flow equations in 
the matrix is expressed as:  

Table 1 
Material properties of the reservoir and fluids for the two-phase multiple-frac
ture configuration.  

Parameter Value Unit 

Matrix porosity, φm 0.20 [-] 
Matrix permeability, km 9.87 × 10− 16 [m2] 
Matrix parameters, Bm 1.0 [Pa] 
Matrix pore index, ϕm 5.0 [-] 
Fracture porosity, φf 1.0 [-] 
Fracture aperture, df 1.0 × 10− 4 [m] 
Tangential fracture permeability, kf

τ  8.26 × 10− 10 [m2] 

Normal fracture permeability, kf
n  8.26 × 10− 10 [m2] 

Matrix parameters, Bf 1.0 [atm] 
Fracture pore index, ϕf 3.0 [-] 
Wetting phase viscosity, μα

w  0.8 × 10− 3 [Pa • s] 
Wetting density, ρα

w  1000 [kg/m3] 
Oil viscosity, μα

nw  0.45 × 10− 3 [Pa • s] 
Oil density, ρα

nw  600 [kg/m3]  

Table 2 
Material properties of the reservoir and fluids for the two-phase multiple-frac
ture configuration.   

Parameter Value Unit  

Porosity, φm 0.20 [-] 
Matrix Permeability, km 1.0 × 10− 14 [m2] 

Entry pressure, pm
e  5.0 × 104 [Pa] 

Pore index, ϕm 0.457 [-] 
Parameter, ωm 0.8 [-] 

Fracture Porosity, φf 0.4 [-] 
Aperture, df 0.01 [m] 
Tangential permeability, kf

τ  1.0 × 10− 11 [m2] 

Normal permeability, kf
n  1.0 × 10− 11 [m2] 

Entry pressure, pf
e  3.0 × 104 [Pa] 

Pore index, ϕf 0.457 [-] 
Parameter, ωf 0.8 [-] 

Barrier Porosity, φf 0.1 [-] 
Aperture, df 0.01 [m] 
Tangential permeability, kf

τ  1.0 × 10− 17 [m2] 

Normal permeability, kf
n  1.0 × 10− 17 [m2] 

Entry pressure, pf
e  8.0 × 104 [Pa] 

Pore index, ϕf 0.457 [-] 
Parameter, ωf 0.8 [-] 

Fluid 
properties 

Wetting phase viscosity, μα
w  1.0 × 10− 3 [Pa • s] 

Wetting phase density, ρα
w  1000 [kg/ 

m3] 
Compressibility of wetting phase, Cα

w  3.84 ×
10− 10 

[Pa− 1] 

Nonwetting phase viscosity, μα
nw  9.02 × 10− 6 [Pa • s] 

Nonwetting phase density, ρα
nw  3.18 [kg/ 

m3] 
Compressibility of nonwetting phase, 
Cα

nw  

7.71 × 10− 6 [Pa− 1]  
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The weak forms of the fracture flow equations are described as fol
lows: 
∫

Γ

[

df ϕf Sf
wρf

wcw
∂pf

nw

∂t
+df ( ϕf ρf

w − ϕf Sf
wρf

wcw
⃒
⃒pf

c

⃒
⃒
)∂Sf

w

∂t
−
[
ρm

wum
w

]
]

S̃f
wdΓ

+

∫

Γ

df λf
w

⃒
⃒pf

c

⃒
⃒∇T Sf

w⋅∇T S̃f
w dΓ−

∫

Γ

df λf
w∇T pf

nw⋅∇T S̃f
w dΓ−

∫

∂Γ

df λf
w

⃒
⃒pf

c

⃒
⃒∇T Sf

w⋅nS̃f
w d∂Γ

+

∫

∂Γ

df λf
w∇pf

nw⋅nS̃f
w d∂Γ=0

(24)  

∫

Γ

[

df ϕf Sf
nwρf

nwcnw
∂pf

nw

∂t
− df ϕf ρf

nw
∂Sf

nw

∂t
−
[
ρm

nwum
nw

]
]

p̃f
nwdΓ

−

∫

Γ

df λf
nw∇T pf

nw⋅∇T p̃f
nw dΓ +

∫

∂Γ

df λf
nw∇T pf

nw⋅n p̃f
nw d∂Γ = 0

(25)  

where S̃α
β and p̃α

β are the test functions for the saturation and pressure. Sαb
β 

and pαb
β denote the saturation and pressure on the boundaries. The terms 

[ρm
β um

β ] in Eqs. (22)-(25) are obtained from Eqs. (20) and (21), gm
β is the 

flow flux on the boundaries. 

(22)  

(23)  
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Fig. 11. Nonwetting saturation Sm
nw and pressure pm

nw along the diagonal line (0.0,0.0) - (10.0,10.0) at t = 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.40, 0.60, 0.80 and 1.00 
days in the case with a barrier. 

Fig. 9. (a) Brooks and Corey capillary pressure and (b) van Genuchten-Mualem model for relative permeability.  

Fig. 10. Distributions of (a) nonwetting saturation Sα
nw and (b) nonwetting pressure pα

nw at t = 1 day for the case with a barrier.  
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6. Verification 

In this section, we analyze a numerical case to verify the accuracy of 
the proposed method for two-phase flow in discrete fractured porous 
media. In this case, we consider a nearly saturated oil reservoir of 1 m ×
1 m with complex fractures. The initial conditions that pmb

w = 105 Pa and 
Smb

nw = 0.99 are set. The final simulation time is set to 25 days. The ge
ometry and boundary conditions are illustrated in Fig. 8. The input 
parameters of the reservoir and fluid properties are given in Table 1. The 
capillary pressure pα

c is calculated by − BαlnSα
w. The relative perme

abilities of oil and water are calculated by km
rnw = (1 − Sα

w)
ωα 

and km
rw =

(Sα
w)

ωα
, respectively. 

Fig. 8 shows the computed water saturation distribution after 25 
days of injection. The water is likely to flow through the fracture as a 
result of the high fracture permeability. Good agreement is achieved 
between the current simulated result and that of the reference model 
(Ma et al., 2020; Monteagudo and Firoozabadi, 2004). 

7. Applications 

7.1. Case 1: single fracture 

In this section, we describe two cases with high and low permeable 
fractures. The simulation geometry described in Fig. 4 is adopted. The 
initial nonwetting pressure of the matrix and fracture are 4 MPa, and the 
initial wetting saturation in the matrix is 0.8. To ensure initial flow 
balance between the matrix and fracture system, pm0

w = pf0
w is assumed. 

Hence, the initial wetting saturation in the fracture can be calculated by 

Sf0
w = Sf

wr + (1 − Sf
wr − Sf

nwr)

(

pf
e

pm
e

)φf

(Sm0
e )

φf
φm . pmb

nw = 5 MPa and Smb
w = 0.2 

are set on the lower left boundary. The values of pressure and saturation 
on the upper right boundary are equal to the initial conditions. The 
present model does not consider the extended pressure conditions at the 
interface (Reichenberger et al., 2006). Thus, the entry pressure of the 
matrix and fracture need to be appropriately assigned in both cases with 
high and low permeability fractures to ensure saturation within 

Fig. 13. Distribution of (a) nonwetting saturation Sα
nw and (b) nonwetting pressure pα

nw at t = 1 day for the case with fracture.  

Fig. 12. Evolution of nonwetting saturation and nonwetting pressure at point (5,5) in the matrix-fracture interface.  
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reasonable limits. Here, the wetting phase and nonwetting phase refer to 
water and hydrogen, respectively. The fluid properties are obtained 
from NIST (Lemmon, 1998). The entry pressures and other parameters 
are listed in Table 2. The Brooks and Corey capillary pressure curves for 
the matrix, fracture and barrier are illustrated in Fig. 9(a). The relative 
permeability curves of water and hydrogen for the matrix and fracture 
are shown in Fig. 9(b). 

The nonwetting saturation Sα
nw and nonwetting pressure pα

nw distri
butions at t = 1 day are shown in Fig. 10. The nonwetting saturation Sm

nw 
and pressure pm

nw along the diagonal line (0.0,0.0) - (10.0,10.0) at t =
0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.40, 0.60, 0.80 and 1.00 days in the 
case with a barrier are shown in Fig. 11. The evolution of Sα

nw and pα
nw at 

the point on the interface is illustrated in Fig. 12. Due to the low 
permeability of the barrier, the fluids barely flow across the barrier, 
which results in an obvious pressure jump between the neighboring two 
sides of the fracture. Additionally, the fluid is trapped near the fracture 
as a result of high entry pressure associated with the corresponding 
capillary pressure of the barrier. The discontinuity in saturation can be 
explained by the fact that the nonwetting phase pressure propagates 
ahead of the saturation front (Gläser et al., 2017), which causes the 
corresponding mass transfer between the fracture and the neighboring 
matrix. 

Fig. 13 shows the nonwetting saturation Sm
nw and nonwetting pressure 

pm
nw distributions at t = 1 day in the case with a highly permeable fracture 

dividing in the domain. Fig. 14 illustrates the nonwetting saturation Sm
nw 

and pressure pm
nw along the diagonal line and Sf

nw and pf
nw at the point 

(5,5) at specific time points in the case of conducting fracture. The 
saturation and pressure decrease from the inlet to the outer boundary. 
After 1 day of injection, the hydrogen front propagated more than 3 m 
away from the lower-left corner. After the pressure reaches the fracture 
and flows across the fracture, as a consequence of the highly permeable 
fracture, a negligible pressure and saturation difference is evident be
tween the two sides of the fracture. Due to the initial flow equilibrium 
condition at the interface, the high permeability of the fracture gives rise 
to an approximately equivalent pressure in the two domains that results 
in an obvious saturation difference between the fracture and matrix 
because of the different capillary pressures of the matrix and fracture. 

7.2. Case 2: discrete fracture network 

In this section, we study a simulation case with a discrete fracture 
network, which is created by the open source tool DFNE (Alghalandis, 
2017). Two sets of orthogonal fractures are oriented at angles of 45◦ and 
135◦ in a square domain with a length of 10 m. The initial and boundary 
condition settings are the same as those in the cases with a single frac
ture in Section 7.1 We explore two cases with fractures and barriers, 
respectively. Fig. 15 shows the spatial discretization of the model 
domain. The model domain is discretized into more than 21,000 tetra
hedral elements, 2800 edge elements and 280 vertex elements. Grid 
refinement is automatically performed in the areas with multiple frac
tures or short fractures. 

The distributions of the nonwetting saturation Sm
nw and pressure pm

nw 
in the case with low permeable fracture networks and the Sm

nw and pm
nw 

distributions based on height expression after 1 day of gas injection are 
shown in Fig. 16. The pressure propagates into the reservoirs while the 

Fig. 14. Nonwetting saturation Sm
nw and pressure pm

nw along the diagonal line (0.0,0.0) - (10.0,10.0) and Sf
nw and pf

nw at the point (5,5) (scatters) at t = 0.02, 0.04, 0.06, 
0.08, 0.10, 0.20, 0.40, 0.60, 0.80 and 1.00 days in the case with fracture. 

Fig. 15. Spatial discretization of the simulation domain with a discrete fracture 
network. Refined tetrahedral meshes are generated in areas with multiple 
fractures or short fractures. Magenta lines indicate the low-dimension fractures. 
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Fig. 16. Distributions of (a) nonwetting saturation Sm
nw and (b) pressure pm

nw in the case with low permeable fracture networks. (c) Sm
nw and (d) pm

nw distributions based 
on height expression after 1 day of gas injection. 

Fig. 17. Nonwetting saturation Sm
nw and pressure pm

nw along the diagonal line at t = 0.01, 0.10, 0.20, 0.40, 0.60, 0.80 and 1.00 days in the case with a highly 
permeable fracture network. 
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gas is trapped around the injection boundary. The pressure decreases 
stepwise, and saturation decreases with a local wave type pattern along 
the diagonal line (Fig. 17). Pressure and saturation between the two 
sides of fractures appear discontinuous in the case with blocking frac
tures and continuous in the case with conducting fractures (Figs. 17 and 
18). 

8. Summary and conclusion 

In this paper, we presented a discontinuous and continuous Galerkin 
(DG/CG) approximation for modeling single-phase and two-phase flow 
in porous media with a mixed-dimensional approach, in which fractures 
were described as a (d-1)-dimensional interface embedded in a D- 
dimensional domain based on the linear transmission conditions at the 
matrix–fracture interfaces. 

The proposed model was first verified for single-phase flow in a 
complex fracture network involving both conducting and blocking 
fractures. Our simulation results are in good agreement with the refer
ence benchmark solutions, which demonstrates the feasibility and ac
curacy of the DG/CG method. Then, time-dependent single-phase flow 
cases were studied. The simulation results illustrate the ability of the 
presented DG method to capture the discontinuities and continuities 
with barriers and highly conductive fractures in compressible single- 
phase flow. 

Subsequently, we presented DG approximations for immiscible and 
compressible two-phase flow in fractured porous media with consider
ation of the capillary pressure effect. Water injection in discrete- 
fractured media saturated with oil were analyzed to verify and 
demonstrate the performance and accuracy of the proposed method in 
the application of two-phase flow in fractured porous media. Then, the 
verified model was applied to two-phase problems involving highly 
conductive and low-permeability fractures. These results illustrate that 

the DG method captures the continuous pressure, jump in pressure and 
saturation of the matrix adjacent to the fractures. 
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Appendix 

Case A.1: Regular fracture network 
Case A.2: A realistic case 
Fig. A1 

Fig. 18. Sm
nw and pm

nw distributions and profiles along the diagonal line at t = 0.01, 0.10, and 1.00 days in the case with a highly permeable fracture network.  
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Fig. A2 

Fig. A1. Distribution of the pore pressure in case a with conductive fractures and case b with blocking fractures. In both cases, the matrix permeability and fracture 
apertures are set to km = I and 10− 4, respectively. The permeability of the fracture is the same in the normal and tangential directions. In cases a and b, the fracture 
permeabilities are 104 and 10− 4, respectively. The initial conditions, boundary conditions, and other information are provided in reference (Flemisch et al., 2018). 

Fig. A2. Distribution of the pore pressure of the benchmark case with real discrete fractures. The size of the domain is 700 m × 600 m. The permeability of the matrix 
and fracture are 10− 14 and 10− 10 m2, respectively. The initial pressure of the entire domain is 0 Pa for the benchmark case. The pressures on the left and right 
boundaries are set to 1,013,250 Pa and 0 Pa, respectively. The top and bottom boundaries are no-flow boundaries. 
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Fig. A3 
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Modélisation Mathématique et Analyse Numérique 46, 465–489. 
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