Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Full Length Article

Alkali metal-resistant mechanism for selective catalytic reduction of nitric oxide over V_2O_5/HWO catalysts

Running Kang ^{a,b}, Junyao He ^a, Feng Bin ^{a,b,*}, Baojuan Dou ^c, Qinglan Hao ^c, Xiaolin Wei ^{a,b}, Kwun Nam Hui ^d, Kwan San Hui ^{e,*}

^a State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China

^b School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China

^c Tianjin University of Science & Technology, Tianjin 300457, PR China

^d Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa Macau, P.R. China

^e School of Engineering, Faculty of Science, University of East Anglia, Norwich Research Park NR4 7TJ, United Kingdom

ARTICLE INFO

Keywords: Commercial bacterial cellulose V₂O₅/HWO catalyst Alkali metal-resistant Poisoning SCR reaction

ABSTRACT

A series of V₂O₅/HWO catalysts are prepared by hydrothermal and impregnation methods using different precursors, among which the V₂O₅/HWO-C catalyst exhibited the optimal NH₃-SCR performance. Compared to oxalic acid (O) and water (W), commercial bacterial cellulose (C) as a precursor can firstly achieve a more controllable synthesis to form hexagonal WO₃ (HWO) of V₂O₅/HWO-C catalyst. Various characterization (XRD, N₂-BET, TEM, SEM, XPS, EDX mapping, and NH₃/NO-TPD-MS) indicate that a higher specific surface area, abundant active oxygen and surface acidity result from the V₂O₅/HWO-C catalyst. The reason is that HWO-C has an excellent and smooth rod-shaped morphology, which promotes high dispersion of V₂O₅ on its surface. In situ IR results show that the SCR follows the Langmuir-Hinshelwood (L-H) mechanism, where absorbed NO_x intermediate species are formed on the V₂O₅ and react with the NH¹₄ and NH_{3abs} groups of V₂O₅ and HWO. After loading 1.75 wt% K⁺, the obtained K-V₂O₅/HWO-C catalyst exhibits effective resistance to K poisoning and SO₂, and retains 78 % NO_x conversion efficiency at 360 °C after 10 h, attributed to the effective capture of K⁺ (1.04 wt %) in HWO-C channels via a new pathway, although approximately 0.71 wt% K⁺ are located on HWO-C external surface with weak bonding to V₂O₅.

1. Introduction

The selective catalytic reduction (SCR) of NO_x by NH₃ is deemed as an effective strategy for controlling NO_x emissions in flue gas from fuel combustion[1-4]. The poisoning effect of alkali metals on SCR catalysts, however, is often substantially induced by the combustion of high alkaline solid fuel[56]. As the core of this technology for denitration (deNO_x), methods for the synthesis of alkali-resistant catalysts, including those with different active components and diverse preparation methods, have been greatly developed over the past two decades [7,8]. The deactivation and resistant deactivation mechanisms of catalysts by alkali metals for SCR processing have garnered much attention and have been extensively studied[9-13].

The preparation of vanadium-based SCR catalysts, as a significant design step to realize alkali metal resistance, has both scientific and

applied interest. This procedure is crucial for understanding controllable structure synthesis using various precursors to enhance catalytic performance in surficial reactions. Bacterial cellulose as a precursor can be employed instead of the typically used oxalic acid since this inexpensive and green biobased material possesses a three-dimensional network structure and abundant hydroxyl groups that promote nucleation and binding for metal oxide particles. Previously, researchers reported that La₂CuO₄ nanocrystals synthesized by bacterial cellulose nanofibre templates exhibit considerable activity for methanol steam reforming, arising from their unique structure and large specific area [14]. Nevertheless, there is limited statistical evidence related to the morphologically controllable synthesis of deNO_x catalysts using different precursors, and the predominant contributor to the enhanced activity has not yet been reported.

V₂O₅-WO₃-TiO₂ prepared by an oxalic acid precursor, as a traditional

https://doi.org/10.1016/j.fuel.2021.121445

Received 12 January 2021; Received in revised form 6 June 2021; Accepted 12 July 2021 Available online 23 July 2021 0016-2361/© 2021 Elsevier Ltd. All rights reserved.

^{*} Corresponding authors at: State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China (F. Bin).

E-mail addresses: binfeng@imech.ac.cn (F. Bin), k.hui@uea.ac.uk (K. San Hui).

and commercial deNO_x catalyst, is commonly employed owing to its excellent catalytic properties [2,15,16]. Lian et al reported that the V₂O₅/TiO₂ catalyst with high rutile phase content exhibited superior NH₃-SCR catalytic performance [17]. Unfortunately, the catalyst is easily deactivated in flue gas containing alkali metals. Deng et al. [18] pointed out that upon the addition of various alkali metals, the activity of the V₂O₅-WO₃-TiO₂ catalyst was greatly inhibited by K and Na (in decreasing order) due to the decreasing specific surface area and the masking of V2O5. Kong et al suggested that the deactivation rate of potassium-poisoned catalysts follows $KCl > K_2O > K_2SO_4$ in the SCR reaction over the V2O5-WO3-TiO2 catalyst[19]. Although supported $V_2O_5 - WO_3/TiO_2$ catalysts have not been extensively examined for the interaction between TiO2, V2O5 and alkali metals, some publications imply that the nature of the supported vanadium oxide sites depends on the specific precursors and preparation methods [20-23], but these claims were not given by supporting information. Recently, several successful attempts have been made to improve the alkali metalresistant performance of vanadium oxide catalysts [24]. According to Hu et al. and Huang et al. [23,25], MnO₂ and WO₃ prepared by oxalic acid as precursors can effectively trap alkali metal ions and prevent V₂O₅ poisoning during SCR due to the structure of MnO₂ and WO₃. Further, the Zheng et al. proposed self-protect mechanism via alkali-trapping of HWO rather than including alkali-blocking of V₂O₅ in the SCR process over V₂O₅/HWO catalyst using oxalic acid precursor [26]. Despite previous studies concerning deactivation and resistant deactivation models of alkali metals in the SCR reaction, the exact distribution of alkali metal species with quantitative or semi quantitative analysis on the catalyst leading to the alkali metal-resistant mechanism remains unclear.

In this investigation, a series of V₂O₅/HWO catalysts are prepared by three different precursors, including commercial bacterial cellulose, oxalic acid and water, to study the interactions among the morphological characteristics and the catalytic activity in the SCR reaction. In particular, the alkali metal-resistant pathways for the distribution of alkali metal ions (K⁺) on the catalyst and V₂O₅/HWO-C were proposed in detail via X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) mapping, X-ray photoelectron spectroscopy (XPS) and in situ infrared (in situ IR) analysis. The results obtained will provide new insights into the design of advanced catalysts and the corresponding alkali metal-resistant mechanisms for SCR reactions.

2. Experimental specifications

2.1. Catalyst preparation

To investigate the relationship between the porous structure and activity, HWO was prepared by a hydrothermal method using different pore-forming agents, including commercial bacterial cellulose (C), oxalic acid (O) and water (W). The $(NH_4)_{10}W_{12}O_{41} \sim xH_2O$ (2.13 g), (NH₄)₂SO₄ (8.32 g) and pore-forming materials (2.10 g) were dissolved in deionized H₂O (80 mL). The homogeneous solution was kept at 180 °C for 12 h in an autoclave (200 mL) and then washed with deionized H₂O, followed by drying at 120 °C. The theoretical support content of V₂O₅ is 10% in the all catalysts. The obtained catalysts were denoted as HWO-C, HWO-O and HWO-W. The V2O5/HWO catalysts were synthesized by wet impregnation of the various HWO with NH₄VO₃ solutions. The resulting solutions were stirred and evaporated at 80 °C for 0.5 h, and then they were calcined at 400 °C for 4 h to obtain V₂O₅/HWO-C, V₂O₅/HWO-O and V₂O₅/HWO-W catalysts. The K in gas phase is always absorbed and migrated on the catalyst in the flue gas. Therefore, considering that the deactivation of the catalyst by alkali metals in off-gas is a long-term process, the alkali resistance of the samples was simulated by immersing method and to realize extreme condition of K loading and poisoning. To study the actual deactivation as well as the capture of K⁺ via the catalyst surface morphology and channels for the SCR reaction, a KCl (0.03 g) aqueous solution was

loaded with stirring onto the V₂O₅/HWO-C (1 g) catalyst and dried at 120 °C for 4 h to obtain K-V₂O₅/HWO-C. The schematic diagram describing the catalysts preparation is shown in Fig. 1. The metal content in the catalysts was detected by X-ray fluorescence (XRF) and is shown in Table 1.

2.2. Characterization

The elemental composition of the catalysts was obtained by XRF with a Power 4200 scanning XRF spectrometer. The textural properties were investigated by N2 adsorption-desorption (N2-Brunauer, Emmett and Teller, N₂-BET) at the liquid nitrogen temperature using a 16 Autosorb-Iq-MP instrument (Quantachrome). XRD patterns were measured by an XD-3-automatic (PERSEE) equipped with a Cu K α radiation source ($\lambda =$ 0.1541 nm). Rietveld refinement analyses of the XRD data profiles were subsequently performed by using TOPAS Academic and Fullprof software package. The morphology and distribution of surface elements were determined by TEM (JEM 2100F, Oxford) equipped with EDX mapping (Tecnai G² F20, Oxford). Temperature-programmed reduction (H₂-TPR) was conducted on a TP5080B chemisorption analyzer with approximately 50 mg of each example. Each sample was pretreated at 300 °C for 0.5 h in a flow of N₂ (50 mL/min). The temperature was increased from room temperature to 900 $^\circ$ C at a heating rate of 10 $^\circ$ C/ min in a flow of a H₂ (30 mL/min), and the H₂ consumption was recorded continuously by the TCD detector. Temperature-programmed NH₃ desorption (NH₃-TPD-TCD) experiments were performed using a TP5080B chemisorption analyser with 5 vol% NH₃/Ar (50 mL/min) at a heating rate of 10 °C/min from 100 °C to 800 °C. The absorbed gases were passed through the samples for 1 h at 100 °C and started desorption to maintain stable NH₃ absorption and avoid the signal interference. Temperature-programmed desorption of NO, and NH₃ (NO- and NH₃-TPD-MS) was also conducted by same analyzer, monitored by an online quadrupole mass spectrometer (MS, Pfeiffer OmnistarTM). After being pretreated at 300 °C under flowing helium (50 mL/min) for 1 h, the powder sample (20 mg) was cooled to 50 °C and then adsorbed to saturation by 5 vol% NO/He, or 5 vol% NH₃/He for 0.5 h. The desorption signals were recorded from 50 °C to 1000 °C at an increasing rate of 10 °C/min. For the chemical states of surface elements, XPS was carried out with a Kratos Axis Ultra DLD spectrometer. The binding energy of surface elements was calibrated with C1s (284.8 eV) peak. In situ IR spectroscopy was recorded with a Bruker Tensor 27 spectrophotometer with a self-designed magnetically driven transmission cell. Prior to obtaining each IR spectrum, the sample (20 mg) was pretreated under N2 flow with 100 mL/min at 400 °C to remove adsorbed impurities. The spectra were recorded by accumulating 32 scans at a heating rate of 10 °C/min to 500 °C after the absorption of reactants for 0.5 h.

2.3. Catalytic activity testing

The SCR activity test was evaluated under atmospheric pressure in a fixed-bed quartz tube reactor (i.d. = 4 mm). The catalyst (200 mg, 0.1–0.15 mm) was charged for each test. The feed gases contained 300 ppm NO, 300 ppm NH₃, 5 vol% O₂ and N₂ as the balance gas with a total flow rate of 200 mL/min, corresponding to a gas hourly space velocity (GHSV) of 170,000 h⁻¹. Temperature-programmed catalytic reduction of NO was performed under heating (10 °C/min) from room temperature to 400 °C, and a K-type thermocouple was positioned between the reactor and oven wall to monitor the oven temperature. The concentrations of NO, NH₃, SO₂ and O₂ were measured by an online multicomponent analyser (Gasboard-300UV for NO (±2%FS) /NH₃ (±4%FS) /O₂ (±3%FS), and Gasboard-300plus for SO₂ (±2%FS), Hubei Cubic-Ruiyi Instrument Co., Ltd.). Good reproducibility of catalysts was found for each SCR experiment at three times.

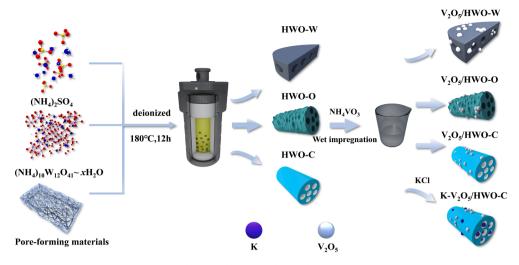


Fig. 1. Schematic diagram of the catalysts preparation.

Table 1 The element content by XRF and the atomic content by XPS of the catalysts.

Samples	V_2O_5 (%)	WO ₃ (%)	K/K ₂ O (wt%)	$(V^{5+}+V^{4+})/V_{total}$
V ₂ O ₅ /HWO-W	10.05	89.95	_	0.980
V ₂ O ₅ /HWO-O	10.02	89.98	_	0.971
V ₂ O ₅ /HWO-C	9.87	90.13	-	0.937
K-V ₂ O ₅ /HWO-C	9.74	88.51	1.75	0.952

3. Results and discussion

3.1. Structure, morphology and occurrence state

Fig. 2 displays the XRD patterns of the V₂O₅/HWO-W, V₂O₅/HWO-O, V₂O₅/HWO-C and K-V₂O₅/HWO-C catalysts. Apart from the strong characteristic diffraction peaks of hexagonal WO₃ for all the catalysts (PDF#75–2187), weak diffraction peaks assigned to V₂O₅ crystals (PDF#85–0601) can be observed in the spectra of V₂O₅/HWO-W, V₂O₅/HWO-O and V₂O₅/HWO-C. The size of HWO channels is not large enough to accommodate V₂O₅ particles[25], so that V₂O₅ is dispersed on the external surface of HWO rather than being introduced into HWO channels. The only weak peaks of V₂O₅ are detected on the V₂O₅/HWO-W, V₂O₅/HWO-W, V₂O₅/HWO-C in the Fig. 2, indicating that the most vanadium species are well dispersed and correspondingly, a little part of vanadium species are formed as crystalline on the catalysts.

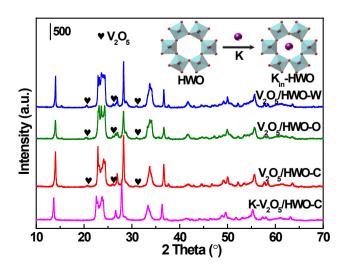
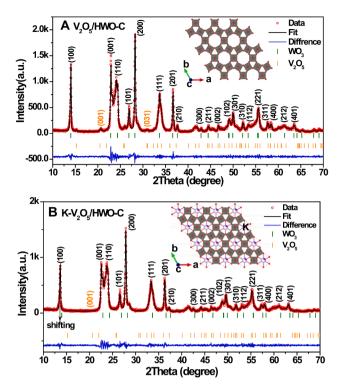



Fig. 2. XRD patterns of the catalysts.

Furthermore, Compared with V_2O_5/HWO -W and V_2O_5/HWO -O, V_2O_5/HWO -C shows relative highly dispersed states of V_2O_5 on the surface, according to the existence of much too weak peaks of V_2O_5 at 20.7° (001 plane), 25.9° (101 plane) and 31° (031 plane). After K⁺ was loaded, the peak of V_2O_5 crystallites became weaker and less obvious, which means that the active component of vanadium might be covered by some K⁺ on the catalyst surface [27]. Surprisingly, the shift of the diffraction peaks of HWO towards lower 20 values for K-V_2O_5/HWO-C reveals that most K⁺ ions are probably inserted into the HWO channels to cause a bigger lattice constant. The strength of HWO slightly decreases could be assigned to the some K⁺ covered on the catalyst surface. A structural model of the local situation of K⁺ is shown in the inset of Fig. 2.

To further confirm the K⁺ position, the corresponding Rietveld XRD refinements of V₂O₅/HWO-C and K-V₂O₅/HWO-C catalysts are shown in Fig. 3. All the Bragg reflections of the K-V₂O₅/HWO-C transfer to lower angles, in comparison with the V₂O₅/HWO-C. Then the calculated lattice constants of HWO (7.2993 Å×7.2993 Å×3.8872 Å) on the V₂O₅/HWO-C exhibit an expansion of a and b axis and a contraction of c axis after K⁺ insertion into the HWO tunnels (7.3088 Å×7.3088 Å×3.8807 Å) over K-V₂O₅/HWO-C (Table S1). The Rietveld refinement analyses show that the K⁺ occupies exactly at the Wyckoff 1a site or the (0,0,0) site and the occupation 0.25 (Table S2), indicating that the K⁺ ions are coordinated to six oxygen atoms (K-O) in the channels with a mean K-O bond length of ~ 2.68 Å [25]. Based on the typical Space group of HWO (P6/mmm), a structural model of the local region of K⁺ is carried out in the inset of Fig. 3.

The N₂ adsorption-desorption isotherms are analysed to study the difference in specific surface area (SSA), pore volume and pore size over various catalysts, as shown in Fig. 4. All the catalysts show type IV isotherms with a H3-type hysteresis loop, indicating that a large number of mesopores are formed in the catalysts. Due to the abundant network structure of commercial bacterial cellulose, V2O5/HWO-C shows a higher SSA (11.85 m²/g) than V_2O_5 /HWO-W (4.88 m²/g) and V_2O_5 / HWO-O (8.92 m^2/g) and, therefore, promotes the dispersion of V₂O₅ on the HWO surface. Particularly, the pores (Fig. 4b) show an exclusive region with a size <5 nm for V₂O₅/HWO-C by using bacterial cellulose as pore forming materials, favouring the formation of abundant channels for HWO and the interaction between many more V2O5 active sites and the HWO support, thus improving the catalytic performance. It has been reported that the small size (<5nm) among the supported catalyst promotes the formation of coordinated atoms with higher chemical activity [28]. The pore volume of V_2O_5 /HWO-C (0.033 cm³/g) is approximately equal to that of K-V₂O₅/HWO-C (0.031 cm³/g) since some K^+ is located in the channels of the K-V₂O₅/HWO-C catalyst via HWO trapping[29]. There are visible differences between V2O5/HWO-C and K-V2O5/HWO-

Fig. 3. XRD patterns (red lines) and corresponding Rietveld refinements (black lines) of the (A) V_2O_5 /HWO-C and (B) K- V_2O_5 /HWO-C. The green lines are the differential XRD pattern of the catalysts. The short vertical lines below the XRD patterns are assigned to the peak positions of all the possible Bragg reflections. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

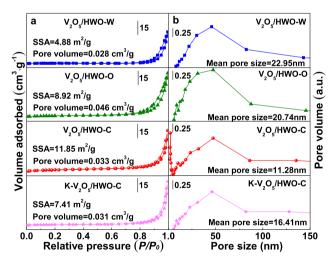


Fig. 4. N_2 adsorption–desorption isotherms (a) and pore size distribution (b) of catalysts.

C for both SSA and mean pore size. The V₂O₅/HWO-C shows a bigger SSA and a lower mean pore size than that of K-V₂O₅/HWO-C, attributed to partially K⁺ leads to block the micropores entrance, and agglomeration between some K⁺ and vanadium oxides causes the SSA decreasing and means pore size of accumulation pores increasing. This finding indicates that the other K⁺ ions may diffuse onto the surface of the catalyst or block the entrance of HWO channels.

Representative TEM images of the catalysts are presented in Fig. 5. Among all tested catalysts, V_2O_5 /HWO-C (Fig. 5c and 5g) exhibits the best and smoothest rod-shaped morphology of HWO and a good dispersion of V₂O₅ on the surface. Commercial bacterial cellulose possesses an ultrafine three-dimensional network structure and unique properties including high crystallinity, good tensile strength, and mouldability. Therefore, the cellulose here not only promotes controllable synthesis to form a catalyst with a regular morphology but also possesses a high surface area for dispersing more metal ions, which is in agreement with the XRD and N2-BET results. High-resolution TEM (HR-TEM) is further performed on V₂O₅/HWO-C (Fig. 5c), where a representative individual HWO rod with the side line parallel to the (100) plane is found by the fringe distance of 0.61 nm. Crystalline V₂O₅ is observed on the surface of HWO by measuring the D spacing at d = 0.29 nm. Typical morphologies with broader scales are also displayed in Fig. 5e-h. The loading of K⁺ results in no visible change in the rodshaped morphology (Fig. 5d), but some K⁺ ions are found on the surface of K-V₂O₅/HWO-C. Although the HWO channels synthesized by many precursors would be about 0.54 nm and V₂O₅ nanoparticles will not be captured [30]. The size of the HWO channels is ~ 0.54 nm, which is appropriate for accommodating metal ions with ionic radii<0.17 nm [31], thus easily capturing K^+ (0.13 nm) in the many easily formed HWO channels rather than capturing V2O5 nanoparticles for the K-V2O5/ HWO-C. According to the results above, there are two locations for K⁺ ions: i) on the HWO external surface and ii) inside the HWO channels in a stable state.

The distribution of elements in the cross-section channel of K-V₂O₅/ HWO-C catalyst have been given in Fig. 6 (a), (b) and (c). It is clear that the vanadium and part potassium species are detected on the HWO surface and the presence of the isolated individual potassium atoms. Combined with the Rietveld refinements and TEM results, these results are further confirmed thus most potassium ions are effectively captured in HWO-C channels through an ions exchange path in HWO-C channels. The hexagonal morphology of HWO-C in V₂O₅/HWO-C catalyst has been also well characterized by SEM, as shown in Fig. 6(d). It can be found that the controllable synthesis of catalytic hexagonal morphology was achieved successfully for the V₂O₅/HWO-C catalyst.

3.2. Chemical states, distribution of elements and acidity

The chemical states and surficial element compositions of the catalysts are investigated by XPS analysis. The V 2p spectra of the catalysts (Fig. 7a) show three main peaks for V^{5+} (517.1 eV), V^{4+} (516.3 eV) and V³⁺ (515.3 eV) [32]. The semiquantitative data, as listed in Table 1, give $(V^{5+}+V^{4+}) / V_{total}$ ratios of 0.937 for V₂O₅/HWO-C, 0.971 for V₂O₅/ HWO-O, 0.980 for V2O5/HWO-W and 0.952 for K-V2O5/HWO-C. After loading K⁺ ions on the V₂O₅/HWO-C catalyst, the ratio of the lattice oxygen (O_L^2) in the K-V₂O₅/HWO-C increases, and occurring the slightly change of vanadium chemical valence during the bond between V₂O₅ and partial K on the catalyst surface, hence the $(V^{5+}+V^{4+})/V_{total}$ ratios of V_2O_5 /HWO-C (0.937) is lower than K-V₂O₅/HWO-C (0.952). The W 4f spectra of the catalysts (Fig. 7b) are deconvoluted into $4f_{5/2}$ and $4f_{7/2}$ spin–orbit components [7,33]. The presence of W^{6+} in the catalysts favours the formation of a strong carrier-metal interaction via electronic transitions between W^{6+} and V^{n+} [34,35]. The O 1 s curve (Fig. 7c) is fitted to two peaks corresponding to surface-adsorbed oxygen (Oa, 531.6 eV) and lattice oxygen (OL, 530.5 eV)[36,37]. The peak of hydroxyl species is too low to fit accurately at \sim 530.8 eV due to a large peak at 530.5 eV for lattice oxygen in the catalysts. It was reported that O_a is the most active oxygen species that plays a crucial role in the SCR reaction due to its higher mobility on the catalyst surface than the inactive O_{I} [32]. Herein, O_{a} ratios are calculated by $O_{a}/(O_{a} + O_{I})$ and decrease in the following order (Fig. 7c): V_2O_5 /HWO-C (31.2 %) > K- $V_2O_5/HWO\text{-C}$ (30.6 %) > $V_2O_5/HWO\text{-O}$ (25.5 %) > $V_2O_5/HWO\text{-W}$ (22.5 %). The high O_a ratios of $V_2O_5/HWO\text{-}C$ and $K\text{-}V_2O_5/HWO\text{-}C$ should be related to the abundant oxygen ions in the commercial bacterial cellulose, which promotes contact with more metal ions in the catalysts. The K 2p spectra of K-V₂O₅/HWO-C were also obtained (as shown in the Fig. S1), verifying that some K⁺ ions exist on the catalyst

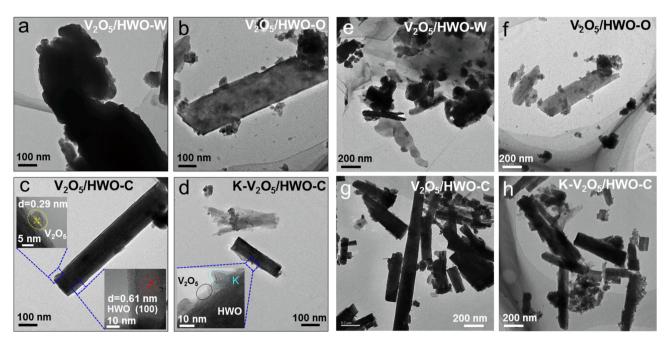


Fig. 5. TEM images of catalysts.

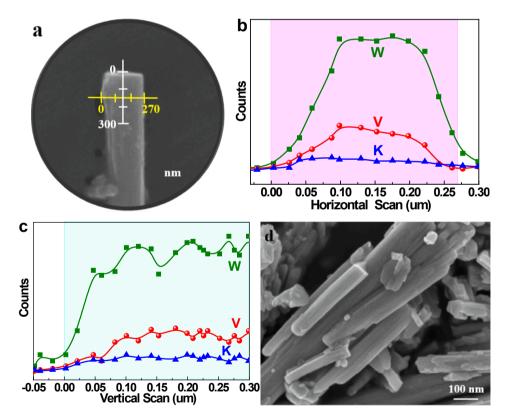


Fig. 6. (a) TEM images with line-scanned EDX spectra of the K-V₂O₅/HWO-C, (b) horizontal line-scanned, (c) vertical line-scanned, (d) SEM image of V₂O₅/HWO-C.

surface.

The redox ability of vanadium and tungsten species with different precursors and alkali metal of catalysts were investigated with H₂-TPR analysis, as shown in Fig. 8. The reduction peaks located at 610–644 °C and 730–750 °C are ascribed to reduction of $V^{5+}/V^{4+} \rightarrow V^{3+}$ and $W^{6+} \rightarrow W^0$, respectively[38]. The dispersed vanadium is considered as a key catalytic cycle for the SCR reaction due to the peak position of W species showed no obvious change in the catalysts although the content

of W is far more than that of V. Compared with the peaks of vanadium on the V₂O₅/HWO-O (629 °C) and V₂O₅/HWO-W (635 °C), the V₂O₅/ HWO-C shifts to lower temperature (610 °C), indicating that the well dispersed vanadium species are easily reduced and promote the activity of V₂O₅/HWO-C. This is consistent with the XRD, TEM, O_a of XPS and SCR activity results. After loading K⁺ on the V₂O₅/HWO-C, the reduction peak of V species of K-V₂O₅/HWO-C shifts to higher temperatures (644 °C), attributed to partial K⁺ bonds and weakens the oxidation

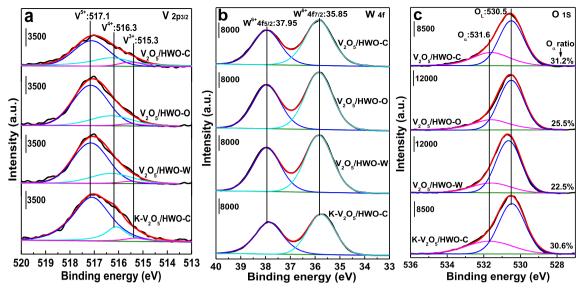


Fig. 7. XPS spectra of (a) V 2p, (b) W 4f and (c) O 1 s over the catalysts.

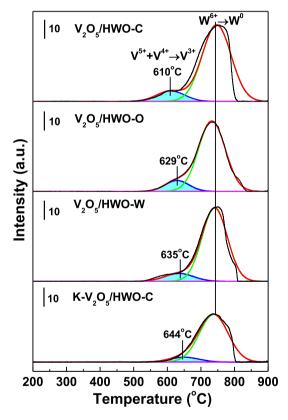


Fig. 8. H₂-TPR profiles of the catalysts.

activity of V species [39]. Further the peak intensity of W species for K-V₂O₅/HWO-C become lower than that of V₂O₅/HWO-C, suggesting that the captured K⁺ in HWO channel has a stronger interaction with oxygen in tungsten oxides.

The potassium element loaded on the whole regular K-V₂O₅/HWO-C rod would have an effect on the SCR activity. The TEM images, corresponding EDX maps and semiquantitative analysis of V₂O₅/HWO-C and K-V₂O₅/HWO-C are shown in Fig. 9, which illustrate the spatial distribution and high dispersion of vanadium and potassium on the catalyst surface. The vanadium and potassium species are well dispersed on the HWO external surface. There are three possible locations for K⁺ ions: i)

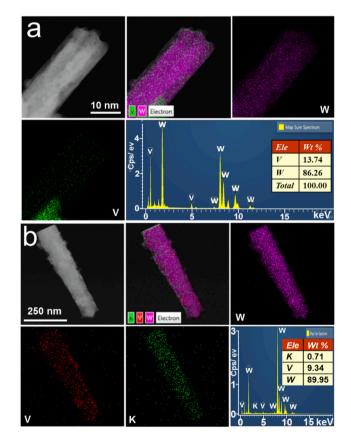


Fig. 9. TEM images, EDX mapping and spectrum of the (a) $V_2O_5/HWO\text{-}C$ and (b) K-V_2O_5/HWO-C catalysts.

on the HWO external surface not in conjunction with V_2O_5 , ii) on the HWO external surface in conjunction with V_2O_5 , and iii) at the entrance into the HWO channels. Based on the N_2 -BET results, the mean pore size of K- V_2O_5 /HWO-C (16.31 nm) is higher than that of V_2O_5 /HWO-C (11.28 nm). The increase in the mean pore size is responsible for the partial number of K⁺ ions making contact with V_2O_5 to form relatively large particles on the catalyst surface, possibly resulting in a decrease in the catalyst activity in the SCR reaction, which can be confirmed by the SCR activity in Fig. 12. Therefore, the locations of K⁺ should be

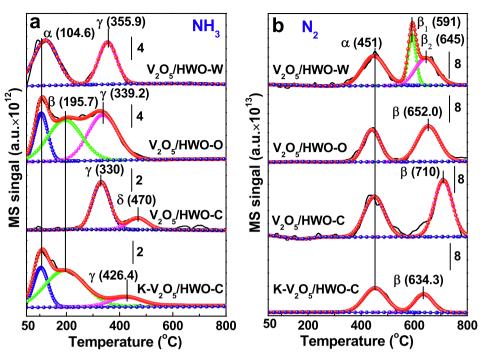


Fig. 10. NH₃-TPD-MS (a) NH₃ and (b) N₂ profiles of the catalysts.

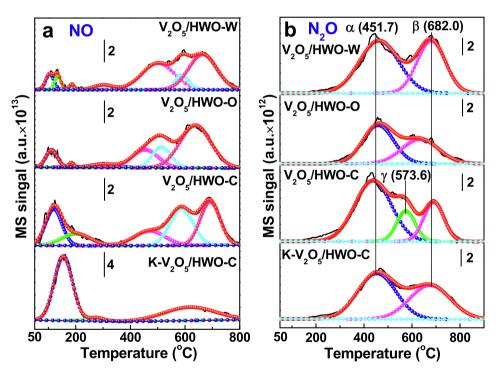
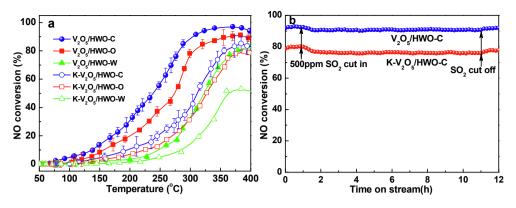



Fig. 11. NO-TPD-MS (a) NO and (b) N₂O profiles of the catalysts.

determined in the last two forms as discussed above. The obtained contents of tungsten and vanadium elements are also similar to the XRF results for typical K-V₂O₅/HWO-C rod (big scale at 250 nm). Hence the EDX shows that the content of K⁺ is 0.71 wt% on the whole surface of HWO (Fig. 9b) tested, whereas the total content of K⁺ on K-V₂O₅/HWO-C is 1.75 wt% via XRF analysis (Table 1). To sum up, 0.71 wt% K⁺ has been located on the HWO-C external surface and 1.04 wt% K⁺ has entered into the HWO-C channels according to the semiquantitative analysis.

As a traditional acidity analysis, the desorption temperature in the

NH₃-TPD-TCD experiment is always to start about 100 $^{\circ}$ C to avoid the signal interference, as shown in Fig S3. It can been seen that the peaks located < 220 $^{\circ}$ C and > 300 $^{\circ}$ C are assigned to the weak and strong absorbed NH₃ on acid sites, respectively. However the TCD signal can't represent and clarify all gases signals during NH₃ desorption process. Furthermore, in order to measure different gases in the NH₃-TPD process exactly, the online NH₃-TPD-MS is carried out to record the desorption process from the 50 $^{\circ}$ C to 800 $^{\circ}$ C. The NH₃-TPD-MS results could be more accurate to distinguish the acid strength and avoid interference caused by the signal peaks of other substances. The NH₃ signals of

Fig. 12. (a) SCR activity of the catalysts with the reaction condition: $[NH_3] = [NO] = 300 \text{ ppm}$, $[O_2] = 5 \text{ vol}\%$; (b) Effect of SO₂ on the SCR duration tests under the V₂O₅/HWO-C and K-V₂O₅/HWO-C catalysts at 360 °C with the reaction condition: $[NH_3] = [NO] = 400 \text{ ppm}$, $[O_2] = 5 \text{ vol}\%$, $[SO_2] = 500 \text{ ppm}$.

catalysts are monitored by the mass spectrometer (Fig. 10a). Correspondingly, the N₂ signal is detected synchronously to evidence that the NH₃ adsorbed on acid sites is thermally desorbed to yield N₂ (Fig. 10b). The large NH₃ chemical desorption curves around 200 °C is contributed to weakly bond NH₃ on the acid sites (Lewis acid) for the catalysts. The two typical medium-temperature desorption peaks of NH₃ (γ and δ) and two remarkable peaks of N₂ (α and β) are found on the V₂O₅/HWO-C catalyst, indicating that the NH₃ bond to strong acid sites (Brønsted acid) on V₂O₅/HWO-C is more easily activated and thermally desorbed to yield N₂ release, and closely attributable to the selective reduction of NO for SCR reaction. Our previous work found that the Brønsted acid sites not only bind and disperse transition metal ions but also absorb and activate ammonia[40,41]. Hence, the role is contradictory because metal ions well dispersed here are unable to bind a significant amount of physisorbed NH₃ on the V₂O₅/HWO-C.

The NO desorption analysis is also carried out to detected the NO and N₂O signals in Fig. 11a and 11b during NO-TPD, assigned to the key step of SCR reaction [42]. The desorption peak of NO centered in the < 200 °C is attributed to the physical desorption of NO bounded to amorphous clusters and well dispersed V₂O₅ oxides, easily absorbed on the some K⁺ of the K-V₂O₅/HWO-C surface (Fig. 11a), and another peak at > 200 °C corresponds to the chemical desorption of NO strongly bounded to bulk V₂O₅ oxides. The N₂O curves is measured synchronously at 180–800 °C since the NO is tend to be adsorbed on metal sites, and two N-O bonds are activated to convert into N₂O at elevated temperatures. The remarkable desorption peak area of N₂O is observed (Fig. 11b) at low temperature over V₂O₅/HWO-C, supporting that the relatively weak bond strength between well dispersed vanadium species and NO would facilitate the selective reduction of NO with NH₃, which is similar to the results of the other literatures[43,44].

3.3. SCR activity and resistance to K poisoning

Fig. 12 displays the SCR activity and duration tests for the catalysts to show the catalytic activity and alkali resistance capacity. The V₂O₅/HWO-C catalyst exhibits a higher activity than that of V₂O₅/HWO-W and V₂O₅/HWO-O, reaching a maximum NO conversion of 97 % at 360 °C and > 90 % NO conversion within the wide temperature range of 300–400 °C (Fig. 12a). The excellent activity obtained for V₂O₅/HWO-C can be attributed to the good dispersion of V₂O₅ on the smooth rod-shaped morphology of HWO and the abundant number of active oxygen atoms and acid sites on the catalyst surface, as proven by the XRD, TEM, H₂-TPR and XPS results. After being subjected to a K⁺ load, K-V₂O₅/HWO-C exhibits acceptable alkali resistance, with the highest NO conversion reaching 83 % at 360 °C among all the catalysts tested. The good N₂ selectivity below the 400 °C is also obtained in the Fig.S4. The SCR activity and alkali resistance compared to the reported catalysts [25,26,29,39,45] are shown in Table 2. It was reported that the presence

Table 2

The SCR activity over different catalysts under different reaction conditions.

Samples	Reaction gas mixture	GHSV (h ⁻¹)	Temperature (°C)	X _{NO} (%)	Refs.
V2O5/	$\mathrm{NO}=\mathrm{NH}_3=500$	200,000	350	92	[25]
HWO K ₂ SO ₄ - V ₂ O ₅ /	ppm, 3 vol% O_2 , 1,300 mg·m ⁻³ SO ₂ , N ₂ balanced	200,000	350	92	[25]
HWO K ₂ SO ₄ - V ₂ O ₅ / WO ₃ -		200,000	350	<10	[25]
TiO ₂ V ₂ O ₅ / HWO	$NO = NH_3 = 1000$ ppm, 3 vol% O ₂ , N ₂	80,000	350	90	[26]
V ₂ O ₅ / K _{in} HWO	balanced	80,000	350	~80	[26]
V ₂ O ₅ -S/ CeO ₂	$NO = NH_3 = 500$ ppm,5 vol% O ₂ , N ₂	100,000	350	~98	[29]
K-V ₂ O ₅ -S/ CeO ₂	balanced	100,000	350	~95	[29]
K0.1- VWTi	$NO = NH_3 = 500$ ppm, 3 vol% O ₂ , N ₂	70,000	350	96	[39]
K1-VWTi	balanced	70,000	350	20	[39]
V ₂ O ₅ /TiO ₂	$\mathrm{NO}=\mathrm{NH}_3=500$	8,000	400	95	[45]
K/V(1.3)- Imp- V ₂ O ₅ / TiO ₂	ppm, 5 vol% O ₂ , 1,500 ppm SO ₂ , 5 vol% H ₂ O, N ₂ balanced	8,000	400	88	[45]
K/V(1.3)- Dif- V ₂ O ₅ / TiO ₂		8,000	400	80	[45]
V ₂ O ₅ /	$NH_3 = NO = 300$	170,000	360	97	
HWO-C	ppm,	170,000	360	83	
K-V ₂ O ₅ /	$O_2 = 5$ vol%,	170,000	360	90	In this
HWO-C	N ₂ balanced	170,000	360	74	work
V2O5/		170,000	360	79	
HWO-O K-V ₂ O ₅ / HWO-O V ₂ O ₅ / HWO-W K-V ₂ O ₅ /		170,000	360	52	
HWO-W V ₂ O ₅ /	$\mathrm{NH}_3 = \mathrm{NO} = 300$	170,000	360	91	T., 41-1-
HWO-C K-V ₂ O ₅ / HWO-C	ppm, $O_2 = 5$ vol%, $SO_2 =$ 500 ppm, N ₂	170,000	360	76	In this work
NWO-C V ₂ O ₅ / HWO-O	500 ppm, N ₂ balanced	170,000	360	84	
K-V ₂ O ₅ / HWO-O		170,000	360	70	

of SO₂ may have a negative effect on the alkali resistance of V₂O₅-based catalysts [39,10,47]. Hence the influence of SO₂ on SCR stability was tested over the V2O5/HWO-C and K-V2O5/HWO-C, with the results shown in Fig. 12b. When 500 ppm (1400 mg/m^3) of SO₂ was introduced, the NO conversion for V2O5/HWO-C and K-V2O5/HWO-C slightly decreased from 93% to 91% and from 80% to 76% respectively, and maintain at such a conversion level for approximate 10 h, which indicate that slight interactions were occurred between alkalis and SO₂ in the SCR process. The activity of V2O5/HWO-C and K-V2O5/HWO-C recovered to 92% and 78% within 20 min, respectively. Li et al [10] reported that the V2O5-based catalysts exhibit a strong SO2 tolerance and weak alkali resistance performance. Hence the results of SCR stability test convince that effective alkali resistance of the K-V₂O₅/HWO-C originates from the capture of HWO channels, and the slight interactions between alkalis and SO₂ occurs owing to almost 0.71 % K⁺ located on the HWO-C external surface. The SEM and NH₃-TPD characterizations of the V2O5/HWO-C and K-V2O5/HWO-C catalysts after the SCR reaction have been supplied to explore the changes of morphology and acidity, as shown in Fig.S5 and Fig. S6, respectively. It can be found from Fig.S5 that the regular morphology is unchanged although the slight agglomeration on the catalyst surface, exhibiting the good resistance of SO₂. After SO₂-resistaing testing, the peak area becomes smaller and the temperature of peaks transform higher for the used V2O5/HWO-C and K-V2O5/HWO-C catalyst, indicating that the NH3 adsorption might become relative weaker on the catalyst surface. A reasonable explanation is that the slight sulfated species occupy adsorption sites and disturb NH₃ adsorption, in agreement with the small activity reduction of the catalysts.

To investigate the SCR reaction mechanism related to K^+ poisoning and trapping, samples for in situ IR analysis were pretreated under a N_2 flow of 100 mL/min with a 10 °C/min heating rate. Adsorption of 5 vol%

 NH_3/N_2 on V_2O_5/HWO -C (Fig. 13a) leads to the formation of many NH_4^+ species on the BrØnsted acid sites at 1410 cm⁻¹ and the absorption of NH_3 on the Lewis acid sites at 1345 cm⁻¹ [46,48,49]. In contrast, the Brønsted adsorption on K-V₂O₅/HWO-C (Fig. 13b) nearly disappeared, although the Lewis adsorption was obviously unchanged. The decrease in surface acid sites is induced by the capture of K^+ by HWO channels via the ion exchange pathway (W-O-H + K⁺ \rightarrow W-O-K + H⁺), in agreement with the XRD and NH₃-TPD results. With the increase of temperature from 50 to 500 °C, the 1345 cm⁻¹ peak of catalysts became slightly stronger, which can be attributed to the activated NH₄⁺ species and then transform to NH₃ on the catalyst surface. After pre-adsorption of 5 vol% NO + air, absorbed NO (1630 cm⁻¹) and absorbed NO₂ (1600 cm⁻¹) are formed[50,51], and the intensity of the peaks does not change for the V₂O₅ of V₂O₅/HWO-C and K-V₂O₅/HWO-C (Fig. 13c-d). This behaviour confirms that the HWO channels can effectively trap $K^{\!+}$ and prevent $K^{\!+}$ poisoning of V_2O_5 . The bands at 1355 and 1300–1140 cm⁻¹ are attributed to the chelated nitrite and bidentate nitrate species, respectively. In particular, the peak intensity at 1355 cm^{-1} for K-V₂O₅/HWO-C is higher than that for V₂O₅/HWO-C due to the occurrence of the K-O bond in the catalyst, in agreement with XRD and Rietveld refinements results, and verified by the literatures [23,25]. With a temperature increase to 500 °C, the peaks of absorbed NO and absorbed NO₂ decrease first, followed by the peaks of nitrite and nitrate species. Similar spectra are observed for V2O5/HWO-C (Fig. '13e) and K-V2O5/HWO-C (Fig. 13f). The bands at 1513 and 1413 cm⁻¹ (NH₄⁺ species on the BrØnsted acid sites), 1340 cm⁻¹ (NH₃ on the Lewis acid sites), 1626 cm⁻¹ (absorbed NO), and 1300–1140 cm⁻¹ (chelated nitrite and bidentate nitrate species) are observed. However, the band at 1413 cm^{-1} of K-V₂O₅/HWO-C is weaker than that of V_2O_5 /HWO-C under 5 vol% NH₃ + 5 vol% NO + air pre-adsorption because of the slight K⁺ poisoning. With the temperature increasing (50–500 °C), a series of NO_x species including NO_{abs},

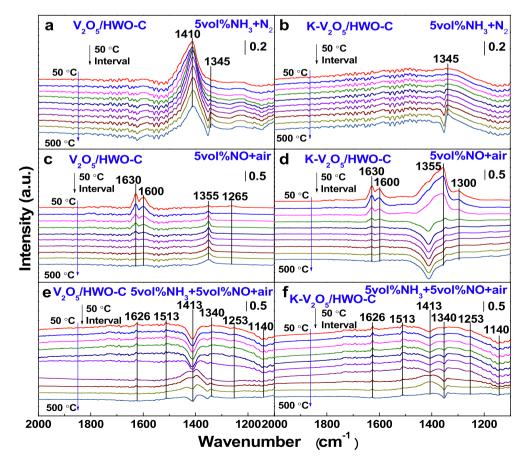


Fig. 13. In situ IR spectra of V₂O₅/HWO-C and K-V₂O₅/HWO-C (50–500 °C) under different pre-adsorption conditions.

 NO_{2abs} , NO_2^- and NO_3^- are formed via $NO + O_2$ at the V_2O_5 sites, which react with the NH_4^+ (BrØnsted) and NH_{3abs} (Lewis) groups of V_2O_5 and HWO sites to release N_2 and H_2O , following the Langmuir-Hinshelwood (L-H) mechanism.

3.4. K Resistance mechanism for the SCR reaction

According to the analysis above, the excellent activity obtained for V₂O₅/HWO-C can be attributed to the well dispersed V₂O₅ on the smooth rod-shaped morphology of HWO and the abundant number of active oxygen atoms and acid sites on the catalyst surface. The proposed K resistance mechanism and detailed pathways of intermediates for the SCR reaction are shown in Fig. 14. Combined with the IR results, a series of NO_x species including NO_{abs}, NO_{2abs}, NO₂ and NO₃ are formed via NO + O₂ at the V₂O₅ sites, which react with the NH₄⁺ (BrØnsted) and NH_{3abs} (Lewis) groups of V₂O₅ and HWO to release N₂ and H₂O, following the L-H mechanism (Fig. 14a and Fig. 14d), verified by the Zhu et al [52]. Most K⁺ (approximately 1.04 wt%) can be effectively captured in the smooth rod-shaped HWO-C channels with via the ion exchange pathway (Fig. 14c and Fig. 14d), because the K⁺ ions inatially react with protons of HWO-C via ion exchange, and then are stably fixed at the alkalitrapping sites via the coordination with the oxgen atoms of the cavities (W-O-H + $K^+ \rightarrow W$ -O-K + H⁺), concomitant with an energy saving [8,23]. Therefore, the V₂O₅/HWO-C can realize effective resistance of K poisoning via the coordination of the two sites: one is the alkali capture sites of HWO, and the other is the active sites of V_2O_5 on the catalyst. And the rest of K⁺ ions (approximately 0.71 wt%) are located on the HWO-C external surface via weak bonds to V₂O₅, resulting in a decrease in the number of BrØnsted acid sites and some degree of alkali poisoning (Fig. 14b and Fig. 14d), which is in agreement with the SCR activity results. In this case, the coordination of the two sites is effectively

realized for resisting K poisoning via the active sites of V_2O_5 and the K capture sites of HWO-C channels on the K- V_2O_5 /HWO-C catalyst.

4. Conclusions

The V2O5/HWO catalysts are synthesized using different poreforming agents for the SCR of NO with NH₃. The catalytic activity for SCR decreases in the order of $V_2O_5/HWO-C > V_2O_5/HWO-O > V_2O_5/$ HWO-W, which is due to the highly dispersed V₂O₅, high specific surface area, abundant amounts of active oxygen, surface acidity, and smooth rod-shaped morphology of HWO in the V₂O₅/HWO-C catalyst. The obtained results provide evidence that commercial bacterial cellulose achieves controllable synthesis to form catalysts with a regular morphology. The V₂O₅/HWO-C catalyst exhibits a relative effective resistance of alkali and SO₂. The NO_x intermediate species including NO_{abs} , NO_{2abs} , NO_{2} and NO_{3} are formed on the $V_{2}O_{5}$ active sites and react with the NH₄⁺ and NH_{3abs} groups of V₂O₅ and HWO, mainly following the L-H mechanism during the SCR reaction. After being subjected to a K⁺ load, V₂O₅/HWO-C effectively resisted K poisoning via the coordination of the two sites, where most of the K⁺ ions (1.04 wt%) can be effectively captured in the HWO-C channels with K-O bond, and a slight amount of K⁺ (0.71 wt%) is located on the HWO-C external surface and forms weak bonds with V₂O₅.

CRediT authorship contribution statement

Running Kang: Data curation, Formal analysis, Investigation, Writing - original draft, Writing - review & editing. Junyao He: Data curation, Formal analysis. Feng Bin: Formal analysis, Methodology, Supervision, Validation, Writing - review & editing. Baojuan Dou: Methodology, Validation. Qinglan Hao: Methodology, Resources,

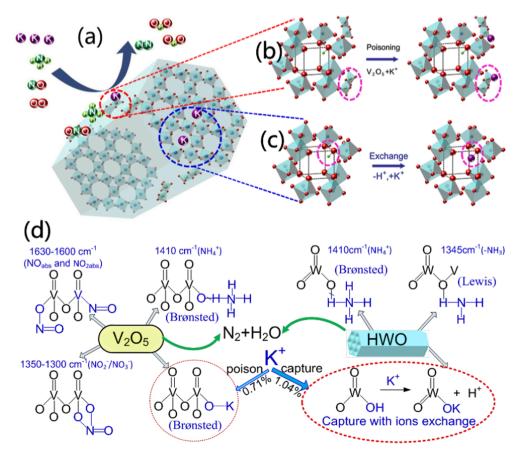


Fig. 14. Schematic model of the $K-V_2O_5/HWO-C$ catalyst: (a) SCR reaction mechanism with alkali metals, (b) slight alkali poisoning with V_2O_5 on the surface, (c) alkali resistance by HWO channel capture, and (d) detailed pathways of intermediates and forms of K^+ .

Validation. Xiaolin Wei: Funding acquisition, Project administration, Supervision. Kwun Nam Hui: Methodology, Writing - review & editing. Kwan San Hui: Methodology, Validation, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We sincerely thank Prof. Lv Gang (Tianjin University) for the help and reasonable suggestions about SCR reaction mechanism. We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 51736010), and the Key Projects of Tianjin Natural Science Foundation (19JCZDJC40100).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fuel.2021.121445.

References

- Pan YJ, Shen BX, Liu LJ, Yao Y, Gao HP, Liang C, et al. Develop high efficient of NH₃-SCR catalysts with wide temperature range by ball-milled method. Fuel 2020; 282:118834.
- [3] Hou Y, Wang J, Li Q, Liu Y, Bai Y, Zeng Z, et al. Environmental-friendly production of FeNbTi catalyst with significant enhancement in SCR activity and SO₂ resistance for NO_x removal. Fuel 2021;285:119133. https://doi.org/10.1016/j. fuel.2020.119133.
- [4] Inomata Y, Kubota H, Hata S, Kiyonaga E, Morita K, Yoshida K, et al. Bulk tungstensubstituted vanadium oxide for lowtemperature NOx removal in the presence of water. Nat Commun 2021;12(1). https://doi.org/10.1038/s41467-020-20867-w.
- [5] Strege JR, Zygarlicke CJ, Folkedahl BC, McCollor DP. SCR deactivation in a fullscale cofire-utility boiler. Fuel 2008;87(7):1341–7.
- [6] Nicosia D, Czekaj I, Krocher O. Chemical deactivation of V_2O_5/WO_3 -TiO₂ SCR catalysts by additives and impurities from fuels lubrication oils and urea solution Characterization study of the effect of alkali and alkaline earth metals. Appl. Catal., B: Environ. 2008;77:228–36.
- [7] Zhang SL, Zhong Q. Surface characterization studies on the interaction of V₂O₅–WO₃/TiO₂ catalyst for low temperature SCR of NO with NH₃. J Solid State Chem 2015;221:49–56.
- [8] Huang ZW, Gu X, Wen W, Hu PP, Makkee M, Lin H, et al. A "smart" hollandite deNO_x catalyst: self-protection against alkali poisoning. Angew Chem Int Ed 2013; 320(52):660–4.
- [9] Wang XX, Cong QL, Chen L, Shi Y, Shi Y, Li SJ, et al. The alkali resistance of CuNbTi catalyst for selective reduction of NO by NH₃: A comparative investigation with VWTi catalyst. Appl. Catal. B: Environ. 2019;246:166–79.
- [10] Li Q, Chen S, Liu Z, Liu Q. Combined effect of KCl and SO₂ on the selective catalytic reduction of NO by NH₃ over V₂O₅/TiO₂ catalyst. Appl Catal B Environ 2015;164: 475–82.
- [11] Cai S, Xu T, Wang P, Han L, Impeng S, Li Y, et al. Self-Protected CeO₂–SnO₂@SO₄^{2-/} TiO₂ Catalysts with Extraordinary Resistance to Alkali and Heavy Metals for NOx Reduction. Environ Sci Technol 2020;54(19):12752–60.
- [12] Yan L, Ji Y, Wang P, Feng C, Han L, Li H, et al. Alkali and Phosphorus Resistant Zeolite-like Catalysts for NO_x Reduction by NH₃. Environ Sci Technol 2020;54(14): 9132–41.
- [13] Wang P, Yan L, Gu Y, Kuboon S, Li H, Yan T, et al. Poisoning-Resistant NO_x Reduction in the Presence of Alkaline and Heavy Metals over H-SAPO-34-Supported Ce-Promoted Cu-Based Catalysts. Environ Sci Technol 2020;54(10): 6396–405.
- [14] Yang J, Tang W, Liu X, Chao C, Liu J, Sun D. Bacterial cellulose-assisted hydrothermal synthesis and catalytic performance of La₂CuO₄ nanofiber for methanol steam reforming. In. J Hydrogen. Energ. 2013;38(25):10813–8.
- [15] Wu X, Yu W, Si Z, Weng D. Chemical deactivation of V₂O₅-WO₃/TiO₂ SCR catalyst by combined effect of potassium and chloride. Front Environ Sci Eng 2013;7: 420–7.
- [16] Lian ZH, Li YJ, Shan WP, He H. Recent progress on improving low-temperature activity of vanadia-based catalysts for the selective catalytic reduction of NO_x with ammonia. Catalysts 2020;10(1421):1–19.
- [17] Lian ZH, Deng H, Xin SH, Shan WP, Wang Q, Xu J, et al. Significant promotion effect of rutile phase on V₂O₅/TiO₂ catalyst for NH₃-SCR. Chem Commun 2020. https://doi.org/10.1039/D0CC05938B.

- [18] Deng L, Liu X, Cao PQ, Zhao YG, Du YB, Wang CA, et al. A study on deactivation of V₂O₅-WO₃-TiO₂ SCR catalyst by alkali metals during entrained-flow combustion. J Energy Inst 2017;90:743–51.
- [19] Kong M, Liu QC, Zhou J, Jiang LJ, Tian YM, Yang J, et al. Effect of different potassium species on the deactivation of V₂O₅-WO₃-TiO₂ SCR catalyst: Comparison of K₂SO₄, KCl and K₂O. Chem Eng J 2018;348:637–43.
- [20] Li J, Peng Y, Chang H, Li X, Crittenden JC, Hao J. Chemical poisoning and regeneration of SCR catalysts for NO_x removal from stationary sources. Front. Environ. Sci. Eng. 2016;10:413–27.
- [21] He Y, Ford ME, Zhu M, Tumuluri QU, Wu LZ, Wachs IE. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH₃ with V₂O₅-WO₃-TiO₂ catalysts. Appl Catal B Environ 2016;193:141–50.
- [22] Kwon DW, Park KH, Hong SC. The influence on SCR activity of the atomic structure of V₂O₅/TiO₂ catalysts prepared by a mechanochemical method. Appl Catal A General 2013;451:227–35.
- [23] Hu PP, Huang ZW, Gu X, Xu F, Gao J, Wang Y, et al. Alkali-resistant mechanism of a hollandite DeNO_x catalyst. Environ Sci Technol 2015;49:7042–7.
- [24] Zhou G, Maitarad P, Wang P, Han L, Yan T, Li H, et al. Alkali-Resistant NO_x Reduction over SCR Catalysts via Boosting NH₃ Adsorption Rates by In Situ Constructing the Sacrificed Sites. Environ Sci Technol 2020;54(20):13314–21.
- [25] Huang ZW, Li H, Gao JY, Gu X, Zheng L, Hu PP, et al. Alkali- and sulfur-resistant tungsten-based catalysts for NO_x emissions control. Environ Sci Technol 2015;49: 14460–5.
- [26] Zheng Li, Zhou M, Huang Z, Chen Y, Gao J, Ma Z, et al. Self-protection mechanism of hexagonal WO₃-based DeNO_x catalysts against alkali poisoning. Environ Sci Technol 2016;50(21):11951–6.
- [27] Wan Q, Duan L, Li JH, Chen L, He KB, Hao JM. Deactivation performance and mechanism of alkali (earth) metals on V₂O₅–WO₃/TiO₂ catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas. Catal Today 2011;175: 189–95.
- [28] Li SW, Xu Y, Chen YF, Li WZ, Lin LL, Li MZ, et al. Tuning the selectivity of catalytic carbon dioxide hydrogenation over Iridium/Cerium oxide catalysts with a strong metal-support interaction. Angew Chem Int Ed 2017;56:10761–5.
- [29] Zhou GY, Maitarad P, Wang PL, Han LP, Yan TT, Li HR, et al. Alkali-Resistant NOx Reduction over SCR Catalysts via Boosting NH₃ Adsorption Rates by In Situ Constructing the Sacrificed Sites. Environ Sci Technol 2020;54(20):13314–21.
- [30] Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 1976;32(5):751–67.
- [31] Chen Li, Lam S, Zeng Q, Amal R, Yu A. Effect of cation intercalation on the growth of hexagonal WO₃ nanorods. J Phys Chem C 2012;116(21):11722–7.
- [32] Zhu N, Shan WP, Lian ZH, Zhang Y, Liu K, He H. A superior Fe-V-Ti catalyst with high activity and SO₂ resistance for the selective catalytic reduction of NO_x with NH₃. J Hazard Mater 2020;382. https://doi.org/10.1016/j.jhazmat.2019.120970.
- [33] Zhang SL, Zhong Q. Promotional effect of WO₃ on O²⁻ over V₂O₅/TiO₂ catalyst for selective catalytic reduction of NO with NH₃. J. Mol. Catal. A-Chem. 2013;373: 108–13.
- [34] Chen JP, Yang RT. Role of WO₃ in mixed V₂O₅–WO₃/TiO₂ catalysts for selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. A. Gen. 1992;80(1): 135–48.
- [35] Shi J-W, Wang Y, Duan R, Gao C, Wang B, He C, et al. The synergistic effects between Ce and Cu in Cu_yCe_{1-y}W₅O_x catalysts for enhanced NH₃-SCR of NO_x and SO₂ tolerance. Catal Sci Technol 2019;9(3):718–30.
- [36] Wang D, Peng Y, Xiong S-C, Li B, Gan L-n, Lu C-M, et al. De-reducibility mechanism of titanium on maghemite catalysts for the SCR reaction: An in situ DRIFTS and quantitative kinetics study. Appl Catal B Environ 2018;221:556–64.
- [37] Huang J, Teng Z, Kang R, Bin F, Wei X, Hao Q, et al. Study on activity, stability limit and reaction mechanism of CO self-sustained combustion over the LaMnO₃, La_{0.9}Ce_{0.1}MnO₃ and La_{0.9}Sr_{0.1}MnO₃ perovskite catalysts using sugar agent. Fuel 2021;292:120289. https://doi.org/10.1016/j.fuel.2021.120289.
- [38] Reiche MA, Maciejewski M, Baiker A. Characterization by temperature programmed reduction. Catal Today 2000;56(4):347–55.
- [39] Chen L, Li JH, Ge MF. The poisoning effect of alkali metals doping over nano $_{V20}5-W_03/Ti_02$ catalysts on selective catalytic reduction of N_ox by N_H3. Chem Eng J 2011;170:531–7.
- [40] Bin F, Song C, Lv G, Song J, Cao X, Pang H, et al. Structural characterization and selective catalytic reduction of nitrogen oxides with ammonia: a comparison between Co/ZSM-5 and Co/SBA-15. J Phys Chem C 2012;116:26262–74.
- [41] Bin F, Song C, Lv G, Song J, Wu S, Li X. Selective catalytic reduction of nitric oxide with ammonia over zirconium-doped copper/ZSM-5 catalysts. Appl Catal B Environ 2014;150–151:532–43.
- [42] Zhong L, Cai W, Yu Y, Zhong Q. Insights into synergistic effect of chromium oxides and ceria supported on Ti-PILC for NO oxidation and their surface species study. Appl Sur Sci 2015;325:52–63.
- [43] Topsøe NY, Topsøe H, Dumesic JA. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric oxide by ammonia. J Catal 1995;151:226–40.
- [44] Lietti L. Reactivity of V₂O₅-WO₃/TiO₂ de-NO_(x) catalysts by transient methods. Appl Catal B Environ 1996;10:281–97.
- [45] Lei TY, Li QC, Chen SF, Liu ZY, Liu QY. KCl-induced deactivation of V₂O₅-WO₃/ TiO₂ catalyst during selective catalytic reduction of NO by NH₃: Comparison of poisoning methods. Chem Eng J 2016;296:1–10.
- [46] Guo R-T, Wang S-X, Pan W-G, Li M-Y, Sun P, Liu S-M, et al. Different poisoning effects of K and Mg on the Mn/TiO₂ catalyst for selective catalytic reduction of NOx with NH₃: A Mechanistic Study. J. Liu. J. Phys. Chem. C. 2017;121(14):7881–91.
- **[47]** Chen J, Yang RT. Mechanism of Poisoning of the V₂O₅/TiO₂ Catalyst for the Reduction of NO by NH₃. J Catal 1990;125:411–20.

R. Kang et al.

- [48] Hu WS, Zhang YH, Liu SJ, Zheng CH, Xiang Gao I, Nova ET. Improvement in activity and alkali resistance of a novel V-Ce(SO₄)₂/Ti catalyst for selective catalytic reduction of NO with NH₃. Appl Catal B Environ 2017;206:449–60.
 [49] Rasmussen SB, Portela R, Bazin P, Ávila P, Bañares MA, Daturi M. Transient
- [49] Rasmussen SB, Portela R, Bazin P, Avila P, Bañares MA, Daturi M. Transient operando study on the NH₃/NH⁴ interplay in V-SCR monolithic catalysts. Appl Catal B Environ 2018;224:109–15.
- [50] Marberger A, Ferri D, Elsener M, Krocher O. The significance of lewis acid sites for the selective catalytic reduction of nitric oxide on vanadium-based catalysts. Angew Chem Int Ed 2016;55:11989–94.
- [51] Hadjiivanov K, Concepcion P. Analysis of oxidation states of vanadium in vanadia-titania catalysts by the IR spectra of adsorbed NO. Top Catal 2000;12: 123–30.
- [52] Zhu M, Lai JK, Tumuluri U, Ford ME, Wu Z, Wachs IE. Reaction pathways and kinetics for selective catalytic reduction (SCR) of acidic NO_x emissions from power plants with NH₃. ACS Catal 2017;7:8358–61.