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Abstract 
The dynamics of frontal and transverse shocks in gaseous detonation waves is a complex phenomenon bringing many dif-
ficulties to both numerical and experimental research. Advanced laser-optical visualization of detonation structure may 
provide certain information of its reactive front, but the corresponding lead shock needs to be reconstructed building the 
complete flow field. Using the multi-layer perceptron (MLP) approach, we propose a shock front reconstruction method 
which can predict evolution of the lead shock wavefront from the state of the reactive front. The method is verified through 
the numerical results of one- and two-dimensional unstable detonations based on the reactive Euler equations with a one-
step irreversible chemical reaction model. Results show that the accuracy of the proposed method depends on the activation 
energy of the reactive mixture, which influences prominently the cellular detonation instability and hence, the distortion 
of the lead shock surface. To select the input variables for training and evaluate their influence on the effectiveness of the 
proposed method, five groups, one with six variables, and the other with four variables, are tested and analyzed in the MLP 
model. The trained MLP is tested in the cases with different activation energies, demonstrates the inspiring generalization 
capability. This paper offers a universal framework for predicting detonation frontal evolution and provides a novel way to 
interpret numerical and experimental results of detonation waves.
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1  Introduction

A detonation is a supersonic, combustion-driven compres-
sion wave across which there is a significant pressure and 
temperature increase. Due to its destructive nature and 
rapid release of energy, a wealth of fundamental research 
on this subject can be found in the literature and has been 
of wide interest for terrestrial and astrophysical explosions 
[1–4]. In recent years, the application of detonation pro-
cess in propulsion systems attracts more and more atten-
tion, resulting in several types of detonation-based engines 
[5–9]. Such emerging technology trend in aerospace war-
rants a renewed focus for detonation research in develop-
ing new technique to aid interpretation of flow data and 
predicting the unsteady dynamics of detonation in various 
combustors.

As shock-induced combustion [10–13], the detonation 
dynamics depends on the wave frontal structure com-
posed of shock-flame complex. Beyond classic steady 
Zeldovich–von Neumann–Döring (ZND) model predic-
tion, realistic detonation waves are featured by transverse 

Executive Editor: Jianqiang Chen.

 *	 Pengfei Yang 
	 yangpengfei@imech.ac.cn; young1505@foxmail.com

1	 School of Aerospace Engineering, Beijing Institute 
of Technology, Beijing 100081, China

2	 State Key Laboratory of Laser Propulsion and Application, 
Beijing Power Machinery Institute, Beijing 100074, China

3	 Department of Mechanical, Industrial and Aerospace 
Engineering, Concordia University, Montreal, QC H3G 1M8, 
Canada

4	 State Key Laboratory of High Temperature Gas Dynamics, 
Institute of Mechanics, Chinese Academy of Sciences, 
Beijing 100190, China

5	 School of Engineering Sciences, University of Chinese 
Academy of Sciences, Beijing 100049, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10409-021-01130-x&domain=pdf


1611Reconstructing shock front of unstable detonations based on multi‑layer perceptron﻿	

1 3

shocks, resulting in cellular instabilities on the detonation 
wavefront. Understanding of the cellular structure and its 
evolution has long been among the most important direc-
tions in the detonation physics field. For long, the use of 
smoked foils to record tracks of triple points has been the 
standard technique in observing the cellular detonation 
structure. By analyzing the records, quantitative study on 
the cell width has been performed thoroughly and tabu-
lated, such as its dependence of reactants, equivalence 
ratio, initial pressure, and temperature [14]. Moreover, 
analytical and semi-empirical models on the cell width 
have been proposed, correlating this dynamic parameter 
with parameters determined from chemical kinetics such 
as the induction zone length scale [15, 16].

The movement of transverse waves, which plays the 
key role in the cellular structure, has not been studied 
thoroughly. In recent years, advanced optical technolo-
gies, such as planar laser induced fluorescence (PLIF) 
or computed tomography of chemiluminescence (CTC), 
provide new experimental ways to “look inside” the cel-
lular detonation [3]. It is observed that the interaction of 
shock and heat release may induce various reactive front 
morphologies, whose regularity depends on the fuels [17]. 
These results reveal the dynamic structure of cellular deto-
nation, shedding light on the detonation research beyond 
the cell analysis of static smoked foils. However, PLIF 
only provides the information of heat release zone, and 
the wave surface, especially location of shocks, must be 
measured simultaneously through schlieren photography. 
This is because advanced optical technologies, PLIF or 
CTC, are designed to capture the combustion tuned with 
a particular species concentration. The schlieren may be 
used to compensate this deficiency and get the complete 
wave surface, but it is limited to two-dimensional (2D) 
cellular detonations. On the three-dimensional (3D) deto-
nations, CTC has shown its potential to be used to get 3D 
flame [18–20], but corresponding 3D shock measurement 
technology is still not available [21–25].

Theoretical efforts are also made to the understanding 
of cellular detonation dynamics and to the derivation of 
detonation-shock evolution equation [26], notably using 
the theory of detonation shock dynamics (DSD) [27–29] 
by simplifying the detonation shock and reaction zone 
with an evolving surface described by a Dn–κ relationship. 
Using such analysis approach, worth noting are the recent 
works [30, 31], in which the DSD is used to characterize 
the effect of the cellular instability on the lead shock shape 
and velocity evolution of the gaseous detonations, revealing 
some distinct features in different stages of evolution and 
that trajectories of all shock front portions collapsed to a 
common curve in velocity-curvature space. These studies 
provide a model to reconstruct the surface evolution and 
further clarify the underlying physical mechanisms for the 

cell motion. However, the current concepts derived from 
DSD suffer the underlying restriction conditions due to ana-
lytic approximations and hence, are applied only to weakly 
unstable detonation.

Nowadays, machine learning has become more and more 
ubiquitous and adopted in many scientific research disci-
plines. Through machine learning, computers can develop 
the capability to learn through training and search through 
data sets to predict patterns and trends. This provides a good 
opportunity to develop a new direction for detonation mod-
elling. In this study, we propose a shock front reconstruc-
tion method based on the information from the heat release 
region. Although the parameters of post-shock heat release 
can be calculated theoretically given the lead detonation 
shock and pre-shock parameters, the reverse process, i.e., 
from heat release region or flame to lead shock, cannot be 
easily achieved to close the coupling. Benefiting from the 
aforementioned rapid development of machine learning, the 
proposed shock front reconstruction concept is based on the 
multi-layer perceptron (MLP) modelling. MLP is found to 
be a powerful tool in fluid mechanics research [32–34], but 
its application in gaseous detonations is limited in modeling 
the cell width [35]. Our recent study [36] proposed a method 
of predicting the wave configurations of cellular detonations 
based on the MLP, but proper orthogonal decomposition 
(POD) is used to extract the features of the flow fields, which 
is complicated and requires big data difficult to be accumu-
lated. In this investigation, one novel reconstruction method 
is proposed based on only the MLP, which is trained to build 
up the linkage of the lead shock wavefront and the state 
of the reactive front. Firstly, unstable detonations obtained 
numerically from the reactive Euler equations are used to 
train the MLP and provide mapping and feedback from the 
heat release zone to the lead shock. The input variables for 
model training and the effectiveness of the proposed MLP 
approach for reconstructing shock front motion are dis-
cussed. To this end, it is worth noting that in principle, the 
proposed MLP-based shock front reconstruction method is 
not restricted to one/two-dimensional cases, or limited by the 
chemical reaction model. Proper data sets, however, must be 
carefully provided for the MLP to be trained.

2 � Numerical simulation methods and results

An ideal detonation model given by the reactive Euler equa-
tions with a one-step Arrhenius kinetics model is considered 
in this work. The non-dimensional governing equations with 
a one-step, irreversible chemical reaction are of the form:

(1)
�U

�t
+

�E

�x
+

�F

�y
+ S = 0,
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with

All flow variables have been made dimensionless by ref-
erence to the uniform unburned state ahead of the detonation 
front:

The variables ρ, u, v, p, e, and Q are the density, veloci-
ties in x- and y-directions, pressure, total energy, and the 
amount of chemical heat release, respectively. For the chem-
ical reaction, λ is the reaction progress variable which varies 
between 0 (for unburned reactant) and 1 (for product). The 
half-reaction zone length L1/2 is the distance required for half 
the reactant to be consumed in the steady ZND detonation 
wave, i.e., λ = 0.5. In the strict sense, the chemical reaction 
is continuous and the reactive front of discontinuity does 
not yet exist. Considering the require of quantitative analy-
sis, the reactive front is assumed to be the position of half-
reaction reactant in this study. The reaction is controlled by 
the activation energy Ea and the pre-exponential factor k, 
which is chosen to define the spatial and temporal scales, so 
L1/2 is scaled to unit length.

The governing equations are discretized on Cartesian 
uniform grids and solved numerically using the MUSCL-
Hancock scheme with Strang’s splitting. The MUSCL-
Hancock scheme is formally a second-order extension to 
Godunov’s first order upwind method by constructing the 
Riemann problem on the inter-cell boundary [37]. The 
scheme is made total variation diminishing (TVD) with the 
use of slope limiter MINBEE, and the Harten-Lax-van Leer-
Contact (HLLC) approximate solver is used for the Riemann 
problem. In the simulations, we use the dimensionless 
parameters Q = 50 and γ = 1.2. These are used traditionally 
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in numerical simulations as canonical values to investigate 
detonation wave phenomena [38]. The stability of the deto-
nation is sensitive to Ea, which is adjusted to produce unsta-
ble detonations and cellular dynamics with different degrees 
of regularity.

For the one-dimensional (1D) pulsating detonation wave 
simulations, an effective numerical resolution of 128 points 
per half-reaction length is used, which is sufficient to resolve 
the detailed features of the pulsating shock front with the 
activation energy close to the stability limit [39]. Besides, 
simulations allowing the detonation to run for thousands 
of half-reaction times are performed to ensure the ultimate 
correct nonlinear oscillatory behavior of the detonation 
propagation is achieved. The simulations are initialized by 
the steady solution of the ZND detonation, and zero-gradi-
ent boundary conditions extrapolated from the interior are 
imposed on the left and the right boundaries.

The 2D flow fields behind the cellular detonation are 
obtained from the simulation results of detonation wave 
propagating in a rectangular tube. The slip boundary con-
ditions are used on the upper and bottom wall of the tube, 
while zero-gradient boundary conditions are implemented 
on the left and the right boundaries. Initially static unburned 
gas with unity density and pressure fulfills the whole tube. 
The ignition zone with high temperature and pressure is 
used to initiate the detonation, and a self-sustained deto-
nation propagating at nearly Chapman-Jouguet velocity is 
formed after traveling a certain distance. Relatively lower 
activation energies, Ea = 10 and Ea = 20, are used to obtain 
cellular detonation waves. About 10 grids per L1/2 is used 
for the following simulations of cellular detonations, which 
is shown sufficient to simulate the unstable structures. A 
few cases with fine grid, 20 grids per L1/2 in the case of 
Ea = 20, are tested to see the effects of grid resolution on the 
reconstruction. A sufficiently large domain width of 80 is 
used to ensure enough detonation cells are present. Since the 
half-reaction zone length L1/2 in the steady ZND detonation 
wave is assumed to be unit, the pre-exponential factors k are 
chosen to be 3.64, 16.44, 49.45, and 80.23 for activation 
energies Ea = 10, 20, 27, 30, respectively.

The flow fields of cellular detonation after a long-time 
simulation avoiding the initial transient from the ignition 
zone are shown in Fig. 1. The self-sustained detonations are 
featured by cellular structures composed of reactive front, 
lead shock and transverse shock waves. The transverse waves 
propagate periodically in a direction perpendicular to the 
propagation of the lead shock wave. The reactive front is 
distorted by the lead and transverse waves, resulting in a 
series of irregular section. Results indicate that high Ea 
induces more unstable detonation wave, and vice versa. 
With the same height, there are fewer transverse waves in 
the case of Ea = 20, and the regularity of transverse waves 
is weak, as shown in Fig. 1. To verify the simulated results, 
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numerical smoked foil records using maximum pressure 
trace are also generated during the computation. Figure 2 
shows the numerical smoked foil records with Ea = 10 and 
Ea =  20. Generally these results are the same as previous 
studies qualitatively, e.g., Refs. [38, 40–44], and can be used 
as samples of our shock reconstruction method. 

3 � Reconstruction method and results

3.1 � Shock front reconstruction based on MLP

The idea of shock front reconstruction is to predict the 
shock motion through the information around the reactive 
front based on a state projection from reactive front to 
shock front established by MLP. In the 2D flow field as 
illustrated by Fig. 3a, the reactive front is displayed by 
the black dashed curve, corresponding the reaction index 
λ = 0.5, while the shock front by the white dashed curve, 
corresponding the location achieving twice of pre-shock 
pressure. In essence, the goal of the shock front recon-
struction is to predict the location of the white dashed 
curve according to the flame surface parameters of the 
black one. Considering the parameters of reactive front are 
available, the problem is simplified to predict the distance 
LMLP between shock and reactive front. The use of MLP is 
thus to provide a nonlinear mapping relationship between 
LMLP and corresponding flame surface parameters, which 
can be established by learning from a large amount of 
shock-reactive front data extracted from the detonation 
wave flow field. The learning process is also known as 
the training process. Once the training is completed, the 

trained MLP can be used to quickly reconstruct complex 
detonation wave surface using measured or known flame 
surface parameters.

The basic architecture of MLP is shown in Fig. 3b. It 
includes one input layer, several hidden layers, and one 
output layer. In input and hidden layers, there are several 
neurons which connect with neurons of other layers. It 
is a pity that there are no rigorous rules on the number 
of layers/neurons in the research field of MLP so far. On 
the problem here, several trials indicate that two hidden 
layers, whose neurons are fixed to be six, are enough to 
achieve an acceptable MLP model, thus are used in dif-
ferent reconstruction cases for the convenience of com-
parative analysis. There are no doubts that MLP can be 
optimized further by elaborating the MLP architecture, 
but this one is enough to verify our methods. The neurons 
of input layer are variable, changing from 3 to 6, and the 
output layer has only one neuron to get LMLP. The mean 
of squared errors between the MLP output and the target 
of the training set is used here as performance function to 
evaluate the MLP. The activation function used in each 
layer plays an important role in the nonlinear mapping 
ability of the MLP. There are a number of common activa-
tion functions in the literature [45], and this work utilizes 
the hyperbolic tangent sigmoid transfer function for both 
two hidden layers, and the linear transfer function is used 
for the output layer.

In the training, we use Nguyen-Widrow layer initialization 
function as the MLP initial method to generate initial weight 
and bias values for each layer, which is useful to reduce train-
ing time [46]. The weight and bias values of neurons are 
updated according to Levenberg–Marquardt optimization [47, 

Fig. 1   Pressure (left) and temperature (right) fields of cellular detonations with a Ea = 10 and b Ea = 20
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48], which is adaptive between the steepest descent method 
and the Gauss–Newton method to achieve fast convergency 
rate. When the current solution is far from the minimum, the 
algorithm is essentially a steepest descent method with a small 
step size, which is relatively slow but guaranteed converge, but 
gradually switches to a Gauss–Newton method to approach a 
quadratic approximation when the current solution is close to 
the correct solution. Thus, this algorithm is very efficient for 
training moderate-sized feedforward neural networks (up to a 
few hundred weights) [48]. Validation is used to stop training 
early if the network performance on the validation set fails to 
improve or remains the same for certain pre-set epochs.

Given the mixtures, many transient flow fields may exist 
at certain instants, like those shown in Fig. 1. For each Ea, a 
data set consisting of 60 different shock-reactive front data 
is generated from the transient detonation flow fields every 
certain number of calculation steps, after the general structure 
approaches a steady state. The data set is further divided ran-
domly as the training set and validation set, with the ratio 85% 
and 15%. Beside the training set and validation set, the test set 
is generated additionally from the subsequent detonation trav-
elling flow fields, including 10 different shock-reactive front 
data. For each transient flow field, we get 801 (corresponds to 
the grid numbers along y-direction) pairs of parameter values, 
which are extracted along the line parallel with x-axis. For 
each activation energy, one independent MLP will be trained 
using corresponding flow field data set described above. In 
order to quantitatively evaluate the reconstruction accuracy, 
the relative error (Δ) between the MLP reconstruction length 
LMLP and the real distance between shock and reactive front 
Lreal is defined as follows:

There are several different choices on the input vari-
ables. Considering the conservation of mass, momentum 
and energy in the flow, we choose density ρ, temperature 
T, and velocities u and v. The corresponding gradients of 
temperature and density, T � = ∂T/∂x and �� = ∂ρ/∂x, are also 
introduced to verify the method, and the parameter depend-
ence will be discussed in the later part.

3.2 � Application on 1D pulsating detonations

We first use the proposed method to reconstruct the lead 
shock for the 1D pulsating detonations. When the activation 
energy is above and close to the stability limit, the 1D deto-
nation can exhibit oscillatory behavior with constant period. 
The lead shock pressure after the initiation transient passed, 
is plotted in Fig. 4a for activation energy Ea = 27. The shock 
pressure is normalized by the von Neumann pressure of the 
corresponding steady ZND solution. The time evolution of 
the distance between the shock and reactive front of the pul-
sating detonation is also shown in Fig. 4a. As can be seen, 
the pulsating detonation manifests a single-mode oscillation 
with both lead shock pressure and shock-reactive front dis-
tance exhibiting a similar periodic trend. With Ea increasing 
from 27 to 30, the instability of the detonation front migrates 
from a single-mode oscillation to a chaotic oscillation, as 
illustrated in Fig. 4b. These long-time nonlinear evolution 
results are in good agreement with those found in literature 
[39, 49].

(7)� =
LMLP − Lreal

Lreal

× 100%.

Fig. 2   Numerical smoked foil records with a Ea = 10 and b Ea = 20 to illustrate the detonation cells
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Due to the different pulsating characteristic of detona-
tions, the number of shock-reactive front data extracted 
for MLP training of each Ea is different. For Ea = 27, start-
ing from the dimensionless time t = 1500, we extract the 
training data from three consecutive oscillation cycles 
with the time interval ∆t = 0.2 to set up corresponding 
MLP. Considering that the oscillation becomes obviously 
irregular for Ea = 30, more shock-reactive front data is 
extracted with the same time interval ∆t = 0.2 to train the 
corresponding MLP, i.e., from the dimensionless time 
t = 3000 to t = 4000. Three input variables, i.e., T, ρ, and 
u, are used as the MLP input variables set to perform the 
reconstruction, since the above 1D pulsating detonations 
show relatively simple mapping relationships between the 
flame surface and the corresponding lead shock. Figure 5 
displays the extracted data of each Ea used for the training 
of each MLP, which illustrates the nonlinearity depend-
ence between the shock-reactive front distance and three 

input variables. Essentially, the shock front reconstruction 
for 1D pulsating detonations can be regard as a multiple 
regression issue mathematically. In addition to MLP, there 
are many other widely used traditional regression mod-
els. Considering the interpretability and the explicitness 
of different models, we utilize multiple linear regression 
(MLR) and multivariate second-degree polynomial regres-
sion (MSPR) to reconstruct the shock front as comparisons 
to the proposed MLP model.

The three different well-established models are used to 
reconstruct the shock-reactive front distance of the 1D pul-
sating detonations from the dimensionless time t = 1700 and 
t =  4200 for Ea = 27 and Ea =  30, respectively. The recon-
struction results corresponding to different activation ener-
gies, in which the test data is extracted with time interval 
∆t = 0.2, are shown in Fig. 6. And Table 1 gives the average 
relative errors of each Ea test set with three different models. 
It can be seen that the prediction results of the three models 

Fig. 3   a Typical temperature field and b basic architecture of MLP

Fig. 4   Time evolution of the lead shock pressure (red) and distance between shock and reactive front (black) for a Ea = 27 and b Ea = 30
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are in good agreement with the real shock-reactive front dis-
tance curve of Ea = 27. However, as the Ea increases to 30, 
the reconstructing errors increase significantly for MLR and 
MSPR. The prediction results of the two models have large 
deviations when the pulsating detonation exhibits violent 
oscillation at the peak and trough of each pulsation cycle. 
Especially for MLR, there are even non-physical results with 
negative lengths shown in Fig. 6b. On the contrary, MLPs 
maintain good performance for different activation ener-
gies with all the average value of relative error below 0.5%, 
which indicates that MLP has a better nonlinear learning 
and prediction ability to reconstruct shock front of the 1D 
pulsating detonations. Although using the MLP introduces 
a “black-box” to reconstruct shock front, these comparison 
results of different models demonstrate a tradeoff between 

the interpretability and the prediction accuracy. Further-
more, for 2D or even 3D cellular detonations, MLP is able to 
take full advantage of its powerful big data learning ability 
from the prospective of better reconstruction and generaliza-
tion. Furthermore, reconstruction results of average relative 

Fig. 5   Extracted data used for training set of 1D pulsating detonations, displaying the variations of shock-reactive front distance on T, ρ, and u 
with a Ea = 27 and b Ea = 30

Fig. 6   Reconstruction results of a Ea = 27 and b Ea = 30 with different models (reconstruction input variables set T, ρ, and u)

Table 1   Average relative error of 1D pulsating detonations with dif-
ferent reconstruction models

Reconstruc-
tion models

Ea = 27, 
∆t = 0.2

Ea = 27, 
∆t = 0.1

Ea = 30, 
∆t = 0.2

Ea = 30, 
∆t = 0.1

MLR 7.293% 7.275% 53.394% 53.101%
MSPR 2.023% 2.012% 32.535% 30.715%
MLP 0.085% 0.082% 0.314% 0.313%
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error for test data extracted with time interval ∆t = 0.1 are 
also shown in Table 1. It is found out that the errors cor-
responding different time interval are close with the same 
Ea and reconstruction model, demonstrating that the time 
interval ∆t of extracting test set data has little influence on 
the reconstruction results.

3.3 � Application on 2D cellular detonations

Compared with the 1D pulsating detonations, the additional 
y-direction in the 2D flow field brings cellular surface of 
detonation waves along with reciprocating transverse shock 
waves, which makes the shock surface difficult to recon-
struct. Consequently, more information from reactive front 
need to be provided to achieve high quality reconstruction. 
Thus, six parameters, T, T', ρ, ρ′, u, and v, are first used 
as MLP input variables set of the flow field reconstruction 
method mentioned above to reconstruct the lead shock sur-
face of the 2D unstable cellular detonations. Detailed discus-
sion on MLP input variables of 2D reconstruction will be 
presented in following Sect. 3.4.

Typical reconstruction results from test set for the cases 
of Ea = 10 and Ea =  20 are shown in Figs. 7a and 8a, respec-
tively. It is observed that the reconstructed shock, plotted 
by the white curve in the flow fields, locates around the 
simulated lead shock, demonstrating that a well-trained 
MLP can predict the shock influenced by the reactive front 
precisely. The relative errors at different positions are also 

listed quantitatively. The error may be positive or negative, 
meaning the distance LMLP may be larger or smaller than its 
real value, but in a limited range. The error range is below 
20% in the case of Ea = 10, but becomes large in the case of 
Ea = 20.

The distribution of relative error is shown in Figs. 7b and 
8b to facilitate further discussion. In the case of Ea = 10, 
close to 600 results among 801 pairs of data have an absolute 
value of relative error less than 5%. Although the error range 
becomes large when Ea increases to 20, again about half 
of the results have an absolute value of relative error less 
than 5%, which still supports the reasonable performance 
of this MLP-based reconstruction approach. In fact, it is not 
surprising that increasing Ea results in larger error. Results 
of both flow fields in Fig. 1 and numerical smoked foils 
in Fig. 2 demonstrate that the detonation becomes unsta-
ble when increases Ea. This makes the relation of the shock 
and reactive front more involved, so raises the difficulty to 
reconstruct the shock. As can be seen from the MLP recon-
struction results for 1D pulsating detonations, the results 
are almost the same as the simulated ones. In 2D cellular 
detonations, the leading shock is curved and with disconti-
nuities induced by transverse shocks, these lead to unavoid-
able sources of error.

To verify the influence of grid scale on the reconstruction 
results of MLP, 20 grids per L1/2 is used to carry out simula-
tions for Ea = 20. The same procedure and MLP parameters 
are used to train and test the MLP, except that 801 × 2 pairs 

Fig. 7   a Typical reconstructed shock (white curve in pressure field) and relative error of shock distance with  Ea = 10 (10 grids per L1/2) and b 
corresponding relative error frequency distribution histogram (MLP input variables set T, T', ρ, ρ', u, and v)
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of shock-reactive front data are extracted from each transient 
flow field. For the cases of six input variables, i.e., T, T', ρ, 
ρ', u, and v, typical reconstruction results from test set of 

Ea = 20 with fine grid are shown in Fig. 9. Results show 
that trained MLP still can reproduce the shock based on 
the parameters of the reactive front accurately. Figure 9b 

Fig. 8   a Typical reconstructed shock (white curve in pressure field) and relative error of shock distance with  Ea = 20 (10 grids per L1/2) and b 
corresponding relative error frequency distribution histogram (MLP input variables set T, T', ρ, ρ', u, and v)

Fig. 9   a Typical reconstructed shock (white curve in pressure field) and relative error of shock distance with  Ea = 20 (20 grids per L1/2) and b 
corresponding relative error frequency distribution histogram (MLP input variables set T, T', ρ, ρ', u, and v)
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shows the corresponding error frequency distribution histo-
gram, which has a similar distribution characteristic to that 
of Fig. 8b for Ea = 20 with 10 grids per L1/2.

3.4 � Discussion on input variables 
and generalization

Results in Sect. 3.2 demonstrate that the idea of using MLP 
to reconstruct the lead shock of both 1D and 2D unstable 
detonations is feasible primarily with 6 input variables. 
Since the flame surface information obtained from experi-
ment results are usually very limited for many practical 
cases, whether the proposed method is still effectiveness 
when the number of input variables for MLP is reduced, is 
especially vital to its engineering application. Thus, more 
reconstruction cases with less input variables are carried 
out to test the practicability of the proposed method. These 
tests are performed by using 4 input variables (T, ρ, u, and 
v), and reconstruction results from test set for the cases of 
Ea = 10 and Ea =  20 cellular detonation flow fields are shown 
in Fig. 10. Generally speaking, the error increases noticeably 
after the gradients of temperature and density are removed. 
From the flow fields shown in Fig. 10, the reconstructed 
shock, displayed by white curve, remains nevertheless 
close to the simulated one. Additionally, the high activation 
energy of Ea = 20 induces again large error, due to the strong 
instability of corresponding 2D cellular detonations, which 
is similar to the results with six input variables.

To give an overall estimation of reconstruction errors, 
the average relative error of all reconstruction test samples 
is calculated. Each input variables set has been trained for 
five times to exclude the effects of initiation in MLP, whose 
average error is shown in Table 2. Besides the two groups 
of input variables, three other groups with different input 
variables were performed. In the given five groups, the first 
group gives the best results, and removing the gradients of 
temperature and density increases the error from 4.10% to 
7.46% with Ea = 10 and from 7.04% to 11.10% with Ea = 20. 
The other groups remove the input variable of density, tem-
perature and velocity, respectively. It is found out that the 4th 
group gives the best results when keeping 4 input variables, 
in which the related variables of temperature are removed. 
We deduce that in the flow fields, the temperature variation 
between the shock and reactive front is modest, so plays 
a relatively weaker role in the reconstruction. However, it 
may be very difficult to measure the flow velocity of detona-
tion product in experiments, especially for the hypersonic 
flow. The input variables set should be selected carefully for 
the application of this MLP approach. Furthermore, effects 
of resolution are also tested through the Ea = 20 cases and 
shown in Table 2. It is found out that the errors correspond-
ing the same input variables set are close with the same Ea, 
demonstrating that the reconstruction is not significantly 
sensitive to the accuracy of simulated results. Further analy-
sis on the role of different variables, as well as the choosing 
strategy, is necessary in the future.

Fig. 10   Typical reconstructed shock (white curve in the pressure fields) and relative error of shock distance with a Ea = 10 and b Ea = 20 (MLP 
input variables set T, ρ, u, and v)
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Another key problem of shock front reconstruction based 
on MLP is the generalization capability. It has been demon-
strated that a well-trained MLP can accurately reconstruct 
the lead shock wavefront, given a fixed activation energy 
Ea. Considering the activation energy may vary in practical 
applications, further tests should be performed to examine 
the generalization capability at different activation energies. 
If the proposed method is robust in the lead shock recon-
struction for different activation energies, it will be a flex-
ible and powerful tool for future application on shock front 
reconstruction for detailed chemical reactions simulation 
and experimental results. In these further tests, we use the 
well-trained MLP from the case of Ea = 20 with six input 
variables (T, T', ρ, ρ', u, and v), and the cellular detonation 
flow fields with six other activation energies, Ea = 14, 16, 
18, 22, 24, 26, are reconstructed. The main parameters of 
numerical simulations are the same, such as domain width 
80 and 10 grids per L1/2, and the test set for each Ea is com-
posed of 50 different transient flow fields extracted from 
different instants with every certain number of calculation 
steps. Figure 11 shows the mean relative error of every 
flow field for each Ea test set. For each flow field, the error 
is given by a point. Generally speaking, the relative error 
increases when Ea deviates from 20, the activation energy 
used to train the MLP. In the cases of Ea = 18 and Ea = 22, 
all the error points locate below 10%. In contrast, the error 
points mainly locate between 10% and 15% in the cases of 
Ea = 14 and Ea =  26. This should be attributed to the dif-
ferent mapping relationships between the reaction surface 
and the corresponding lead shock induced by the activation 
energy variation.

Although the error increases when Ea either increases 
or decreases, we think that the deviation is acceptable, and 
the average errors of all flow fields are shown in Table 3. It 
should be noted that the error has reached above 7% already 
in the case of Ea = 20 with the test samples generated from 
the same Ea flow fields. When Ea decreases to 14, the error 
increases to about 10.83%, less than twice of the basic error. 
However, it is surprised that the error does not increase dra-
matically when Ea increases. When Ea increases to 26, the 

error is about 12.54%, still less than twice of the basic error. 
Theoretically, increasing Ea introduces a number of unsta-
ble modes, and then leads to the more complicated cellular 
structures, as illustrated in Fig. 2. Nevertheless, the MLP 
trained by low Ea data still performs well given high Ea, 
indicating the proposed method has a good generalization 
capability.

4 � Conclusion

A novel method of reconstructing the lead shock of unstable 
detonation is proposed and tested in this study. Within the 
detonation structure, the lead shock and the reactive front are 
coupled. Benefiting from the rapid development of advanced 
laser-based optical diagnostics within the combustion com-
munity, measurement of the flow and kinetic details as well 
as the location of reactive front can be achieved. It is the 
objective of this work to link such information to predict 
the lead shock evolution and to obtain a complete picture 
of cellular detonation dynamics. Using the MLP method, 
we propose a shock reconstruction method which can pre-
dict the lead shock evolution from details of the reactive 
front. The application of the proposed method is analyzed 
and verified thoroughly through the numerical results of 1D 
pulsating detonations and 2D cellular detonations using the 
reactive Euler equations with a one-step irreversible chemi-
cal reaction model. For detonations with two activation 
energy values, effects of input variables number are also 
studied by analyzing the error of trained MLP. Furthermore, 
the extensible of reconstruction method is investigated by 
reconstructing flow field with different activation energies, 
which shows the proposed method has well generalization 
capability.

This work is performed based on 2D cellular detona-
tion from numerical simulations, and one-step irreversible 
chemical reaction model is employed to generate the data 
set. However, it should be noted that this shock reconstruc-
tion method is universal and expandable. It should be not 
limited to 2D cases, but capable of reconstructing 3D shock. 
The 1D pulsating detonations reconstruction results show 
that the average relative error is below 1%. From 1D to 2D, 
the curved shock may raise the error, so it is expected of 
larger error from 2D to 3D, but there should be no princi-
pal obstructions. On the other side, the one-step irrevers-
ible chemical reaction model is actually a limitation to this 
method. With detailed chemical reactions, more species 
distributions are simulated and thus defining the reactive 
front has more choices, helpful to improve the MLP recon-
struction. Moreover, the present concept may provide a 
novel way of combing numerical and experimental results. 
The numerical simulations can generate big data, in which 
the projection of many different characteristic values can 

Table 2   Reconstruction results of test set with different MLP input 
variables set

Input variables set Ea = 10, 10 
grids per L1/2

Ea = 20, 10 
grids per L1/2

Ea = 20, 20 
grids per L1/2

T, T', ρ, ρ', u, 
and v

4.10% 7.04% 7.33%

T, ρ, u, and v 7.46% 11.10% 9.77%
T, T', u, and v 9.75% 14.77% 13.93%
ρ, ρ', u, and v 4.86% 8.28% 8.00%
T, T', ρ, and ρ' 8.43% 11.41% 12.57%
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be extracted. In contrast, the lack of enough information 
in experiments becomes serious, such as the reactive front 
without lead shock measured at the same time. For the effect 
of high-temperature combustion product, the reactive front 
is difficult to distinguish in experiments. The reactive front 
reconstruction may be a potential research direction, which 
can predict the complicated reaction front from the shock 
structures obtained from high-speed schlieren technique. 
The MLP can thus be used widely to combine the numeri-
cal and experimental results, and provide a new framework 
to interpret results of detonation waves.

As a preliminary work, a rather simple MLP is chosen 
to focus the feasibility of the reconstruction idea. Undoubt-
edly, the results will be improved greatly benefiting from 
more advanced deep learning technologies developed 
recently. One of the main problems of this method derives 
from the MLP output, with only one neuron predicting the 
shock and reactive front distance LMLP. Theoretically, this 
mapping should be performed along the streamlines, so this 
method performs well in 1D detonations. For 2D detona-
tions, the reactive front not only influences the lead shock 
exactly ahead, but also the neighboring shock. Therefore, 
the one neuron is oversimplified, and the scalar LMLP should 
be replaced by a vector. Furthermore, using the information 
from historic flow fields is also a good idea considering the 
pattern of cellular detonations. These spatial and temporal 
physical consideration could be implemented by the new 
technologies in the machining learning, such as convolution 
neural network (CNN) or recurrent neural network (RNN).
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Fig. 11   Error distribution of reconstruction results of six different Ea test set

Table 3   Average errors based 
on 50 flow fields in the cases of 
each Ea

Ea Average error

14 10.83%
16 8.77%
18 7.72%
20 7.04%
22 7.09%
24 10.21%
26 12.54%
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