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A B S T R A C T   

The estimation of the wave-induced instantaneous liquefaction is particularly important for the design of 
foundations of offshore structures. Regarding the occurrence of liquefaction in a non-cohesive seabed, most 
existing studies using constant permeability were found to cause fallacious tensile stresses in the liquefied zone 
and further pollute the overall pore pressure distribution. A dynamic permeability model was previously pre
sented to mitigate the shortcoming but posed difficulties in the nonlinear convergence. To overcome the 
shortcoming of the previous studies, this study proposes the concept of modelling the liquefaction-involved 
wave-seabed interactions as a nonlinear complementarity problem, wherein a Karush–Kuhn–Tucker condition 
is constructed, based on revisiting the liquefaction criterion most widely applied in ocean engineering. The 
Lagrange multiplier method and the primal–dual active set strategy are employed to numerically deal with the 
nonlinear complementarity problem. The performance of the chosen multiplier space is investigated by theo
retical analyzing and numerical modelling. Compared with the previous dynamic permeability model, the pre
sent model is totally free of extra parameters and precisely fulfills the no-tension requirement. Moreover, the 
difficulties of dynamic permeability in the nonlinear convergence are overcome and no divergence is observed in 
the numerical tests.   

1. Introduction 

The phenomenon of liquefaction in porous medium is one of the most 
challenging issues for offshore geotechnics. This study focuses on the 
wave-induced instantaneous liquefaction in a non-cohesive seabed, due 
to the following three considerations. First, this scenario is of profound 
interest to engineers due to the wide applications in ocean engineering, 
such as offshore wind turbine foundations (Qi and Gao, 2014; Sui et al., 
2016; Lin et al., 2017), submarine pipelines (Li et al., 2019; Liang et al., 
2020), breakwaters (Zhang et al., 2018; Celli et al., 2019) and immersed 
tunnel (Chen et al., 2019; Han et al., 2019) etc. The present study 
focusing on the wave-seabed interactions is fundamental for a potential 
extension to wave-seabed-structure interactions. Second, if the soil is 
liquefied, the large deformation of the seabed may accelerate the 

damage cause by other seabed instability such as scouring (Tonkin et al., 
2003; Yeh and Mason, 2014; Abdollahi and Mason, 2020). For these 
complicated scenarios, this study is envisioned to provide a basis/onset 
for applying continuum-discontinuum combined methods in the future 
to accomplish a whole-process simulation. Third, this scenario has 
relatively naive behaviors and therefore is convenient enough for nu
merical and mechanism explorations, which are discussed in detail as 
below. 

The naturally deposited seabed sand is commonly in a loose state 
with low bearing capacity and high liquefaction potential under cyclic 
wave loading. After a long period of ‘wave-induced compaction or sol
idation’ (Miyamoto et al., 2004; Sumer et al., 2006; Sumer, 2014), the 
loose soil will be rearranged to a dense state by squeezing out the pore- 
fluid. Thereafter, further soil compaction accompanied by the plastic 
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volumetric deformation is unlikely to occur under historical dynamic 
loading, making the dense seabed suitable for installing offshore foun
dations. For the seabed being sufficiently densified by ‘wave-induced 
compaction’, the instantaneous liquefaction associated with wave- 
induced transient pore pressure becomes a major concern (Sumer and 
Fredsøe, 2002; Jeng, 2012). On the other hand, the sufficiently com
pacted state makes the subsequent wave loading fall into the reloa
ding–unloading stage of the seabed. Therefore, the poro-elastic theory 
can be adopted when considering the transient pore pressure response 
and associated instantaneous liquefaction (Jeng, 2012). Based on 
simplified assumptions of soil behavior and environmental loading, the 
wave-induced transient pore pressure response has been analytically 
investigated under various conditions, e.g. isotropic seabed with infinite 
thickness (Yamamoto et al., 1978), hydraulically anisotropic seabed 
with infinite thickness (Madsen, 1978), isotropic seabed with finite soil 
thickness (Hsu and Jeng, 1994), infinite thick isotropic seabed under 
combined waves and a current (Zhang et al., 2013), etc. 

It should be noted that there is another type of wave-induced seabed 
liquefaction, i.e. residual liquefaction caused by the residual (or accu
mulated) pore pressure (Sumer and Fredsøe, 2002; Jeng, 2012). The 
residual liquefaction is most likely to occur in loose to medium dense 
sands or silts. In this case, there are generally two kinds of treatments 
used in numerical simulations, i.e. introducing source terms into the 
governing equations (Seed et al., 1976; Seed and Rahman, 1978; Jeng 
et al., 2007; Sumer et al., 2012; Jeng and Zhao, 2015) or adopting 
nonlinear constitutive relations (e.g. elasto-plasticity (Sassa and Seki
guchi, 2001; Jeng and Ou, 2010; Wang et al., 2014; Ye et al., 2015; 
Elsafti and Oumeraci, 2016)). It has been well known that transient 
mechanism can be described by poro-elastic models, while residual 
mechanism requires poro-elastoplastic models (Jeng, 2012). In this 
study, we focus on the instantaneous liquefaction. The extensions to 
residual liquefaction will be discussed in our future works. 

In existing models for wave-seabed interactions, the pore-fluid flow 
in the porous seabed is generally characterized by the linear Darcy’s law. 
For the instantaneous liquefaction, Wu and Jeng (2019) was the first 
considering the soil permeability k being a function of the pore pressure 
p. This dynamic permeability model was further extended to consider 
dynamic saturation degree for consolidation-induced contaminate 
transport (Wu et al., 2020). However, the dynamic permeability model 
(Wu and Jeng, 2019) was found to cause an apparent decrease of the soil 
permeability in the liquefied zone, disagreeing with increased perme
ability during soil liquefaction observed in experiments (Arulanandan 
and Sybico, 1992; Ha et al., 2003; Haigh et al., 2012; Wang et al., 2013; 
Shahir et al., 2014; Ueng et al., 2017). This issue was addressed in Zhou 
et al. (2020b), wherein the permeability increase during soil liquefac
tion is characterized by a new k-p relation. Furthermore, the new k-p 
relation alleviates the disadvantage of the conventional constant 
permeability model of causing tensile stresses, which are fallacious in 
physics and should not occur in a non-cohesive seabed (Qi and Gao, 
2015; Qi and Gao, 2018). Nevertheless, the nonlinear convergence 
performance of the previous model with dynamic permeability (Zhou 
et al., 2020b) was found to be poor. Numerical divergence can even 
occur when simulating the seabed under two-dimensional (2D) wave 
loading conditions. To obtain converged solutions, the model parame
ters in Zhou et al. (2020b) were chosen in such a way that the non- 
linearity is not too strong to break down the numerical procedure. 
This eclectic choice leads to a consequence that the non-physical tensile 
behavior can only be partially eased rather than totally eliminated. 
Therefore, a novel treatment is still in need. 

The present model treats the liquefaction problem in physics as a 
nonlinear complementarity problem (NCP) in mathematics. It is notable 
that there exist several works using NCP to model other complex phys
ical problems, e.g. the static growth of multiple cracks (Zheng et al., 
2015) and the non-associative plasticity with non-smooth yield surfaces 
(Zheng et al., 2020). It was found that the complexity for numerical and 
theoretical analyses can be reduced owing to the use of NCP. In this 

study, the NCP is presented by constructing a Karush–Kuhn–Tucker 
(KKT) condition specified for instantaneous liquefaction. Noting that 
KKT condition has been used in computational contact mechanics 
(Wriggers, 2006), it is therefore straightforward for us to borrow ideas 
from numerical contact methods to deal with the KKT condition con
structed here. In the present model, the KKT condition is imposed by the 
Lagrange multiplier method and is iteratively solved by the primal–dual 
active set strategy (Kunisch and RöSch, 2002). For the saddle-point 
system arising from the Lagrange multiplier method, the computa
tional efficiency is guaranteed by using the Direct delta function to 
interpolate the multipliers which can therefore be statically condensed. 
The NCP treatment proposed in the present model has several advan
tages over the dynamic permeability model by Zhou et al. (2020b). First, 
the proposed NCP treatment can totally eliminate the tensile behavior 
and at the same time overcomes the difficulties in the nonlinear 
convergence. Second, the NCP treatment is free of extra parameters, 
making the formulation elegant and clean. Third, NCP provides a nu
merical framework which is convenient for introducing other state-of- 
the-art methods (e.g. cut-cell quadrature and semi-smooth Newton 
method) in the future to further improve the numerical performance. 

It should be noted that elasto-plasticity models (Sassa and Sekiguchi, 
2001; Jeng and Ou, 2010; Wang et al., 2014; Ye et al., 2015; Elsafti and 
Oumeraci, 2016) for residual liquefaction can be also adopted to address 
the tensile behavior issue occurring in conventional models for instan
taneous liquefaction. Within these elasto-plasticity models, the soil 
moduli is generally taken as a small value when liquefaction occurs, 
noting that zero-value soil moduli can lead to an ill condition or sin
gularity of the global matrix system. This treatment can reproduce the 
loss of solid-phase resistance during liquefaction (Haigh et al., 2012; 
Adamidis and Madabhushi, 2016) and hence fulfill the non-tension 
requirement in an approximate manner. In contrast, the present model 
can fulfill the non-tension requirement in a precise manner, as demon
strated in Sections 5 and 6. The main limitation of the present model is 
that the NCP treatment is incorporated into the poro-elastic theory and 
hence is insufficient to model residual liquefaction. The NCP treatment 
is envisioned to be extended to elasto-plasticity models in the future and 
thus residual liquefaction can be modelled with reproducing real soil 
characteristics and meanwhile totally eliminating the tensile behavior. 

The remaining sections of this paper are organized as follows. Sec
tion 2 briefly outlines the fundamental theory and governing equations 
for wave-seabed interactions. In Section 3, the most widely applied 
criterion for determining the liquefaction potential in ocean engineering 
is revisited and then the pore pressure constraints are proposed to 
directly fulfill the no-tension requirement. The weak form and dis
cretization of the resultant constrained system are deduced with the use 
of the Lagrange multiplier method. The choice of the discrete multiplier 
space is also discussed. Section 4 completes the description by finding 
the additional dual and complementarity condition and then provides 
the iterative procedure for the resultant NCP. The superior performances 
of the proposed approach are confirmed by numerical examples in 
Sections 5 and 6. Finally, several key conclusions are drawn in Section 7. 

2. Boundary value problem for wave-seabed interactions 

The boundary value problem presented in this section can be also 
found in Jeng (2012) and has been widely applied in marine geo
technics. To provide some necessary bases for Sections 3 and 4 wherein 
our key contributions will be proposed, here we try to present the 
fundamental theory in a concise way without losing rigorousness in 
mathematics. 

Fig. 1 shows a 2D problem for wave-seabed interactions, with the 
seabed thickness (d), the water depth (h), and the wave height (H). Note 
that the effects of wave non-linearity on the seabed responses could be 
non-negligible for large waves in shallow water. In those cases, the non- 
linear wave pressure induced by Stokes wave (e.g. Gao et al., 2003) or 
cnoidal wave (e.g. Zhou et al., 2014) needs to be taken into account. For 
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the sake of simplicity and highlighting the key contribution, the linear 
wave theory is used in this study. The non-cohesive seabed body (Ω) is 
under the assumption of porous medium. The z axis is defined as 
downward such that z equals to zero at the seabed surface and deeper 
positions have positive values. 

The poro-elastic theory (Biot, 1941) is adopted for the wave-seabed 
interactions. The boundary value problem of the seabed model can be 
written as follows: 

∇⋅(σ′

− pI2×2)+b = 0 in Ω, (1a)  

∂εv

∂t
+ nβ

∂p
∂t

− ∇⋅
(

k
γw

∇p
)

= 0, in Ω, (1b)  

u = û, on Γu, (1c)  

p = p̂, on Γp, (1d)  

σ⋅nN = t̂, on Γt, (1e)  

vwnN = v̂n
w, on Γv. (1f)  

In the above boundary value problem, Eq. (1a) represents the equilib
rium of the solid–fluid mixture, with the effective stress (σ′ ), the wave- 
induced excessive pore pressure (p), a second-order unit tensor (I2×2) 
and the body force per unit volume (b). Eq. (1b) establishes the con
servation of mass, with the volumetric strain (εv), time t, soil porosity 
(n), pore fluid compressibility (β), Darcy’s coefficient of permeability (k) 
and weight of water per unit volume (γw). The latter four equalities in 
Eq. (1) represent the boundary conditions, which are divided into four 
open subsets, as shown in Fig. 1. Γu and Γp are Dirichlet boundaries for 
solid and fluid phases, respectively. Γt and Γv are Neumann boundaries 
for solid and fluid phases, respectively. u is the displacement vector and 
σ is the total stress tensor. nN is the outward unit normal vector on the 
boundary and vw is the pore-fluid velocity vector. û, p̂, t̂ and v̂n

w are the 
constrained displacement, constrained pore pressure, boundary traction 
and boundary Darcy velocity, respectively. 

The pore-fluid flow in porous media is assumed to obey the Darcy’s 
law wherein the pore-fluid velocity (vw) is given by a linear function of 
the hydraulic gradient: 

vw =
k
γw

∇p. (2)  

The compressibility of pore-fluid (β) is determined by (Verruijt, 1969): 

β =
1

Kw0
+

1 − Sr

Pabs
, (3)  

where Kw0 is the true bulk modulus of pore water and taken as 2.0 × 109 

Pa (Yamamoto et al., 1978). Sr is the degree of saturation. The absolute 
water pressure Pabs denotes the local static pore pressure in the seabed, 
which is commonly calculated by Pabs = γwh. 

For the 2D case, the four types of boundary conditions are illustrated 
in Fig. 1. On the bottom and both sides of the seabed, the displacement 
and pore-fluid flow along the normal direction are constrained as zero. 
At the seabed surface, the pore pressure of the fluid phase is constrained 
as a time-dependent wave pressure Pb, and Pb is also applied as a 
distributed pressure to the solid phase. The wave pressure Pb is deter
mined in this work by the linear wave theory (Dean and Dalrymple, 
1984): 

Pb = p0cos(kwx − ωt), (4a)  

p0 =
γwH

2cosh(kwh)
, ω =

2π
T
, kw =

2π
L
, (4b)  

with the pressure amplitude (p0) on the seabed surface, the wave 
angular frequency (ω), wave period (T), wave number (kw) and wave
length (L). The wavelength L is determined by the wave dispersion 
relation: 

L =
gT2

2π tanh
(

2π
L

h
)

, (5)  

where g is the acceleration of gravity. 
It should be noted that the boundary conditions may become more 

complicated in more general scenarios, e.g. when an offshore structure is 
considered. The early numerical studies mainly paid attention to the 
pore pressure response in the vicinity of a ‘fixed’ buried pipeline (Jeng 
and Lin, 1999; Gao et al., 2003). In these works, the effect of the waves 
on the porous seabed domain was simplified as formulated pressure 
fluctuations acting on the seabed surface, and therefore only the gov
erning equations of a porous seabed domain need to be considered. 
These treatments are identical to Eq. (1) for the case without a structure. 
The difference is that the structure-seabed interaction should be further 
modelled. Recent interests have been attracted to cases with structures 
inserting into both fluid and seabed domains, e.g., partially-buried 
pipelines (Zhao and Jeng, 2016; Duan et al., 2017), monopile founda
tions (Sui et al., 2016; Lin et al., 2017) and gravity foundations for 
offshore wind turbines (OWTs) (Li et al., 2018). Due to the existence of 
wave-structure interactions, the wave pressure distribution at the 
seabed surface needs to be determined via advanced hydrodynamic 
models instead of simplified pressure fluctuations (Liang et al., 2020). 

Moreover, some previous experimental studies showed that the 
structure rocking motion induced by cyclic loading can generate excess 
pore pressure in the vicinity of the structure (Kudella et al., 2006; Sumer 
et al., 2008). This rocking effect was investigated by Cuéllar et al. (2014) 
and Liao et al. (2019). If the environmental loads (e.g. the thermal- 
expansion-induced uplift force on a buried pipeline or the wind load 
on a monopile foundation for OWTs) need to be further considered, the 
discontinuous deformation at the structure-seabed interface can be large 
and therefore an appropriate nonlinear contact method is required. On 
this topic, Chen et al. (2019) and Qi et al. (2020) investigated the uplift 
bearing capacity of a buried pipeline influenced by residual and tran
sient pore pressures, respectively. It can be concluded that a generic 
model for wave-structure-seabed interactions should appropriately 
incorporate the soil constitutive model, the seawater hydrodynamic 
model and interactions at three interfaces (i.e. wave–seabed, wave
–structure and structure–seabed). The present study focuses on the case 
of wave–seabed interactions without a structure, which has a funda
mental significance for future extensions considering offshore 
foundations. 

Fig. 1. Schematic of the wave-seabed interactions.  
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3. The constrained system arising from the liquefaction 
criterion 

3.1. Pore pressure constraints by revisiting the liquefaction criterion 

As shown in Fig. 2, the instantaneously liquefied zone is denoted by 
ΩL. The non-liquefied zone is denoted by ΩNL. ΩL and ΩNL fulfill the 
following relation: 

ΩL ∩ ΩNL = ∅, ΩL ∪ ΩNL = Ω, (6)  

In this study, we limit our focus on the framework of a continuum-based 
method, i.e., the finite element method based on Biot’s theory. The main 
contribution of the present work is the improvement of the numerical 
modelling and to make the theory self-consistent, i.e. fulfilling the no- 
tension requirement in a non-cohesive seabed. Therefore, When lique
faction occurs, Eq. (1) is still used here, but with additional criteria to 
determining ΩL. The most widely applied criterion in ocean engineering 
is the one deduced by Zen and Yamazaki (1990): 

p − Pb⩾γ′ z, (7)  

where γ′z represents the initial value of the vertical effective stress. The 
buoyant unit weight γ′ can be determined by γ′

= (Gs − 1)(1 − n)γw, 
with Gs denoting the specific gravity of sand particles. n is the porosity of 
the sand: n = e/(1 + e), in which e is the void ratio of the sand, i.e. the 
ratio of the volume of voids to the volume of solid particles. 

The liquefaction criterion by Eq. (7) is based on the force analysis on 
the vertical soil column. When a wave trough arrives, p and Pb are both 

negative. If their difference p − Pb becomes greater than the overburden 
soil pressure γ′z, instantaneous liquefaction can occur. This criterion was 
later extended to a three-dimensional condition by Jeng (1997). Here we 
try to use Fig. 3 to present an intuitive explanation for Eq. (7), which can 
then provide convenience for the discussion hereafter. 

In Fig. 3, the vertical soil column from the seabed surface to the 
specific depth z is considered. The horizontal width is denoted by dx to 
keep in mind that the soil column width is infinitesimal. There are four 
types of loading conditions imposed on the soil column: the pressure Pb 
on the seabed surface, the submerged weight (represented by the body 
force γ′ ), and two pressures on the bottom surface coming from the 
underlying seabed. These two pressures are the wave-induced excess 
pore pressure p from the fluid phase and the vertical effective stress σ̃

′

v 
from the solid phase. The force balance can then be written as follows: 
(
p + σ̃

′

v

)
dx − Pbdx − γ′ zdx = 0 ⇔ σ̃

′

v = γ′ z − (p − Pb), (8)  

where the positive value of σ̃
′

v represents compression and negative 
value represents tension. It is easy to find that Eq. (7) is equal to ̃σ

′

v ⩽0, i. 
e., tensile behavior occurs. However, it was concluded by Qi and Gao 
(2018) that tensile behavior should not occur in a non-cohesive seabed. 
In Zhou et al. (2020b), the tensile behavior is indirectly eased by using 
dynamic permeability. Herein, non-tensile requirement is directly ful
filled by introducing the following constraint to the liquefied zone ΩL: 

σ̃’
v = 0 or equally p − Pb − γ’z = 0 (in ΩL). (9)  

Note that σ̃
′

v can be also interpreted as the contact pressure across the 
non-cohesive interface between the chosen soil column and the under
lying seabed. The no-tension requirement by Eq. (9) can be therefore 
interpreted by contact mechanics as that tension is not permitted at a 
non-cohesive interface. It is also notable that the contact interface 
mentioned here is associated with the coordinate z and z is arbitrary, ̃σ

′

v 
is actually defined everywhere in the whole domain Ω. This feature is 
different from multi-body contact problems wherein the contact in
terfaces are generally the outer boundaries. Moreover, the no-tension 
constraint is treated as the dual condition in contact mechanics but is 
written as a primal condition (p − Pb − γ′z = 0) here for the wave-seabed 
interactions. This can be regarded as another distinguishing feature in 
the instantaneous liquefaction problem. Or in other words, we can 
physically explain the liquefaction criterion by borrowing the idea from 
contact mechanics but the numerical treatment here is different from 
numerical contact methods. 

Another issue associated with σ̃
′

v is that σ̃
′

v differs from σ′

z. σ̃
′

v is used 
here to represent the vertical effective stress defined in Fig. 3 and Eq. (8). 
However, σ′

z is commonly used to denote the vertical normal component 
of the effective stress tensor σ′ , which is obtainable from Eq. (1) and dose 
not include the geostatic stress. The differences between σ̃

′

v and σ′

z are 
highly relevant to two liquefaction criteria. One was deduced by Zen and 
Yamazaki (1990) and has been given by Eq. (7), which can be rewritten 
as: σ̃

′

v⩽0. The other was presented by Okusa (1985) and can be written 
as: γ′z − σ′

z⩽0, where the positive value of σ′

z represents tension and 
negative value represents compression. Detailed discussions about 
different liquefaction criteria can be found in existing works (e.g. Jeng 
(1997, 2012)) and hence are omitted here. 

3.2. Weak form of the constrained system 

For the constrained system composed of Eqs. (1) and (9), the con
strained variational principle can be used to obtain the weak form. In 
this study, we apply the Lagrange multiplier method, wherein the 
Lagrange multiplier λ is introduced as an additional unknown field. 

The trial and weighting spaces are defined as: 

Fig. 2. Schematic of the liquefied and non-liquefied zones.  

Fig. 3. Physical explanation of the liquefaction criterion by Eq. (7).  
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V u =
{

u ∈
[
H1(Ω)

]3
⃒
⃒
⃒u|Γu

= û
}
, V Φ =

{
Φ ∈

[
H1(Ω)

]3
⃒
⃒
⃒Φ|Γu

= 0
}
,

(10a)  

V p =
{

p ∈
[
H1(Ω)

] ⃒
⃒p|Γp

= p̂
}
, V ϕ =

{
ϕ ∈

[
H1(Ω)

] ⃒
⃒ϕ|Γp

= 0
}
,

(10b)  

V λ =
{

λ ∈
[
H1(Ω)

] ⃒
⃒λ|ΩNL

= 0
}
, V w =

{
w ∈

[
H1(Ω)

] ⃒
⃒w|ΩNL

= 0
}
,

(10c)  

where H1 denotes a Sobolev space of degree one. Φ, ϕ and w denote the 
variations of the displacement u, pore pressure p and Lagrange multi
plier λ respectively. 

The weak form can therefore be stated as finding (u, p, λ) ∈ V u ×

V p × V λ such that there holds: 
∫

Ω
[∇Φ : (σ′

− pI2×2) + Φ⋅b ]dΩ+

∫

Γt

(
Φ⋅̂t

)
dΓ = 0, (11a)  

∫

Ω

[

ϕ
(

∂εv

∂t
+ nβ

∂p
∂t

)

+
k
γw

∇ϕ⋅∇p
]

dΩ+

∫

Γv

(
ϕv̂n

w

)
dΓ+

∫

ΩL

(ϕλ)dΩ = 0,

(11b)  

∫

ΩL

[w(p − Pb − γ′ z) ]dΩ = 0, (11c)  

for all (Φ,ϕ,w) ∈ V Φ × V ϕ × V w. 
Eq. (11c) is the weak form of the constraint Eq. (9). Eq. (9) further 

introduces another additional variational term 
∫

ΩL
(ϕλ)dΩ (the last term 

in Eq. (11b)) into the weak form. The introduced term 
∫

ΩL
(ϕλ)dΩ rep

resents the virtual work in the liquefied zone contributed by the 
Lagrange multiplier λ. If we compare the term 

∫

ΩL
(ϕλ)dΩ with the first 

term in Eq. (11b), i.e. 
∫

Ω

[

ϕ
(

∂εv
∂t + nβ ∂p

∂t

)]

dΩ, the physical meaning of 

the Lagrange multiplier can be clarified as the volume change per unit 
time per unit volume. If we compare 

∫

ΩL
(ϕλ)dΩ with the term 

∫

Γv

(
ϕv̂n

w
)

dΓ in Eq. (11b), the physical meaning of the Lagrange multi
plier can be clarified as the pore-fluid flux per unit volume. If we regard 
∫

ΩL
(ϕλ)dΩ simply as a source term added into the equation, the 

Lagrange multiplier can be also clarified as a fictitious pore-fluid flux per 
unit volume, which has a unit of 1/s. This issue will be further discussed 
in Section 4. 

3.3. Spatial discretization 

For spatial discretization, a standard finite element partitioning of 
the domain Ω is considered. A trial space (V u)h ×

(
V p

)

h × (V λ)h and a 
weighting space (V Φ)h × (V ϕ)h × (V w)h are then introduced as the 
discrete version of the spaces V u × V p × V λ and V Φ × V ϕ × V w, 
respectively. The subscript h is used hereafter to indicate that the cor
responding spaces or quantities are spatially discrete versions. There
fore, the discrete form of Eq. (11) can be written as finding 
(uh, ph, λh) ∈ (V u)h ×

(
V p

)

h × (V λ)h such that there holds: 

∫

Ω

[
∇Φh :

(
σ′

h − phI2×2
)
+ Φh⋅b

]
dΩ+

∫

Γt

(
Φh ⋅̂t

)
dΓ = 0, (12a)  

∫

Ω

{

ϕh

[
∂(εv)h

∂t
+ nβ

∂ph

∂t

]

+
k
γw

∇ϕh⋅∇ph

}

dΩ+

∫

Γv

(
ϕh v̂n

w

)
dΓ+

∫

ΩL

(ϕhλh)dΩ = 0, (12b)  

∫

ΩL

[wh(ph − Pb − γ
′

z) ]dΩ = 0, (12c)  

for all (Φh,ϕh,wh) ∈ (V Φ)h × (V ϕ)h × (V w)h. 

3.4. Temporal discretization 

For temporal discretization, the backward Euler method is applied in 
this work. To keep the resultant matrix system symmetric, a time inte
gration is applied to both Eq. (12b) and Eq. (12c). The fully discrete 
variational formulation is obtained as follows: 
∫

Ω

[
∇Φh :

(
σ′ t

h − pt
hI2×2

) ]
dΩ = −

∫

Ω
(Φh⋅b)dΩ −

∫

Γt

(
Φh ⋅̂t

)
dΓ, (13a)     

τ
∫

ΩL

(
whpt

h

)
dΩ = τ

∫

ΩL

[wh(Pb + γ′ z) ]dΩ, (13c)  

where τ denotes the time step. 

3.5. Matrix representation 

In the present model, du,dp and dλ are used to denote the discrete 
unknown vectors for the displacement (u), the excessive pore pressure 
(p) and the Lagrange multiplier (λ). Their shape function matrices are 
denoted by Nu,Np and Nλ, respectively. Within the use of the standard 
Galerkin method, Nu,Np and Nλ are also the weighting function vectors. 
Eq. (13) can then be rewritten as the following matrix system: 
⎡

⎣
K G 0
GT H M
0 MT δ

⎤

⎦

⎧
⎨

⎩

du
dp
dλ

⎫
⎬

⎭
=

⎧
⎨

⎩

Fu
Fp
Fλ

⎫
⎬

⎭
, (14)  

where 

K =

∫

Ω

(
BTDB

)
dΩ, G = −

∫

Ω

(
BTmNp

)
dΩ, B = ∇Nu,

H = −

∫

Ω

(
nβNT

p Np

)
dΩ − τ

∫

Ω

[
k
γw

(
∇Np

)T
∇Np

]

dΩ,

Fu = −

∫

Ω

(
NT

u b
)

dΩ −

∫

Γt

(
NT

u t̂
)

dΓ,

Fp = GTdt− τ
u −

[∫

Ω

(
nβNT

p Np

)
dΩ

]

dt− τ
p + τ

∫

Γv

(
NT

p v̂n
w

)
dΓ, (15)  

with m denoting a vector equivalent to Kronecker Delta tensor. M, δ and 
Fλ in Eq. (14) are associated with the liquefied and non-liquefied zones, 

∫

Ω

[
ϕh(εv)

t
h

]
dΩ +

∫

Ω

(

ϕhnβpt
h + τ k

γw
∇ϕh⋅∇pt

h

)

dΩ + τ
∫

ΩL

(
ϕhλt

h

)
dΩ =

∫

Ω

[
ϕh(εv)

t− τ
h +ϕhnβpt− τ

h

]
dΩ − τ

∫

Γv

(
ϕh v̂n

w

)
dΓ, (13b)   
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thus are split into sub blocks as below. 
Let L and N be the subsets of nodes in liquefied and non-liquefied 

zones, respectively. L and N fulfill the following relation: 

L ∩ N = ∅, L ∪ N = W , (16)  

where W denotes the set of all the finite element nodes. Eq. (14) is then 
rewritten as the following sub-block form: 

⎡

⎢
⎢
⎢
⎢
⎣

K GWN GWL 0 0
GNW HNN HNL 0 0
GLW HLN HLL 0 C
0 0 0 INN 0
0 0 CT 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dN
p

dL
p

dN
λ

dL
λ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fu

FN
p

FL
p

0
FL

λ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (17)  

where INN is a nNL × nNL identity matrix, with nNL denoting the number 
of non-liquefied nodes. The matrix C and the vector FL

λ are as follows: 

C = − τ
∫

ΩL

(
NT

p Nλ

)
dΩ, FL

λ = − τ
∫

ΩL

[
NT

λ (Pb + γ′ z)
]

dΩ, (18)  

Now we obtain the following sub-block forms of M, δ and Fλ: 

M =

[
0 0
0 C

]

, δ =

[
INN 0
0 0

]

, Fλ =

{
0
FL

λ

}

. (19)  

3.6. The discrete multiplier space 

It can be found that the integral terms C and FL
λ in Eq. (18) can only 

be computed after the interface between liquefied and non-liquefied 
zones is traced. However, tracing the interface ΓL shown in Fig. 4 (or 
called as the liquefaction boundary hereafter) should address the 
following two issues. 

First, the interface ΓL will be across the elements. This issue is similar 
to the crack analysis by using the extended finite element method 
(Belytschko and Black, 1999; Moës et al., 1999; Tian et al., 2019) 
wherein the cut-cell quadrature and the level set method is used. In this 
paper, we use a naive choice of the discrete multiplier space to minimize 
the implementation effort, i.e. the Direct delta function is applied to 
interpolate the multipliers. In the other words, the pointwise strong form 
of Eq. (9) is applied. With this simplification, the cut-cell quadrature is 
avoided and the liquefaction state is determined at each finite element 
nodes. However, the simplified treatment poses consequences in leading 
to a non-smooth interface ΓL, as to be demonstrated in Sections 5 and 6. 
Nevertheless, the choice here makes the numerical implementation 
convenient. Furthermore, the multipliers can be statically condensed to 
improve the computational efficiency, as presented below. 

By using the pointwise strong form of the constraint by Eq. (9), C and 

FL
λ in Eq. (18) are simplified as the following: 

C = − τILL , FL
λ = − τ

(
PL

b + γ′ zL
)
, (20)  

where ILL is a nL × nL identity matrix, with nL denoting the number of 
liquefied nodes. PL

b is a vector collecting the values of Pb at all liquefied 
nodes. zL is a vector collecting the values of z at all liquefied nodes. 
Noting the diagonal property of the matrix C, the third and fourth rows 
of Eq. (17) gives the following condensation of the Lagrange multipliers: 

dL
λ =

1
τ

(
GLW du + HLN dN

p + HLL dL
p − FL

p

)
, dN

λ = 0. (21)  

This means that the Lagrange multipliers are no longer the unknowns in 
the matrix system, making Eq. (17) condensed as follows: 

⎡

⎣
K GWN GWL

GNW HNN HNL

0 0 ILL

⎤

⎦

⎧
⎪⎪⎨

⎪⎪⎩

du

dN
p

dL
p

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

Fu

FN
p

PL
b + γ′ zL

⎫
⎪⎪⎬

⎪⎪⎭

. (22)  

The third row of Eq. (22), i.e. dL
p = PL

b + γ′ zL , can then be inserted into 
the first and second rows: 

⎡

⎣
K GWN 0
GNW HNN 0
0 0 ILL

⎤

⎦

⎧
⎪⎪⎨

⎪⎪⎩

du

dN
p

dL
p

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

Fu − GWL
(
PL

b + γ′zL
)

FN
p − HNL

(
PL

b + γ′ zL
)

PL
b + γ′zL

⎫
⎪⎪⎬

⎪⎪⎭

. (23)  

The third row and the third column of Eq. (23) can be further eliminated: 
[

K GWN

GNW HNN

]{du

dN
p

}

=

{
Fu − GWL

(
PL

b + γ
′zL

)

FN
p − HNL

(
PL

b + γ′ zL
)

}

. (24)  

Eq. (24) avoids the well-known saddle-point difficulty caused by Eq. 
(17). Meanwhile, the system size of Eq. (24) is smaller than Eq. (17). 
Therefore, the computational efficiency is guaranteed. 

The remaining issue is that the liquefied zone (ΩL) is undetermined 
and time-dependent. Typically, a trial-and-error procedure can be 
applied to iteratively solve this type of problem. During the first itera
tion, we can start from the conventional numerical model with constant 
permeability and the liquefaction criterion by Eq. (7), so as to provide an 
initial guess of ΩL. The second iteration would impose the pore pressure 
constraints by Eq. (9), i.e. (p − Pb − γ′z = 0) in ΩL. Then, subsequent 
iterative corrections are required until converging to a solution satis
fying given conditions. However, the problem is that we still have no 
such given conditions to iteratively correct ΩL. This will lead to a 
consequence that the iterative procedure would finish in only two iter
ations. The solution would give an identical ΩL to the initial guess, and 
meanwhile the tensile behavior is removed. This result would disagree 
with the previous numerical investigations (Zhou et al., 2020b) wherein 
eliminating the tensile behavior has significant influences on ΩL. That is, 
the hydro-mechanical response influences the liquefied zone ΩL which 
in turn influences the hydro-mechanical response. Therefore, we still 
need to find a complementarity condition which can be used to check 
whether the current liquefied zone (ΩL) is physically reasonable or not. 
This issue is addressed in Section 4 by finding the dual condition, so as to 
model the physical problem of seabed liquefaction as a nonlinear 
complementarity problem in a mathematical manner. 

4. The nonlinear complementarity problem 

If we recall Eq. (11b), the physical meaning of the Lagrange multi
plier λ can be interpreted as a source term added into the origin gov
erning equations. In Section 3, with the discretization and the use of 
pointwise strong-from constraint, Eq. (11b) becomes Eq. (21). There
fore, we can further distinguish from Eq. (21) that the Lagrange Fig. 4. Schematic of the interface between liquefied and non-liquefied zones.  
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multiplier λ has the unit of m3/s, representing a fictitious pore-fluid flux, 
or the volume change of the soil column per unit time. 

To remove the tensile behavior in the liquefied zone, the additional 
source term is needed to help the excessive pore pressure decreasing in 
an appropriate way such that the vertical effective stress σ̃

′

v equals to 
zero in the liquefied zone. This requirement calls for that the source term 
λ should not be negative. Therefore, the following dual condition is 
obtained: 

λ⩾0 in ΩL, λ = 0 in ΩNL. (25)  

Taking into account the primal condition by Eq. (9) proposed in Section 
3.1, we now obtain the following KKT condition in terms of primal and 
dual variables: 

[p − Pb − γ′ z⩽0, λ⩾0, (p − Pb − γ′ z)λ = 0] in Ω. (26)  

Noting that the pointwise strong form of the constraint is applied in this 
work, the discrete KKT condition is simplified as follows: 
[
dp
]

i − [Pb]i − γ′

[z]i⩽0, [dλ]i⩾0,
{[

dp
]

i − [Pb]i − γ′

[z]i
}
[dλ]i = 0, (27)  

where Pb and z are vectors collecting the values of Pb and z at all nodes, 
respectively. The subscript i denotes that the corresponding variables 
are defined at the node i. 

To solve the NCP numerically, the primal–dual active set strategy 
(Kunisch and RöSch, 2002) is applied. First, we rewrite the discrete KKT 
condition by the two subsets L and N : 
[
dL

p

]

i
=

[
PL

b

]

i + γ
′ [zL

]

i,
[
dL

λ

]

i⩾0 in ΩL,
[
dN

p

]

i
<

[
PN

b

]

i + γ′ [zN
]

i,
[
dN

λ

]

i = 0 in ΩNL,
(28)  

where PN
b and zN are vectors composed of Pb and z at non-liquefied 

nodes, respectively. 
Then, the iterative procedure is summarized as follows:  

(1) Guess the current subsets L and N of liquefied nodes. For the 
initial case (i.e. the 1st iteration in the 1st time step), L is 
assumed to be empty. For other cases, L and N are assumed as 
the historical subsets.  

(2) Assemble the matrices K,G and H; compute the vectors F,Pb and 
z.  

(3) Solve the linear system by Eq. (24).  
(4) Update the displacement du and the pore pressure dN

p . 
(5) Set the pore pressure for liquefied nodes according to the point

wise strong form of the constraint by Eq. (9): dL
p = PL

b + γ′ zL .  
(6) Calculate the multipliers by Eq. (21).  
(7) Update the subsets L and N . For the current subset L , those 

nodes not fulfilling 
[
dL

λ

]

i
⩾0 are moved from L to N . For the 

current subset N , those nodes not fulfilling 
[
dN

p

]

i
<

[
PN

b
]

i +γ′[zN
]

i are moved from N to L .  

(8) If ∊u < ∊̂u and ∊p < ∊̂p, go to next time step; otherwise, go back to 
step 1. ∊̂u and ∊̂p are two pre-defined convergence tolerances. In 
this work, ∊̂u = ∊̂p = 1 × 10− 6 is applied. ∊u and ∊p are two re
siduals defined as follows: 

∊u = ‖Δdu‖2

/
(du) , ∊p =

⃦
⃦Δdp

⃦
⃦

2

/(
dp
)
, (29)  

where ‖Δdu‖2 and 
⃦
⃦Δdp

⃦
⃦

2 are the L2-norms of the incremental so
lution for displacement and pore pressure, respectively. ‖du‖2 and 
⃦
⃦dp

⃦
⃦

2 are the L2-norms of the total solution. 

The above procedure is implemented in the in-house finite element 
code (Zhou et al., 2018; Wang et al., 2019; Zhou et al., 2020a; Zhou 

et al., 2020b), which will be validated by analytical solutions with 
constant permeability in the next two sections. 

5. Cylinder tests under one-dimensional (1D) wave loading 

In this section, the cylinder tests (Liu et al., 2015) are simulated by 
three numerical treatments, i.e., CP (the conventional Darcy model 
using Constant Permeability), DP (Dynamic Permeability model by 
Zhou et al. (2020b)) and NCP (the present model). The DP model (Zhou 
et al., 2020b) is given as follows: 

kd =

{
k, if ru⩽rcr

u[
1 + (c1 − 1)

(
ru − rcr

u

)c2
]
k, if ru > rcr

u
. (30)  

where kd is the dynamic permeability and k denotes the initial value. ru 

is the excess pore pressure ratio given by: ru = (p − Pb)/(γ
′z). c1, c2 and 

rcr
u are model parameters. As discussed in Zhou et al. (2020b), the pa

rameters c1 = 100, c2 = 1 and rcr
u = 1 are recommended. Therefore, this 

group of parameters is applied in this section when using the DP model. 
It is notable that NCP is a parameter-free treatment. 

The boundary conditions are shown in Fig. 5, where the only dif
ference from Fig. 1 is that the wave loading conditions are 1D here. This 
means that the wave pressure Pb is still determined by Eq. (4a) but x = 0 
is applied. The element sizes along the x and z directions are taken as 1 m 
and 0.12 m, respectively. For the temporal discretization, one wave 

Fig. 5. Boundary conditions of the cylinder tests.  

Fig. 6. The pressure amplitude |p|/p0 versus the soil depth z/d in ‘Test 20’.  
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period T is divided into 40 time steps, i.e. the time step τ is taken as 
0.025T. 

5.1. Pore pressure and liquefaction analysis 

First, the ‘Test 20’, see Table 2 in Liu et al. (2015), is simulated. 
According to experimental results (Liu et al., 2015), liquefaction was 
observed in ‘Test 20’. Fig. 6 presents the variation of the pressure 
amplitude along with the soil depth. The computational parameters are 
also given in Fig. 6, where G is the shear modulus and ν is the Poisson’s 
ratio. 

The analytical solution by Hsu and Jeng (1994) has been widely 
applied by the ocean engineering community to inspect the numerical 
performances. As shown in Fig. 6, there is a slight deviation between the 
CP model and the analytical solution (Hsu and Jeng, 1994). Neverthe
less, similar deviations were also reported in other works (Sumer and 
Fredsøe, 2002; Chen et al., 2019; Duan et al., 2019; Chen et al., 2020) 
and the comparison here is therefore capable of validating the numerical 
code developed in this paper. 

Fig. 6 also indicates that the DP model and the the present model 
(NCP) obtain nearly identical results and they both coincide with the 
experimental data in a reasonable sense. As compared with the CP 
model, DP and NCP both result in a decrease in the pressure amplitude, 
but the decrease is not significant. Note that the comparison in Fig. 6 

cannot be regarded as that DP and NCP has negligible influences on the 
numerical results, because only the pressure amplitude is compared in 
Fig. 6. If other results (e.g., the vertical effective stress) are compared, 
the differences can become apparent, as presented in Fig. 7. 

Fig. 7(a) provides the liquefaction depth determined by the lique
faction criterion Eq. (7). The liquefaction depths by DP and NCP are 
nearly identical and apparently smaller than that by CP. It was found by 
taking a close look into the output data that the tensile behavior caused 
by CP at the instant of t = 0.425T is the most apparent among all the 
time steps. Therefore, we take this instant for an instance to investigate 
in detail the vertical effective stress γ′z − (p − Pb), which is represented 
by ̃σ

′

v in this work. As shown in Fig. 7(a) and Table 1, the negative values 
of σ̃

′

v are considerable in CP and the maximum tensile stress is − 1367.3 
Pa. Obviously, tensile behavior does not exist in a non-cohesive seabed 
(Qi and Gao, 2018). This unphysical behavior is greatly eased by using 
the DP model wherein the maximum tensile stress is reduced to − 12.6 
Pa. In contrast, the tensile behavior is totally removed by the present 
model, wherein σ̃

′

v equals exactly to zero in the liquefied zone. 
For the DP model, Table 1 also gives the excess pore pressure ratio 

ru = (p − Pb)/(γ
′z) and the ratio of dynamic permeability k to its initial 

value k0. For the present model with the NCP treatment, Table 1 further 
gives the specific values of the Lagrange multiplier λ. These variables are 
then plotted together in Fig. 8. In Fig. 8(a), we have (ru⩾1, k/k0⩾1) in 

Fig. 7. Numerical results of ‘Test 20’: (a) temporal liquefaction depth; and (b) vertical distribution of σ̃
′

v at t = 0.425T.  

Table 1 
Variables at t = 0.425T during the numerical simulation of ‘Test 20’.  

z (m) z/d  CP DP NCP   

σ̃
′

v (Pa)  σ̃
′

v (Pa)  ru  k/k0  σ̃
′

v (Pa)  λ
(
10− 5m3/s

)

0 0 0 0 - - 0 - 
0.12 0.07 − 596.5 − 7.9 1.007 1.695 0 0.630 
0.24 0.13 − 1023.0 − 10.7 1.005 1.471 0 0.630 
0.36 0.20 − 1278.5 -12.6 1.004 1.368 0 0.630 
0.48 0.27 -1367.3 − 8.9 1.002 1.194 0 0.630 
0.60 0.33 − 1296.8 − 4.0 1.001 1.070 0 0.531 

0.72 0.40 − 1076.8 21.8 0.997 1 25.0 0 
0.84 0.47 − 718.8 206.9 0.974 1 209.4 0 
0.96 0.53 − 234.6 542.7 0.940 1 544.7 0 

1.08 0.60 363.8 1017.7 0.900 1 1019.3 0 
1.20 0.67 1065.2 1619.6 0.857 1 1620.8 0 
1.32 0.73 1859.4 2336.1 0.812 1 2337.1 0 
1.44 0.80 2737.6 3156.5 0.767 1 3157.4 0 
1.56 0.87 3692.5 4071.8 0.722 1 4072.5 0 
1.68 0.93 4719.1 5075.1 0.679 1 5075.8 0 
1.80 1.00 5814.1 6162.5 0.636 1 6163.2 0 

Liquefaction depth (m) 1.007 0.618 0.600  
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the liquefied zone and (ru < 1, k/k0 = 1) in the non-liquefied zone, 
noting that ru = 1 is approximately fulfilled in the liquefied zone by DP 
in a ‘penalty-like’ way. In Fig. 8(b), we have 

(
σ̃

′

v = 0, λ⩾0
)

in the liq
uefied zone and 

(
σ̃

′

v > 0, λ = 0
)

in the non-liquefied zone. These primal 
and dual values strictly fulfill the KKT condition Eq. (26) proposed in 
this work for instantaneous liquefaction. The numerical results in Fig. 8 
indicate that the non-linearities arising from either DP or NCP converged 

during the iterative procedure. A further comparison between Figs. 8(a) 
and 8(b) implies that the effect of permeability increase during lique
faction can be also approximately understood as a fictitious source term 
added into the liquefied zone. This implies that both DP and NCP have 
the ability of accelerating the pore-fluid flow during liquefaction and 
therefore coincide with the intuitive physical understandings as well as 
existing experimental observations. 

Fig. 8. Vertical distributions of characteristic variables in ‘Test 20’: (a) ru and k/k0 in the DP model; and (b) σ̃
′

v and λ in the present model (NCP treatment).  

Fig. 9. Numerical results of ‘Test 2’: (a) temporal liquefaction depth; and (b) vertical distribution of σ̃
′

v at t = 0.45T.  

Table 2 
Variables at t = 0.45T during the numerical simulation of ‘Test 2’  

z (m) z/d  CP DP NCP   

σ̃
′

v (Pa)  σ̃
′

v (Pa)  ru  k/k0  σ̃
′

v (Pa)  λ
(
10− 5m3/s

)

0 0 0 0 - - 0 - 
0.12 0.07 − 5212.3 − 93.9 1.083 9.234 0 5.621 
0.24 0.13 − 8733.1 − 151.4 1.067 7.640 0 5.621 
0.36 0.20 − 10637.5 − 192.8 1.057 6.637 0 5.621 
0.48 0.27 -11240.9 -199.5 1.044 5.374 0 5.621 
0.60 0.33 − 10914.8 − 179.6 1.032 4.151 0 5.621 
0.72 0.40 − 9996.8 − 127.3 1.019 2.861 0 5.621 
0.84 0.47 − 8751.2 − 43.5 1.006 1.545 0 4.552 
0.96 0.53 − 7362.5 150.9 0.983 1 162.6 0 
1.08 0.60 − 5945.0 1136.6 0.888 1 1145.3 0 
1.20 0.67 − 4559.4 2463.5 0.782 1 2472.7 0 
1.32 0.73 − 3230.1 3873.8 0.688 1 3884.1 0 
1.44 0.80 − 1959.7 5254.2 0.612 1 5265.3 0 
1.56 0.87 − 740.8 6566.0 0.553 1 6577.5 0 
1.68 0.93 436.8 7802.5 0.506 1 7814.2 0 
1.80 1.00 1580.9 8966.6 0.470 1 8978.2 0 

Liquefaction depth (m) 1.635 0.867 0.840  
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The above discussion is based on the simulation of ‘Test 20’ wherein 
the degree of saturation Sr is 0.996. As reported in the literature (Jeng, 
2018), soil saturation plays an important role in the estimation of wave- 
seabed interactions. In marine environment, the degree of saturation 
generally varies from 0.95 to 1.0 (Michallet et al., 2009). Therefore, we 
simulated another case under a lower saturation (Sr = 0.951), i.e. ‘Test 
2’ in Liu et al. (2015). The only difference between ‘Test 2’ and ‘Test 20’ 
is the saturation; other parameters are the same in both tests. 

Fig. 9(a) shows the liquefaction depths by three numerical treat
ments of ‘Test 2’. As discussed in Fig. 7(a) for ‘Test 20’, removing tensile 
behavior reduces the determined liquefaction depth. The reduction be
comes more significant here for the lower saturation degree in ‘Test 2’, 
as shown in Fig. 9(a). It is also found that the temporal evolution of the 
liquefaction depth by NCP is not as smooth as those by CP and DP. The 
reason is explained here from the following two aspects. First, tensile 
stresses occur in both CP and DP models (as can be further investigated 
in Fig. 9(a) and Table 2), despite that the tensile behavior is eased by DP. 
Therefore, the critical point where σ̃

′

v = 0 can be traced across the 
element during the post-process procedure. This results in a smooth 
curve of temporal liquefaction depth at the expense of unphysical tensile 
behavior. Second, the non-smoothness by NCP is caused by that the KKT 
condition is imposed in a collocation manner. Improvement can be 
conducted by using weak-form KKT condition but cut-cell quadrature 
must be applied. Noting that the implementation effort is nontrivial, this 
issue will be addressed in our future works. Herein, we focus on the use 
of pointwise strong-form constraints. As to be discussed in Section 5.2, 
the non-smoothness can be also eased to some extent by using finer 
computational meshes. It is concluded that the non-smoothness cannot 
be attributed to the concept of eliminating tensile behavior or the NCP 
treatment. The naive choice of the discrete multiplier space is actually 
the main reason. It is noted that this type of non-smoothness also occurs 
in ‘Test 20’ but is not as apparent as that in ‘Test 2’, because the 
liquefaction potential is lower in ‘Test 20’. 

For the instant of t = 0.45T when the CP model leads to most con
spicuous tensile behavior among all the time steps, Fig. 9(b) gives the 
vertical distribution of σ̃

′

v in ‘Test 2’. Table 2 lists the detailed values of 
several variables at this instant. As shown in Fig. 9(b) and Table 2, the 
tensile stresses are abnormally large in the CP model and reach a 
maximum value of − 11240.9 Pa. This value is greatly reduced by DP to 
− 199.5 Pa, which is the residual error of the DP model by using ‘penalty- 
like’ treatment. Noting that the residual value by DP is − 12.6 Pa in ‘Test 
20’, we can summarize that lower saturation leads to larger residual. Or 
in other words, if the same accuracy is required, lower saturation needs 
larger ‘penalty-like’ parameters. The explanation is straightforward 
because lower saturation leads to dealing with larger tensile stresses. 
However, NCP using the Lagrange multiplier method is totally free of 
this issue. In both ‘Test 20’ (Table 1) and ‘Test 2’ (Table 2), σ̃

′

v equals 

exactly to zero in the liquefied zone. 
For ru and k/k0 in the DP model listed in Table 2, Fig. 10(a) provides 

the vertical distribution curve. Analogously, Fig. 10(b) plots the primal 
and dual values in the present NCP model. Fig. 10 shows that the non- 
linearity has been treated to be converged. A further comparison be
tween Fig. 10 and Fig. 8 indicates that lower saturation calls for larger 
acceleration of the pore-fluid flow during liquefaction. This requirement 
turns out to be the larger permeability in DP, and on the other hand, the 
larger multiplier in NCP. The discussion here implies that DP and NCP 
may have some interesting relations in physical mechanism. A more 
interesting phenomenon is that, if we take a closer look at the multiplier 
values in Tables 1 and 2, the multipliers can be found to stay uniform in 
the liquefied zone, except for that the points near the liquefaction 
boundary have relatively small multipliers. We envision that future 
works may find some physical explanations for this numerical 
phenomenon. 

Liu et al. (2015) reported 24 cylinder tests under 1D wave loading 
conditions using a 1.8 m thick sandy deposit, by changing the soil 
porosity n, soil saturation Sr, wave period T and pressure amplitude p0. 
Twelve of these tests were simulated by using CP and DP models in Zhou 
et al. (2020b). According to the above investigations, NCP will obtain 
nearly identical results with DP when we focus on what engineering 
concerns, such as the pressure amplitude, the liquefaction depth etc. 
Therefore, here we only take 6 tests for instances to validate the ad
vantages of NCP over CP. Results for other tests are similar to those 
reported by Zhou et al. (2020b). 

Fig. 11 provides the vertical distributions of pressure amplitude. Two 
values of Sr and three values of p0 (i.e., p1, p2 and p3) are considered. The 
cases ‘p1’ in Figs. 11(a) and 11(b) correspond to ‘Test 20’ and ‘Test 2’ in 
Liu et al. (2015), respectively. In Fig. 11(a), the numerical results by CP 
and NCP both coincide with the experimental data in a reasonable sense. 
In contrast, CP leads to a dramatic discrepancy with the experimental 
results in Fig. 11(b). This poor performance is greatly improved by using 
the NCP treatment, especially the overall experimental tendencies are 
well reproduced. These results can be explained as below with the 
combination of Fig. 12. 

Fig. 12 shows the vertical distributions of ̃σ
′

v at specified instants. The 
instants are different in different tests. How to select the specified instant 
is the same as Figs. 7(b) and 9(b), i.e. making the selected instant has 
maximum tensile stress among all the time steps. For soil with relatively 
high saturation (Sr = 0.996), the tensile stress by CP is under a relatively 
low magnitude, as shown in Fig. 12(a). Therefore, the differences be
tween CP and NCP are not significant in Figs. 11(a) and 12(a). For the 
experimental tests under pressure p2 = 24.52 kPa and p3 = 12.10 kPa, 
the numerical results by CP and NCP even stay almost the same. If the 
saturation is lower, then the differences between CP and NCP become 
significant. As shown in Fig. 12(b), the tensile stresses are abnormally 
large by CP and are eliminated by NCP. This improvement by NCP in 

Fig. 10. Vertical distributions of characteristic variables in ‘Test 2’: (a) ru and k/k0 in the DP model; and (b) σ̃
′

v and λ in the present model with the NCP treatment.  
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turn contributes to a better reproduction of the experimental results, as 
shown in Fig. 11(b). 

5.2. Influence of the mesh density on the liquefaction depth and vertical 
effective stress 

The above simulation is conducted by using the computational mesh 
whose element size along the vertical direction is taken as 0.12 m. It is 

denoted here by ‘Mesh 1’. To study the influence of the mesh density, we 
further conduct several simulations by using a finer mesh (‘Mesh 2’) 
whose element size along the vertical direction is 0.01 m. Figs. 13 and 14 
are the numerical results of ‘Test 20’ and ‘Test 2’, respectively. Figs. 13 
(a) and 14(a) show that finer mesh provides smoother temporal distri
butions of liquefaction depth. This result is not surprising because we 
impose the KKT condition in a pointwise manner and more points can 
provide more accurate determination of the liquefaction depth. The 

Fig. 11. Vertical distributions of |p|/(γ′

wh): (a) Sr = 0.996 ; and (b) Sr = 0.951.  

Fig. 12. Vertical distributions of σ̃
′

v: (a) Sr = 0.996; and (b) Sr = 0.951.  

Fig. 13. Numerical results of ‘Test 20’ using two meshes: (a) temporal liquefaction depth; and (b) vertical distribution of σ̃
′

v at t = 0.425T.  
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accuracy of the liquefaction depth is basically the vertical element size. 
However, the influence of the mesh density on the vertical effective 
stress is not significant, as shown in Figs. 13(b) and 14(b). The differ
ences can be only observed from the local view in the right upper corner 
of the figures and are mainly located near the liquefaction boundary. 
This observation indicates that the additional numerical error by using 
pointwise KKT condition is not significant from an engineering point of 
view, and generally we do not need to worry about the accuracy. 

If we want to discuss on the numerical error of the NCP treatment in a 
strict manner, three issues should be addressed. First, we should conduct 
a mesh convergence study by using a series of meshes. Second, the 
strong-form KKT condition should be also compared with its weak form. 
The last issue is to distinguish the numerical error from the former two 

issues. This strict procedure is difficult in the current work because there 
still lack numerical treatments of weak-form KKT condition for instan
taneous liquefaction as well as NCP-based analytical solutions. The 
pointwise KKT condition seems somehow sufficient for engineering 
applications, but it is also of significance to explore the merits of weak- 
form KKT condition in the future to complete the theoretical discussion. 

5.3. Influence of the mesh density on the Lagrange multiplier 

Fig. 15 shows the vertical distribution of the Lagrange multiplier by 
two meshes. The results imply that the multiplier stays almost constant 
in the liquefied zone and finer mesh obtains smaller multiplier. Noting 
that the two meshes used here are both uniform, if non-uniform mesh is 

Fig. 14. Numerical results of ‘Test 2’ using two meshes: (a) temporal liquefaction depth; and (b) vertical distribution of σ̃
′

v at t = 0.45T.  

Fig. 15. Vertical distributions of the Lagrange multiplier: (a) ‘Test 20’ (Sr = 0.996, t = 0.425T); and (b) ‘Test 2’ (Sr = 0.951, t = 0.45T).  

Fig. 16. Vertical distributions of the volume-regularized Lagrange multiplier: (a) ‘Test 20’ (Sr = 0.996, t = 0.425T); and (b) ‘Test 2’ (Sr = 0.951, t = 0.45T).  
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used, the multiplier will be irregular and the quasi-uniform distribution 
will be polluted. This will lead to a confusion if we want to explore the 
physical mechanism in the liquefied zone by investigating the multiplier 
distribution. 

Fortunately, the readily available knowledge in computational con
tact mechanics tells us a lesson that pointwise KKT condition generally 
calls for area regularization if the physical meaning of the Lagrange 
multiplier is crucial. The concept of regularization inspires us to 
reconsider Eq. (20) which simplifies the integration of the Direct delta 
function straightforwardly as identity matrices. If the Direct delta 
function is truly integrated without simplification, then a nodal average 
volume (Vi) will occur together with the Lagrange multiplier. That is, we 
should use the volume-regularized Lagrange multiplier: ̃λ = λ/V. ̃λ has 
the unit of 1/s, representing the additional volume strain per unit time 
caused by the fictitious source term λ . The discrete computation of ̃λ can 
be conducted by: 
[
d̃

L

λ

]

i
= dL

λ

/
Vi. (31)  

After the volume regularization, the Lagrange multipliers are plotted in 
Fig. 16. The results shows that the regularized multipliers given by two 
meshes are almost the same. Only those points near the liquefaction 
boundary show some differences. Notably, the volume regularization is 
only needed when the physical mechanism of the multiplier calls for 
investigation. Therefore, this technique is actually prepared for future 
works. In this paper, except for the multiplier results shown in Figs. 15 
and 16, other numerical results will not change either using the volume 
regularization or not. 

5.4. Nonlinear convergence performances 

The CP model is a linear model wherein no non-linearity is involved. 
Therefore, the nonlinear convergence performances of DP and NCP are 
discussed in this section by simulating ‘Test 20’ and ‘Test 2’ in Liu et al. 
(2015). By using ‘Mesh 1’, Fig. 17 gives the iteration numbers cost by 
each time step. The liquefaction depth is also shown in Fig. 17 to provide 
a reference. When the liquefaction occurs, NCP requires only 2–5 iter
ations to achieve the convergence. In contrast, DP poses apparently 
more iterations. The NCP treatment proposed in this paper shows a 
better performance. 

If the fine mesh (‘Mesh 2’) is used, DP is found to cause serious di
vergences during the iterative procedure. Taking ‘Test 2’ for an instance, 
Fig. 18(a) gives the iteration numbers cost by each time step. NCP re
quires no more than 10 iterations to achieve the convergence. However, 
if DP is applied, the algorithm diverges at the instant of t = 0.4T. At this 
instant, DP and NCP are compared in Fig. 18(b) with respect to the 
convergence process. Fig. 18(b) shows that NCP converges within 8 

iterations but DP cannot obtain reasonable convergences after 30 
iterations. 

This behavior is further detailed in Fig. 19 by investigating the 
L2-norm of total displacement u and pore pressure p at each iteration. As 
shown in Fig. 19(a), NCP obtains converged solutions of the displace
ment u and pore pressure p within 8 iterations. However, no conver
gence can be expected by using the DP model even after 100 iterations. 
As shown in Fig. 19(b), DP experiences numerical oscillations and 
abnormal large values occur during the iterative process. At the 98th 
iteration, ‖du‖2 and 

⃦
⃦dp

⃦
⃦

2 are 30.4 m and 2.1 × 1010 Pa, respectively. 

6. 2D wave-seabed interactions 

In this section, the present model is further applied to the problem of 
2D wave-seabed interactions. Fig. 20 shows the computational mesh for 
an infinite seabed, wherein the shallow layer and the x-directional 
central part have smaller element sizes. This setup aims to provide a high 
numerical accuracy for the potential liquefied zone. The boundary 
conditions are the same as Fig. 1. The wave parameters and soil prop
erties are identical to those in ‘Test 2’ (Liu et al., 2015) and are given in 
Fig. 20. To simulate a seabed with infinite thickness, the thickness of the 
computational mesh should be larger than the wavelength L (Hsu and 
Jeng, 1994). Here, L ≈ 61.4m and the thickness is taken as 100 m. The 
seabed length is set as three times of the wave length. As reported in Ye 
and Jeng (2012), such a computational domain is sufficient for the 
concerned region at the x-directional central part. 

In this section, CP, DP and NCP are compared. It is notable that the 
DP model with the parameters of c1 = 100, c2 = 1 and rcr

u = 1 is rec
ommended in Section 5 for 1D wave loading but was found leading to 
numerical instability or divergence in the 2D case, as reported by Zhou 
et al. (2020b). Then, the DP model (Zhou et al., 2020b) applied the 
parameters of c1 = 10, c2 = 1 and rcr

u = 1, which can obtain a converged 
solution. This group of parameters is therefore also adopted in this 
section when using the DP model. 

As the x-directional central part is the concerned region, all the nu
merical results in this section are given at the instant of t = T because the 
position of x = 1.5L is under wave trough at this instant. Fig. 21 shows 
the contours of p − Pb and σ̃

′

v by using the CP model. Figs. 22 and 23 are 
the results given by DP and NCP models, respectively. These three nu
merical treatments are compared as below. 

As shown in Figs. 21(a), 22(a) and 23(a), DP and NCP reduce the 
value of (p − Pb) under the wave trough, as compared with CP. The 
reduction by NCP is more significant than DP. This tendency can be seen 
more clearly in Fig. 24 which plots the vertical distribution of p − Pb at 
the section of x = 1.5L. Fig. 24 also provides the analytical solution 
(Yamamoto et al., 1978). The results by CP are found agreeing exactly 
with the analytical solution. This agreement again validates the 

Fig. 17. Iteration number and liquefaction depth versus time step by using ‘Mesh 1’: (a) ‘Test 20’ (Sr = 0.996); and (b) ‘Test 2’ (Sr = 0.951).  
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numerical code developed in this paper. According to the reference line 
(γ′z) in Fig. 24, CP shows considerable tensile behavior that the wave- 
induced pore pressure p − Pb exceeds the initial vertical effective stress 
γ′z. This unreasonable phenomenon is eased by DP but the tensile 
behavior is still non-negligible. In contrast, no tensile behavior occurs in 
the present model (NCP). 

The above comparison between p − Pb and γ′z (e.g. Fig. 24) is a 
common treatment in ocean engineering as well as in the field of 
liquefaction analysis. Here we further provide the contours of the 

vertical effective stress σ̃
′

v in Figs. 21(b), 22(b) and 23(b) due to the 
following two considerations. First, the tensile behavior can be investi
gated directly in the contours. Second, the isoline of pn = 0 can be used 
to represent the liquefaction boundary. As shown in Fig. 21(b), the 
negative values of σ̃

′

v in CP are rather large. The performances are 
improved by DP and NCP, as shown in Figs. 22(b) and 23(b). This 
improvement is further investigated in Fig. 25 by plotting the vertical 
distribution of σ̃

′

v at the section of x = 1.5L. As shown in Fig. 25, CP 

Fig. 18. Nonlinear convergence performances by using ‘Mesh 2’ to simulate ‘Test 2’: (a) iteration number and liquefaction depth versus time step; (b) residual at 
each iteration at t = 0.4T. 

Fig. 19. L2-norm of total solutions ‖du‖2 and 
⃦
⃦dp

⃦
⃦

2 by using ‘Mesh 2’ to simulate ‘Test 2’: (a) NCP; (b) DP.  

Fig. 20. Computational mesh and boundary conditions of the 2D simulation.  
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Fig. 21. Numerical results of the 2D simulation by CP: (a) p − Pb (kPa); (b) σ̃
′

v (kPa).  

Fig. 22. Numerical results of the 2D simulation by DP: (a) p − Pb (kPa); (b) σ̃
′

v (kPa).  

Fig. 23. Numerical results of the 2D simulation by NCP: (a) p − Pb (kPa); (b) σ̃
′

v (kPa).  

Fig. 24. Vertical distribution of p − Pb in the 2D simulation.  

Fig. 25. Vertical distribution of σ̃
′

v in the 2D simulation.  
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obtains a minimum value of σ̃
′

v as − 9.04 kPa. DP reduces the tensile 
stress to − 2.00 kPa. The improvement by DP is apparent but not thor
ough. By using the NCP treatment, the numerical results are totally free 
of unphysical tensile behavior. 

The liquefied zones determined in Figs. 21(b), 22(b) and 23(b) are 
then collected together and are compared in Fig. 26. Based on the above 
discussion, the result by NCP is reasonable and accurate. Therefore, the 
comparison between CP and NCP indicates that the conventional Darcy 
model using constant permeability overestimates the liquefaction po
tential. The estimation by DP is like an intermediate result from the CP 
model towards the NCP treatment. A close view of the liquefied zone by 
NCP shows that the liquefaction boundary is not as smooth as those by 
CP and DP. Here, this type of non-smoothness is spatial. As discussed in 
Section 5 for the 1D wave loading, the temporal non-smoothness also 
occurs in the liquefaction depth. The reason of causing both the tem
poral and spatial smoothness is the same, i.e. the KKT condition is 
imposed in a collocation manner. Here we emphasize again that the non- 
smoothness cannot be attributed to the concept of NCP treatment, 
because the non-smoothness can be improved by using weak-form KKT 
conditions in the future which still fall into the framework of NCP 
treatment. 

Fig. 27 compares the iteration number cost by each time step when 
using DP and NCP. As shown in the comparison, DP requires more it
erations to reach the convergence even small ‘penalty-like’ parameters 
are used and therefore tensile behavior still occurs. We can conclude 
that NCP provides better performances in the nonlinear convergence 
than DP. If we note the fact that large ‘penalty-like’ parameters in DP 
lead to algorithm divergence (Zhou et al., 2020b), this conclusion be
comes more solid. 

7. Conclusions 

In this study, we model the wave-induced instantaneous liquefaction 
in a non-cohesive seabed as a nonlinear complementarity problem 
(NCP). Compared with the conventional Darcy model using constant 
permeability, NCP removes the non-physical tensile behavior in a non- 
cohesive seabed. Compared with the previous dynamic permeability 
model, NCP needs no extra parameters and achieves superior conver
gences in the non-linearity treatment. Moreover, the no-tension 
requirement is precisely fulfilled in NCP, whereas the dynamic perme
ability model can only partially ease the tensile behavior. 

Particularly, the choice of the discrete multiplier space is discussed in 
details. The Direct delta function is used in the present model to inter
polate the multiplier mainly for the sake of minimizing the imple
mentation effort and condensing the multipliers. However, this choice is 
found to lead to temporal and spatial non-smoothness of the liquefaction 
boundary. This issue can be eased to some extent by using finer 
computational meshes and is expected to be addressed by weak-form 
KKT condition in future works. Nevertheless, numerical investigations 
indicate that the additional numerical error by using pointwise KKT 
condition is not significant, and generally we do not need to worry about 
the accuracy from an engineering point of view. 

The primal–dual active strategy is used here to deal with the non- 
linearity arising from the NCP. Noting that NCP provides a numerical 
framework to employ state-of-art methods, the nonlinear convergence 
can be further improved by using semi-smooth Newton method or 
interior point method etc. if necessary. 

The present work focuses on the simple case of wave-seabed in
teractions without a structure to highlight the key contributions. This is 
also fundamental to extend the application to wave-structure-seabed 
interactions in the future and therefore more complex scenarios with 
offshore structures can be simulated. 
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