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A B S T R A C T   

The use of satellite remote sensing to estimate coloured dissolved organic matter (CDOM) and identify its po
tential sources is important for monitoring lake water quality and implementing management strategies. In this 
study, taking Erhai Lake as an example and based on MODIS/Aqua satellite images and in-situ measured data, we 
used empirical and semi-empirical methods to develop algorithms for CDOM and the fluorescence index (FI370) 
from remote sensing reflectance (Rrs(λ)). The temporal and spatial distributions of the CDOM concentration and 
FI370 in Erhai Lake during 2013–2019 were retrieved. The results show the following. (1) The band ratio (Rrs 
(469)+Rrs(645))/Rrs(555) model could estimate the CDOM absorption coefficient at 412 nm (aCDOM(412)) 
(R2=0.507), and it was relatively stable. Using the band ratio Rrs(645)/Rrs(469) combined with the chlorophyll- 
a (Chl-a) APProach by ELimination (APPEL) model, a semi-empirical inversion model of FI370 performed with 
satisfactory accuracy (R2

=0.550) and was more accurate than the empirical algorithm (R2
=0.505). (2) During 

the period of 2013–2019, the CDOM concentration in Erhai Lake generally decreased from the northern to the 
central to the southern parts of the lake, and the CDOM concentration was higher in summer and autumn than in 
spring and winter. FI370 was higher in the northern and western coastal waters and lower in the central, southern 
and eastern parts of the lake. FI370 in autumn and winter was higher than that in spring and summer. CDOM was 
affected by both terrestrial and internal sources, and their relative contributions were not the same in different 
seasons. (3) For different Chl-a concentrations, different CDOM concentration models had better retrieval effects, 
i.e., Rrs(645))/Rrs(555) and (Rrs(469)+Rrs(645))/Rrs(555) had the best performance when Chl-a<10 μg/L and 
Chl-a>10 μg/L, respectively. The inversion models established in this study offer improved quantifications of the 
CDOM concentration and the FI370 in Erhai Lake, providing important support for monitoring water quality and 
implementing efficient management strategies.   

1. Introduction 

Coloured dissolved organic matter (CDOM) is an important part of 
dissolved organic matter (DOM), and the CDOM composition and con
tent can reflect the primary productivity of water bodies and have an 
important impact on the carbon balance of aquatic ecosystems (Down
ing et al., 2009). CDOM restricts the penetration of UV-B into the water 
column and therefore impacts water colour and the spectral distribution 
of underwater light (Conmy et al., 2004), which can cause a series of 
water photochemical reactions (Matsuoka et al., 2012). Additionally, 
CDOM has unique fluorescence properties, and the contents and 

properties of fluorescent substances can provide reliable tracers for 
revealing CDOM sources and biogeochemical behaviour in the water 
environment (Fellman et al., 2010). In recent decades, measuring CDOM 
characteristics has mainly been done using ultraviolet–visible (UV–Vis) 
absorption spectroscopy and excitation-emission matrix fluorescence 
coupled with parallel factor analysis (EEM-PARAFAC) (Fellman et al., 
2010; Huguet et al., 2009; Kowalczuk et al., 2005), and the fluorescence 
intensity (FI370) of EEM fluorescence spectra has mainly been measured 
from the ratio of fluorescence intensity, which has been used in the study 
of DOM dynamics. The fluorescence intensity can be used to identify the 
sources of CDOM in rivers and lakes (Zhang et al., 2010). Although the 
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in-situ measurement of CDOM concentration and composition in water 
bodies can provide accurate data, it is more expensive and time- 
consuming, especially in determining distributions over multiple times 
and large scales. Despite there are some Limitations in remote sensing 
inversion, such as the segregation of spectral signatures for Chl-a, sus
pended particulate matter and CDOM is still a challenge because of the 
influence of these parameter on each other (Gholizadeh et al., 2016). At 
the same time the atmospheric interference also restricts the optical 
signals coming from waterbodies (Brezonik et al., 2005). But it is more 
practical to use remote sensing monitoring methods to estimate the 
CDOM in lakes on large scales. Remote sensing techniques make it 
possible to have spatial and temporal view of CDOM in lakes and more 
effectively and efficiently monitor the waterbodies, and quantify its 
changes (Chen et al., 2017a; Griffin et al., 2018). 

Based on the unique fluorescence properties of CDOM and its pref
erential absorption of UV–Vis light (Zhang et al., 2020), satellite remote 
sensing, which has broad spatial coverage and repeated observations, 
can be used to explore the temporal and spatial patterns of CDOM and its 
sources (Brezonik et al., 2015; Chen et al., 2019b). At present, there are 
two main types of CDOM algorithms that are commonly used in studies 
of water bodies: empirical/semi-empirical methods and analytical/semi- 
analytical methods. Empirical algorithms are widely used and have high 
accuracy, but the complex debugging process and algorithm structure 
mean that these algorithms cannot clearly explain the mechanisms of 
CDOM variability. Since semi-empirical algorithms use the spectral 
characteristics of water colour parameters as a priori knowledge (Wang 
and Yang, 2019), they have a clear theoretical basis (Zhu et al., 2014), 
but they are affected by the optical characteristics and geographical 
location of the lake. To date, the remote sensing inversion for optically 
active substance in coastal and inland complex (case II) waters is still 
based on empirical methods, mainly developed through statistical 
methods (Cherukuru et al., 2016; Dörnhöfer and Oppelt, 2016; Gholi
zadeh et al., 2016). However, the current estimation algorithms for 
CDOM optical characteristics and fluorescent intensity are uncertain and 
the extent to which a particular band ratio works for lakes is poorly 
known (Gholizadeh et al., 2016). In recent years, MODIS have been 
widely used for retrieval of CDOM in some aquatic systems. Compared 
with other remote sensing satellites, MODIS provides daily monitoring 
and has proper spectral wavelengths and Spatiotemporal resolution, 
which can meet the needs of monitoring lakes among large-scale and 
revealing long-term variation, particularly in cloudy areas. 

Erhai Lake is the second-largest plateau lake in southwestern China, 
it is an important source of drinking water, irrigation, and tourism for 
Dali in Yunnan Province. It is characterized by its plateau geography, 
relatively deep water, and lower nutrient content (Ji et al., 2017; Liu 
et al., 2015a). But in recent decades, it is strongly affected by human 
activities (Lin et al., 2020), many agricultural pollutants enter the lake, 
resulting in an increase in organic matter in the water body (Zhang et al., 
2018a). In addition, as phytoplankton grow, they take up nutrients and 
carbon and eventually decay, adding organic matter into the lake (Aurin 
and Dierssen, 2012), which enhances eutrophication in the receiving 
aquatic ecosystems. Therefore the ecological environment in the water is 
gradually deteriorating. At present, many studies have used ultraviolet 
absorption and fluorescence spectroscopy to analyse CDOM in lakes 
(Chen et al., 2011a; Kowalczuk et al., 2005; Lei et al., 2019; Chiu et al., 
2019), but it is still a challenge to determine changes in CDOM con
centrations and map the distribution of CDOM sources information over 
a large scale and a long period. Miao et al. used remote sensing tech
nology to quantify the dynamic changes in the peak intensity of DOM 
fluorescence and developed a new algorithm to study the sources of 
CDOM in Lake Taihu, which provided a new idea for CDOM remote 
sensing research (Miao et al., 2019). 

In this study, CDOM concentration and FI370 models were developed 
using MODIS/Aqua data to compare and analyse the estimation effects 
of these algorithms, which can estimate the CDOM concentration and 
sources information. Our approach strived to accurately quantify the 

concentration and sources of CDOM in Erhai Lake and further analysed 
the spatial and temporal distribution and influencing factors to provide 
theoretical and practical references for the protection and management 
of Erhai Lake. 

2. Materials and methods 

2.1. Study area 

Erhai Lake is located in the Dali Bai Autonomous Prefecture of 
Yunnan Province (E99◦32′–100◦27′, N25◦25′–26◦16′). It is the seventh 
largest freshwater lake in China (Fig. 1), with an area of 256 km2, an 
average depth of 10.5 m, a volume of 27 × 108 m3 (Li et al., 2020; Zhang 
et al., 2018a). The main rivers entering the lake from the north are the 
Miju River, Luoshi River and Yong’an River. The Boluo River enters the 
lake from the south. From the west, eighteen streams flowing off Can
gshan Mountain enter the lake, and the Xi’er River in the south is the 
only natural outflow of Erhai Lake (Wang et al., 2015a). The water 
depths in the northern and southern parts of the lake are relatively 
shallow, with distributed aquatic plants; the water depth in the centre is 
relatively deep, with basically no aquatic plant growth (Han et al., 
2014). Agriculture is the main source of nonpoint source pollution, 
which is concentrated on the west bank of the lake, and all of these rivers 
have become polluted to varying degrees during recent economic 
development. 

2.2. Field sampling and laboratory analysis 

From 2013 to 2019, eight field cruises to Erhai Lake were completed 
in spring, summer, autumn and winter. A total of 45 sampling sites were 
set up from north to south according to the direction of water flow (see 
Fig. 1), and 94 samples were collected. Water samples were collected in 
1L acid-washed plastic bottles at a depth of 0.5 m; the water samples 
were held on ice for processing in the laboratory. Each water sample 
(approximately 250–500 mL) was filtered with a prefired 0.7 μm GF/F 
filter (Whatman), collected in a brown glass bottle and stored at 4 ◦C for 
testing (Zhang et al., 2018b). 

2.2.1. Absorption and fluorescence measurements of CDOM 
The primary filtered water sample was filtered again using a 0.22-μm 

Millipore filter membrane to obtain the water sample for CDOM testing. 
A Shimadzu UV2600 spectrophotometer was used to measure the CDOM 
absorbance (Kowalczuk et al., 2005) using a 1-cm cuvette, relative to a 
reference of distilled water. Instrument scan settings were as follows: 
250–750-nm wavelength scan range, fast scan speed; 1-nm sampling 
interval; and 0.5-nm slit width. The quartz cuvettes for blanks and 
samples were acid-soaked for one hour and then rinsed with distilled 
water and sample aliquots. Then, the absorption coefficient of each 
wavelength was calculated using Equation 1 as follows: 

aCDOM(λ) = 2.303D(λ)/l (1)  

where λ is the wavelength (nm), aCDOM(λ) is the absorption coefficient 
(m− 1), D(λ) is the absorbance, and l is the optical path (m). In this study, 
the concentration of CDOM is expressed by the CDOM absorption co
efficient at 412 nm (Alcântara et al., 2017; Mannino et al., 2014; Tehrani 
et al., 2013). 

A Hitachi F-7000 fluorescence spectrometer with a 150-W xenon 
lamp and a voltage of 700 V as the excitation light source was used to 
perform three-dimensional fluorescence spectrum analysis on the 
filtered CDOM water samples. The excitation wavelength (Ex) was 
200–550 nm, the slit width was 5 nm, and the increment was 5 nm; the 
emission wavelength (Em) was 280–550 nm, the slit width was 5 nm, the 
increment was 2 nm, and the scanning speed was 2400 nm/min. The 
blank spectrum was subtracted from the three-dimensional fluorescence 
spectra of all water samples to remove the effect of Raman scattering 
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(Claustre et al., 2000; McKnight et al., 2001). In the spectral region 
where the emission wavelength was equal to the excitation wavelength 
or twice the excitation wavelength, the Rayleigh scattering and the 
spectral data above were assigned a value of 0 to eliminate the influence 
of Rayleigh scattering (Zepp et al., 2004). 

2.2.2. Calculation of the fluorescence indices 
To better understand the composition and sources of CDOM, 

different fluorescence indices were calculated. FI370 is the ratio of the 
fluorescence intensity at 450 and 500 nm in the fluorescence emission 
spectrum when the excitation light wavelength is 370 nm. FI370 can be 
used to distinguish the terrestrial and microbial sources of CDOM 
(McKnight et al., 2001) and is a simple and sensitive indicator of the 
sources of CDOM in water bodies. McKnight et al. suggested that 
FI370>1.9 indicates that the CDOM is mainly derived from microbial 
metabolites in sediments, and FI370<1.4 indicates that the CDOM is 
mainly derived from external input and the sedimentation of nutrients in 
the lake (McKnight et al., 2001). The humification index (HIX) is the 
ratio of the peak area of the emission wavelength of 435–480 nm to the 
fluorescence peak area of 300–345 nm when the excitation wavelength 
is 254 nm, which is used to characterise the degree of humification of 
organic matter. A higher HIX value means a higher degree of humifi
cation (Zsolnay et al., 1999). The biological index (BIX) is defined as the 
ratio of the fluorescence intensity emitted at 380 nm and 430 nm at an 
excitation wavelength of 310 nm. As the value increases, the CDOM has 
stronger endogenous characteristics, which is an indicator that reflects 
the proportion of self-generated contributions in the DOM (Huguet et al., 
2009). 

2.2.3. Measurement of other water quality parameters 
The other measured water quality indicators were chlorophyll-a 

(Chl-a) and dissolved organic carbon (DOC). Chl-a was extracted with 

ethanol (90%) at 80 ◦C for 6 h in darkness and then analysed using a 
spectrophotometer (Shimadzu UV-3600) (Gitelson et al., 2008; O’Reilly 
and Werdell, 2019). The DOC concentration was measured by High 
Temperature Catalytic Oxidation (HTCO) on a Shimadzu TOC-5000A 
Analyzer, following the methods described in the literature (Downing 
et al., 2009; D’Sa et al., 2016). 

2.3. In-situ measured data and satellite data 

The statistics of the measured water quality data of Erhai Lake from 
2013 to 2019 are shown in Table 1. The range of aCDOM(412) is 
0.09–13.82 m− 1, the FI370 index ranges from 1.55 to 1.80, Chl-a ranges 
from 0.48 to 26.37 μg/L, and the DOC concentration ranges from 2.42 to 
39.76 mg/L. 

In this study, the MODIS/Aqua Level-1A data were downloaded from 
NASA’s archive (https://oceandata.sci.gsfc.nasa.gov/) (Table S1). First, 
the cloud-free image of Erhai Lake was selected according to the sam
pling date (see Table 1). The downloaded MODIS Level-1A data were 
reprocessed using the SeaDAS software (version 7.3) to produce Level- 
1B and geo-location files (Hou et al., 2017; Klein et al., 2017; Wu 
et al., 2013). The Management Unit Mathematical Model (MUMM) was 
used to perform atmospheric correction, which is an extension of Gor
don’s standard atmospheric correction algorithm. The MUMM is useful 
for case 2 water (Ruddick et al., 2004). Then, images were processed 
using the ENVI 5.3 software, and the average value of the 3×3 pixels 
near the pixel where the sampling point coordinates were located was 
used for analyses. 

2.4. Model development and accuracy assessment 

Based on the in-situ data set, 3/4 of the total number of samples was 
randomly selected for modelling, and the remaining samples were used 

Fig. 1. (a) Location of Erhai Lake in China; (b) location of Erhai Lake in Dali Bai Autonomous Prefecture; (c) elevation map of Erhai Lake Basin; and (d) distribution 
of sampling points in Erhai Lake. 

Table 1 
Water properties and dates of in-situ sampling and image acquisition.  

Sampling Date N aCDOM(412) (m− 1) FI370 Chl-a (μg/L) DOC (mg/L) Image Date 

25/04/2013 6 — 1.69–1.80 (1.75 ± 0.04) 0.48–7.74 (3.56 ± 2.93) 3.27–4.27 (3.67 ± 0.35) 27/04/2013 
10/07/2013 6 3.87–5.49 (4.15 ± 0.62) 1.64–1.75 (1.70 ± 0.03) 7.11–20.42 (13.07 ± 4.07) 4.32–6.98 (5.61 ± 0.97) 3/07/2013 
18/10/2013 6 2.62–4.67 (3.76 ± 0.62) 1.63–1.69 (1.66 ± 0.02) 11.08–26.37 (16.05 ± 4.94) 2.42–4.77 (3.39 ± 0.78) 9/10/2013 
03/01/2014 6 1.91–4.56 (3.77 ± 0.88) 1.66–1.69 (1.67 ± 0.015) 5.48–10.74 (7.72 ± 1.70) 6.26–7.93 (7.18 ± 0.60) 04/01/2014 
05/09/2018 16 4.96–6.12 (5.45 ± 0.41) 1.55–1.65 (1.60 ± 0.04) 5.79–11.95 (8.85 ± 1.95) 5.02–5.99 (5.51 ± 0.26) 05/09/2018 
11/04/2019 18 0.16–0.55 (0.37 ± 0.10) 1.54–1.67 (1.58 ± 0.04) 5.31–18.75 (8.80 ± 3.46) 5.67–39.76 (15.15 ± 11.23) 13/04/2019 
06/05/2019 18 0.09–4.90 (0.89 ± 1.22) 1.39–1.68 (1.56 ± 0.06) 2.20–14.55 (11.12 ± 3.05) 4.43–30.65 (15.76 ± 8.10) 07/05/2019 
04/06/2019 18 0.51–13.82 (2.40 ± 3.56) 1.63–1.70 (1.67 ± 0.03) 4.82–16.42 (11.48 ± 3.20) 6.74–37.61 (18.02 ± 9.13) 02/06/2019  
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to verify and evaluate the performance of the algorithms. The specific 
steps are as follows: 

(1) According to previous studies, the bands that have high corre
lations with water quality parameters were determined by the charac
teristic spectrum. 

(2) A series of band combinations were established using the MODIS 
band reflectance (Rrs), including addition, subtraction, multiplication, 
division and normalisation processing. 

(3) A correlation analysis was performed for the field-measured data 
and the constructed band combinations using linear, exponential, log
arithmic, and power functions for fitting; the optimal algorithm was 
determined according to the correlation coefficients. The inversion 
models of CDOM concentration and FI370 were developed as follows: 

CDOM = b0+
∑

(bi × band or combination) (2)  

FI370 = b0+
∑

(bi × band or combination) (3)  

where b0 and bi are the coefficients of the fitting equation determined 
through regression analysis. Based on band combinations, the Chl-a 
concentration can also be introduced as a variable in the FI370 model 
because phytoplankton degradation has strong fluorescence properties 
(Wang et al., 2018; Zhang et al., 2009). Existing Chl-a remote sensing 
products use the APProach by ELimination (APPEL) model, which was 
proposed by EI-Alem et al. for the MODIS data source (El-Alem et al., 
2012). Semi-empirical models eliminate the influence of blue and red 
light on the removal of CDOM and suspended matter by combining the 
characteristics of near-infrared band reflectivity, thus removing the ef
fect of backscattering. The application of this model is relatively mature, 
and it has been verified in different areas, such as Lake Taihu and Lake 
Poyang. Additionally, the inversion performance for Chl-a in some lakes 
was better than in other models (Wang, 2015b; Xu et al., 2020a). 

F(APPEL) = R(aNIR) − [(R(aBLUE) − R(aNIR) ) ∗ R(aNIR) + R(aRED)

− R(aNIR) ] (4)  

where F(APPEL) is the spectral index of APPEL and R(aNIR), R(aBLUE), 
and R(aRED) are the near-infrared, blue, and red bands of the MODIS 
remote sensing data, respectively. 

To evaluate the performance of the CDOM algorithm, the coefficient 
of determination (R2), the adjusted coefficient of determination (Adj. 
R2), the p-value, the root mean square error (RMSE) and the average 
absolute percentage difference (APD) were introduced as statistical in
dicators to validate the applicability and accuracy of the model. The 
definitions of RMSE and APD are given by the following equations, 
where i represents the current sample number, xi represents the data 
estimated from the MODIS/Aqua data, yi represents the data measured 
in the field, and n is the number of samples selected: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=1
(Xi − Yi)

2

√

(5)  

APD =
100
n

∑n

i=1

⃒
⃒
⃒
⃒
Xi − Yi

Yi

⃒
⃒
⃒
⃒ (6)  

3. Results 

3.1. Establishment and verification of the CDOM model 

3.1.1. Development of the CDOM concentration algorithm 
According to the optical characteristics of CDOM and the band set

tings of MODIS/Aqua, we selected the reflectance at 412 nm, 469 nm, 
488 nm, 531 nm, 555 nm, 645 nm, 667 nm and 859 nm based on the 
method described in 2.4. The correlations between aCDOM(412) and the 
band combinations are shown in Table 2. The logarithmic model showed 
the best performance. Figure S1 shows the fitted relationships between 
ln(aCDOM(412)) and the band combinations. The data show that ln 
(aCDOM(412)) and (B3+B1)/B4 had good fitting results (R2=0.57, 
RMSE=0.27 m− 1; Figure S1f); B4/B3 and ln(aCDOM(412)) also had a 
significant correlation (R2=0.34), with a RMSE of 0.38 m− 1, which was 
higher than that of the (B3+B1)/B4 model. Therefore, this study chose 
(B3+B1)/B4 as the best band combination for estimating aCDOM(412), 
and aCDOM(412) was then calculated according to Equation (5). 

Model 1 : ln(aCDOM(412) )

= 6.577 − 3.71[(Rrs(645) + Rrs(469)/Rrs(555) ) ] (7)  

3.1.2. Development of the FI370 algorithm 
The FI370 model was developed according to the method described in 

2.4, and the model was established by band combination. The results in 
Table 3 show that (B3-B4)/(B3+B4) performed the best. The results are 
shown in Fig. 2(a). In addition, the APPEL model was introduced on the 
basis of B1/B3 to establish a semi-empirical model (R2=0.550, 
RMSE=0.037, APD=19.323%) (see the Fig. 2(b)). Model 3 had a better 
accuracy than Model 2, and FI370 was derived from Equations (8) and 
(9). 

Model 2 : FI370

= 1.571 − 0.205 × (Rrs(469) − Rrs(555) )/(Rrs(469) + Rrs(555) )
(8)  

Model 3 : FI370

= 1.505 + 0.094 × [Rrs(645)/Rrs(469) ] − 0.098 × F(APPEL) (9)  

3.1.3. Model validation 
Based on the remaining 1/4 of the verification data in the datasets, 

which were used to verify the robustness of the CDOM concentration 

Table 2 
Performances of the aCDOM(412) estimation models and results of the models analysis with different band combinations.  

Algorithm Band Ratio Linear Exponential Logarithmic 

R2 RMSE p R2 RMSE p R2 RMSE p 

Green-blue Two-band ratio B4/B3 0.14 0.90 0.001 0.35 0.87 0.000 0.34 0.38 0.000 
B10/B4 0.00 2.04 0.904 0.00 1.08 0.972 0.00 0.47 0.792 

Green-red Two-band ratio B1/B4 0.02 1.08 0.293 0.04 0.91 0.164 0.04 0.40 0.164 
B13/B4 0.09 1.04 0.036 0.07 0.90 0.082 0.07 0.39 0.082 

NIR-red 
Two-band ratio 

B2/B1 0.01 1.09 0.612 0.01 0.93 0.524 0.09 0.40 0.524 

Green-blue Three 
band ratio 

(B3+B1)/B4* 0.40 0.85 0.000 0.57 0.27 0.000 0.57 0.62 0.000 
(B3+B4)/B2 0.02 1.08 0.000 0.01 0.93 0.581 0.01 0.40 0.581 
(1/B3 +1/B4)/B2 0.00 1.09 0.759 0.00 0.93 0.684 0.06 0.40 0.684 
(1/B2+ 1/B3)/B4 0.00 1.09 0.686 0.03 0.92 0.266 0.03 0.40 0.266 

*: This model was selected to estimate the aCDOM(412) in Erhai Lake in this study. 
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and FI370 models, and the algorithm was evaluated by the RMSE and 
APD. The results are shown in Fig. 3. In the validation data set of 
aCDOM(412), the Model 1 results had higher accuracy (R2=0.655, 
RMSE=0.435 m− 1, APD=47.717%). In the verification of the FI370 
models, Model 3 (R2=0.761, RMSE=0.025, APD=2.032%) had better 
prediction accuracy and lower error than Model 2 (R2=0.479, 
RMSE=0.036, APD=2.989%). What’s more, the measured aCDOM(412) 
and FI370 are significantly linearly correlated with the predicted values 
of the corresponding models and are uniformly distributed on both sides 

of the 1:1 line. The estimation accuracy indicated that the models had 
satisfactory performance and good applicability for the CDOM concen
tration and the FI370 of Erhai Lake. Therefore, it has been verified that 
the above models can be used to estimate the CDOM concentration and 
FI370 in Erhai Lake. 

3.2. Temporal and spatial distributions of the CDOM concentration 

The CDOM spatial distribution was generated by averaging all the 

Table 3 
FI370 models developed using different bands and band ratios.    

Equation Coefficients    

Independent  Y = b0 + b1(x1) + b2(x2)    

Variables R2 b0 b1 b2 Outlier RMSE Adj.R2 

FI370 models         
B13/B10  0.35  1.53  0.08    0.05  0.34 
B3/B4  0.39  1.71  − 0.14    0.05  0.38 
B3/B1  0.21  1.67  − 0.08    0.06  0.19 
B3/B1,B11/B4  0.32  1.65  − 0.08  0.04   0.06  0.29 
(B3-B4)/(B3+B4)*  0.50  1.57  − 0.21    0.03  0.48 
B1/B3, F(APPEL)*  0.55  1.505  0.094  − 0.098   0.04  0.53 

*: This model was selected to estimate the FI370 in Erhai Lake in this study. 

Fig. 2. Comparison between the predicted and measured values of FI370: (a) empirical model; (b) semiempirical model.  
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Fig. 3. Validation of the models and a comparison between the predicted and measured concentrations of the empirical and semi-empirical models of CDOM 
concentration and FI370; (a) the validation of the estimated aCDOM(412) with the in situ measured aCDOM(412) based on Model 1; (b) the validation of the estimated 
FI370 with the in situ measured FI370 based on Model 2; (c) the validation of the estimated FI370 with the in situ measured FI370 based on Model 3. 
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MODIS/Aqua-derived CDOM concentration data for each of the 12 
months in 2019 (Fig. 4). Overall, the aCDOM(412) exhibited spatial 
variations in Erhai Lake. The concentration of CDOM in the northern 
part of the lake was higher than that in the central and southern parts. 
Some areas with higher CDOM concentrations were distributed in the 
northern and western areas, where rivers enter the lake (the maximum 
was approximately 2.5 m− 1), and the southern part had lower CDOM 
(the minimum was approximately 0.3 m− 1). The water quality of the 
western littoral regions changed drastically over the year, and there 
were obvious differences in the spatial distribution of the CDOM con
centrations in this area in different months. According to the previous 
research, the surface runoff carries a large number of terrestrial pollut
ants, especially organic matters, into the lake, which accepts 18-river 
inputs of the western surrounding areas (Yang et al., 2021). And it 
provides a material basis for the growth and reproduction of Aquatic 
phytoplankton, which can release extracellular DOM (Baines and Pace, 
1991; Wang et al., 2020). 

According to its morphological features, Erhai Lake was separated 
into five subregions: the northern, central-northern, central, central- 
southern, and southern regions; then, the CDOM concentration distri
bution of the entire lake and various regions in different seasons be
tween 2013 and 2019 was performed derived from MODIS-Aqua data, 
which can help us obtain more accurate information about the dynamics 
and distribution of CDOM. In general, in time series, the aCDOM(412) in 
the entire lake ranged from 0.64 to 0.90 m− 1, with an average value of 
0.81 ± 0.08 m− 1, and exhibited a small range fluctuating trend from 
0.77 m− 1 in 2013 to 0.85 m− 1 in 2019 (Figure S2), but there were 

marked seasonal changes of aCDOM(412) in multiple years, which was 
relatively different over the four seasons, aCDOM(412) were the higher in 
summer and autumn, followed by spring, and the lowest in winter. A 
clear seasonal repetition was revealed by time series of seasonal mean 
aCDOM(412) for the whole of Erhai Lake (Fig. 5 and Figure S3). In spring, 

Fig. 4. Monthly distribution of aCDOM(412) in 2019 derived from the MODIS data.  

Fig. 5. Seasonal mean values of aCDOM(412) derived from MODIS/Aqua data 
for five lake regions and the entire lake from 2013 to 2019. 
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the concentration of CDOM had little spatial variability in the entire lake 
which was about 0.6 m− 1. In summer and autumn, the CDOM concen
tration in the northern area of Erhai Lake was slightly higher than that in 
the central and southern areas. In winter, the concentration of CDOM in 
Erhai Lake was significantly different than in other seasons, showing a 
decreasing trend from north to south the south area had the lowest 
concentration of CDOM. In terms of spatial distribution, the five lake 
segments showed the same inter-annual variation pattern as the entire 
lake. The maximum value of the entire lake always appeared in the 
northern lake segment, ranging from 0.67 m− 1to 0.97 m− 1. The 
aCDOM(412) values of the northern and central-northern regions were 
clearly higher than those of the entire lake and other lake regions, which 
were approximately 2 times that in the southern part, probably because 
the only outflow of Erhai Lake is located in the south. Through lake self- 
purification by dilution (Guo et al., 2001), the concentration of CDOM 
decreased continuously. The concentration of CDOM during winter was 
lowest in the southern subregion. 

In order to better analyze the change characteristics within the year, 
take 2019 as an example, this study focused on the monthly mean CDOM 
concentration in 2019. It exhibited distinct intermonth and spatial 
variations in 2019 (Fig. 6) and a high CDOM concentration in January. 
Because the water temperature was low and the lake water level was 
high in winter, a large amount of dead biological residue degraded to 
produce organic matter. From March to April, aCDOM(412) showed an 
obvious downward trend, which may be due to the gradual increase in 
water temperature and algal consumption of CDOM, resulting in a 
decrease in organic matter content in the lake water (Jing et al., 2019). 
Precipitation increased from May to July, and rivers entered the lake 
with exogenous organic matter. On the other hand, relatively high water 
level caused aquatic plants in the inundation area of the lakeside zone to 
decompose, which is another reason for the increase in CDOM in the lake 
(Fig. 6). Because CDOM is a type of material that photochemically de
grades, a series of photochemical reactions occurs under ultraviolet 
irradiation. CDOM is degraded under strong sunlight in summer and 
absorbed by aquatic plants(Wen et al., 2016; Xue et al., 2019), which 
makes the concentration of CDOM decrease significantly in August. In 
autumn, the concentration of CDOM in the lake fluctuates greatly 
because Erhai Lake is affected by wind and waves, and resuspension 
causes the sediment to mix within the water column (Liu et al., 2013; 
Zhang and Zhi, 2020). Since aquatic plants continue to grow but also 
decay, the consumption of CDOM is reduced, and the ultraviolet radi
ation in autumn is significantly reduced, such that the CDOM 

concentration reaches its highest level throughout the year. From 
October to December, the concentration of CDOM shows a significant 
downward trend due to the massive death of phytoplankton and aquatic 
organisms in winter; the contribution of terrestrial sources to the lake 
was also significantly reduced. 

3.3. Temporal and spatial distributions of FI370 

Monthly averaged FI370 values were produced for 2019. Fig. 7 shows 
that there are also differences in the temporal and spatial distributions of 
FI370. In terms of time, FI370 was generally higher in autumn and winter 
than in spring and summer, which is consistent with the seasonal vari
ations in CDOM concentration. There were notable differences from the 
northern to the southern lake regions, but the overall characteristics 
indicated terrestrial and biological sources. Lower values are mainly due 
to the release of sediment, while some areas with higher FI370 appear in 
the northern waters, which may be due to the main water source 
entering the lake from the north, as the river input causes algae to grow 
in large numbers in the northern bay of the lake (Lin et al., 2020). Due to 
the increase in temperature, the growth of algae and the increase in 
biological activity during spring and summer, the biomass of algae was 
high in October, with an evident biological source. Overall, the FI370 
inversion results indicate that CDOM was mainly of biological origin, 
which verifies that biological sources are the main sources of CDOM in 
Erhai Lake. 

According to the measured data in 2013, the changes in the fluo
rescence indices in different seasons are shown in Fig. 8. Comparing the 
changes of the fluorescence indices in different seasons, the order of FI is 
spring>summer>winter>autumn, the order of BIX is sum
mer>autumn>winter>spring, and the order of HIX is 
autumn>winter>spring>summer, which indicates that the source and 
composition of CDOM vary greatly in different seasons. Overall, FI370, 
which fluctuated between 1.66 and 1.72, demonstrated distinct varia
tions and showed an overall decreasing trend from north to south, 
indicating that the CDOM of Erhai Lake was transformed from a 
terrestrial origin to a biological origin. The BIX of Erhai Lake showed an 
overall increasing trend from north to south, fluctuating between 1.01 
and 1.21, indicating that biological activity led to an increase in the 
proportion of self-generating sources from north to south in Erhai Lake; 
the result for BIX is the same as that for FI. HIX showed a relatively weak 
degree of humification throughout the year, further indicating that the 
contribution of terrestrial sources had weakened, while the lake’s 

Fig. 6. Monthly aCDOM(412) variation in the five lake regions derived from MODIS/Aqua data and monthly mean water temperature and water level in 2019.  
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endogenous metabolic activities had increased. 

4. Discussion 

4.1. Spatial and temporal patterns of the concentration and sources of 
CDOM and the environmental significance of CDOM 

In this study, higher CDOM concentrations and lower FI370 values 
were found in the northern and western coastal waters than in other 

parts of Erhai Lake (Figs. 4 and 7). Because there are many villages on 
the west side of Erhai Lake and different types of regional pollution 
sources, the river and lake systems are complex. A large quantity of 
domestic and livestock pollutants is discharged into the area, resulting in 
an increase in the concentration of organic matter (Guo et al., 2001; Li 
et al., 2020). In addition, degraded products of aquatic plants are the 
main source of CDOM in the northern and western parts of the lake. The 
biomass of algae in the northern areas of the lake is relatively high. FI370 
is characterised by a biological origin in autumn and winter, which is 

Fig. 7. Monthly distribution of FI370 in 2019 derived from the MODIS data.  
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mainly affected by the internal release of microorganisms and algae 
(Tan et al., 2017; Zhang et al., 2009). The higher CDOM concentration in 
Erhai Lake during summer and autumn than during spring is due to the 
increase in phytoplankton in the lake (Xu et al., 2020b). Additionally, 
rainfall caused a large amount of organic matter to be transported into 
the lake through runoff and rivers. Statistically significant positive 
correlations were found between precipitation and aCDOM(412) for the 
entire lake (R2=0.41, p<0.05), indicating that the monthly variation of 
aCDOM(412) may be affected by monthly precipitation. A similar situa
tion was also found in the Great Lakes region of North America (Xen
opoulos et al., 2003). Terrestrial dissolved organic matter originates 
from the decomposition of soil surface plants and is imported into rivers 
and lakes through surface runoff and shallow groundwater during 
rainfall; therefore, the concentration of CDOM decreases significantly 
during nonrainy seasons. The CDOM of eutrophic lakes is mainly 
composed of soluble microbial metabolites and humic acid-like DOM. As 
the degree of eutrophication increases, algae residues and microbial 
metabolites have more difficulty degrading, and the proportion of humic 
acid-like DOM increases (Liu et al., 2020; Lyu et al., 2020). Huang et al. 
found that phytoplankton biomass drives CDOM more strongly than 
other factors in the eutrophic Lake Taihu (Huang et al., 2019). There
fore, phytoplankton growth and decomposition are important sources of 
CDOM (Yao et al., 2016; Zhang et al., 2009). On the other hand, the 
input of external organic matter, nitrogen and phosphorus and the 
release of sediments provide enough nutrients to support phytoplankton 
growth; therefore, DOM degradation is offset by uptake (Seitzinger 
et al., 2005). The rivers that flow into Erhai Lake drain various types of 
land, including wetlands and land used for agriculture (Zhang and Zhi, 
2020). These rivers have high CDOM that likely originates from terres
trial sources (Ma and Li, 2020). In contrast to the western and northern 
parts of the lake, there are fewer rivers that drain into the eastern part of 
Erhai Lake, and CDOM and nutrient concentrations are therefore lower. 
FI370 was highest in summer and showed relatively low values in 
autumn and early winter. In spring and summer, there were some areas 
with high FI370 in the lake, which may be caused by the increase in 
phytoplankton and microorganisms in the water (Zhang et al., 2020). 

Erhai Lake is in a critical period of transition from medium nutrient 
content to higher eutrophication status (Lin et al., 2021); the nitrogen 
and phosphorus contents have become key factors affecting the water 
quality of Erhai Lake; and CDOM is an important source of organic 
nutrients such as nitrogen and phosphorus in the lake ecosystem (Wen 
et al., 2016). With the improvement in the treatment of the Erhai Lake 
Basin, the input of external pollutants has gradually been controlled. 
However, due to the growth and reproduction of algae and microbial 
metabolism, CDOM continues to accumulate, always at a high concen
tration. Therefore, monitoring changes in the concentrations and sour
ces of CDOM in water bodies is the basis for understanding the nutrient 
cycle in lake ecosystems (Hanson et al., 2007). Overall, the development 
from laboratory analysis to remote sensing data combined with water 
quality inversion models has clear potential for understanding the 
nutrient cycle on larger scales. It can not only help the local government 
manage water quality but also provide support for research on global 
climate change and the impact of human activities, which is of great 
value. 

4.2. Rationality and applicability of the CDOM retrieval model 

The CDOM model proposed in this study was based on MODIS/Aqua 
data and field-measured CDOM concentration and fluorescence data. By 
comparing possible bands and band combinations, an empirical algo
rithm for aCDOM(412) and an empirical and semi-empirical algorithm for 
FI370 were developed. For the aCDOM(412) models, ((Rrs(645) + Rrs 
(469)/Rrs(555)) performed better than the other band combinations 
(Table 2 and Figure S1). According to previous studies, for lakes that 
were greatly affected by internal source releases and land source input 
(Stedmon et al., 2006), the performance of the empirical algorithm can 

be significantly improved by selecting at least one wavelength band 
longer than 600 nm (Aurin and Dierssen, 2012; Del Castillo and Miller, 
2008; Zhu et al., 2014) because the red or near-infrared band can help to 
better analyse detrital particles. The blue and green bands have been 
determined to be sensitive to CDOM (Chen et al., 2017b; Sun et al., 
2011), which confirmed the rationality of the CDOM concentration 
inversion model of Erhai Lake. 

When developing the FI370 model, the influence of the Chl-a con
centration on FI370 was considered to be important. The absorption of 
CDOM can extend to the blue band of visible light, which overlaps with 
the absorption of phytoplankton Chl-a. Therefore, this study divided the 
measured data into two data sets. One data set (Chl-a>10 μg/L) con
tained 30 data points, and the other data set (Chl-a<10 μg/L) contained 
29 data points. Based on the different Chl-a concentrations of the two 
data sets, the CDOM absorption coefficient aCDOM(412) was used to 
develop the models (Tables 4 and 5). 

Combined with previous studies on the characteristic bands of 
CDOM inversion, the accuracy of the model has been improved. For Chl- 
a<10 μg/L, the model Rrs(555)/Rrs(469) of aCDOM(412) had the best 
effect (R2=0.76). The accuracy of the model is close to that of Model 1. 
The reflectivity of 469 nm and 555 nm was also used. Similar band 
combinations have been used in the research of other bays or cleaner 
water bodies. Tehrani et al. evaluated empirical algorithms and found 
that compared with that of the Rrs(490)/Rrs(555) band ratio algorithm, 
the performance of using Rrs(510)/Rrs(555) was better in the northern 
Gulf of Mexico (Tehrani et al., 2013). For Chl-a>10 μg/L, the empirical 
band ratio of Rrs(531)/Rrs(555) (R2=0.313) had a higher accuracy and 
significantly better performance than the blue-green band ratio 
(R2=0.167). A previous study used a similar band ratio Rrs(531)/Rrs 
(551) to retrieve the CDOM concentration in the Bohai Sea, China (Yu 
et al., 2017). In the results of the CDOM retrieval model for Chl-a clas
sification, the accuracy was higher for Chl-a<10 μg/L than for Chl-a>10 
μg/L, indicating that a higher concentration of Chl-a in the water body 
affects the model. A similar result was found, i.e., in a relatively clean 
water body, CDOM retrieval was better than in a turbid water body, 
which was due to the influence of suspended solids (Xu et al., 2018). 
However, for the data set under different Chl-a concentrations, (Rrs 
(645)+Rrs(469))/Rrs(555) from Model 1 showed relatively good esti
mation results. Fluorescence spectra showed significant differences in 
different types of water bodies, providing the possibility to track the 
evolution of CDOM. FI370 can reflect the sources of CDOM from a 
qualitative and semiquantitative perspective. For the development of 
the FI370 algorithm, Rrs(469) and Rrs(555) were the important variables 
reflecting FI370. At 555 nm, the change in reflectivity was mainly due to 
the presence of phytoplankton or debris driving the light scattering of 
particles (Mannino et al., 2014). Compared with that at other bands, the 
reflectance at 645 nm was most affected by CDOM absorption, closely 
related to the influence of phytoplankton. The band ratio algorithm 
including 645 nm exhibited a good estimation effect in this area. In 
addition, Rrs(859) and Rrs(555) in the algorithm had a strong correla
tion with the concentration of Chl-a. The reason is that Chl-a has obvious 
peaks and troughs in absorbance or reflectance (Ha et al., 2017; Li et al., 
2012; Moutier et al., 2019), such as those in the near-infrared and green 
bands, which were used when establishing lake water quality retrieval 
models (Chen et al., 2011b; Ha et al., 2017; Hu et al., 2012). While 
developing the FI370 algorithm, this study tried to introduce the APPEL 
model as a variable to the algorithm to improve the inversion accuracy. 
The semi-empirical model has advantages when there is a large number 
of phytoplankton in eutrophic water. Fluorescent substances are one of 
the important products of phytoplankton degradation, and the number 
of phytoplankton is often reflected by the concentration of Chl-a. 
Therefore, after the APPEL model was used as a variable, the algo
rithm became a semi-empirical algorithm, similar to the algorithm 
derived from coupling, and the estimation accuracy was optimised 
compared with that of the empirical algorithm. In addition, the semi- 
empirical algorithm was based on theoretical knowledge and water 
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colour spectrum information, which had certain physical significance. 
The bio-optical characteristics of water bodies were different in different 
regions, and the factors affecting the temporal and spatial distribution of 
CDOM in lake ecosystems were complex and closely related to lake 
biogeochemical processes (Matsuoka et al., 2012), such as hydraulic 
conditions, lake mixing and stratification, sediment suspension, phyto
plankton growth and river input (Alcântara et al., 2017; Brezonik et al., 
2015; Lapierre and Frenette, 2009; Liu et al., 2015b). The applicability 
of the retrieval model may change (Chen et al., 2019a). Future research 
still needs to develop a more in-depth understanding of the mechanisms 
of spatial and temporal changes in CDOM concentrations and sources in 
Erhai Lake. Using the CDOM models proposed here, we can observe 
changes in water quality, which can provide data and scientific support 
for local environmental departments to make more reasonable and 
effective decisions. 

5. Conclusions 

In this study, based on MODIS/Aqua data combined with field data, 
inversion models of the CDOM concentration and FI370 in Erhai Lake 
were developed, the temporal and spatial distributions of the lake’s 
CDOM concentrations and sources were analysed, and the rationality 
and applicability of the models were discussed. The main conclusions 
are as follows: 

(1) Based on (Rrs(645)+Rrs(469))/Rrs(555), an inversion model of 
CDOM concentration was developed (R2=0.507, RMSE=0.2 m− 1). After 
verification, it was found that the aCDOM(412) model performs well. For 
the FI370 model, the empirical algorithm (Rrs(469)-Rrs(555))/(Rrs 
(469)+Rrs(555)) has an R2=0.505 and an RMSE=0.030. On the basis of 
the band ratio of Rrs(645)/Rrs (469), the APPEL model of Chl-a was 
introduced, and a semi-empirical model of FI370 was developed, which 

obtained high model accuracy (R2=0.550, RMSE=0.037). 
(2) Based on model inversion, the CDOM concentration and the FI370 

information of Erhai Lake in 2013–2019 were obtained. The concen
tration of CDOM in Erhai Lake was higher in the northern lake area and 
the western coast and lower in the eastern and southern regions. The 
concentration of CDOM in the northern and western coastal waters 
during summer was significantly higher than that during other seasons. 
FI370 shows that the western part of Erhai Lake was more terrestrial- 
sourced than the eastern part, and the northern and western lake 
areas had higher fluorescence indices because CDOM was affected by the 
combined effects of the soluble microbial metabolites in the aquatic 
plant distribution area and the internal release from rivers and sedi
ments into the lake in the western area. 

(3) For the application of the CDOM concentration model, it was 
confirmed that the model performs well at different concentration 
levels. The band ratios Rrs(645))/Rrs(555) and (Rrs(645)+Rrs(469))/ 
Rrs(555) performed best under Chl-a<10 μg/L and Chl-a>10 μg/L, 
respectively. In addition, the research results found that the perfor
mance of the model was significantly improved for Chl-a<10 μg/L 
(R2=0.76). Although the accuracy of the model was reduced for Chl- 
a>10 μg/L, the model is still applicable. 

This study provides a feasible remote sensing method that developed 
algorithms for studying the temporal and spatial dynamics of the CDOM 
concentration and fluorescence indices in Erhai Lake, which is helpful to 
obtain the CDOM concentration and sources information. The research 
results can provide a theoretical basis for the protection and manage
ment of Erhai Lake and a practical reference. 
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Table 4 
Regression results show that the aCDOM(412) can be predicted by models with various bands and band ratios when Chl-a>10 μg/L.    

Equation Coefficients    

Independent  Y = b0 + b1(x1) + b2(x2)    

Variables R2 b0 b1 b2 b3 Outlier RMSE Adj.R2 

Chl-a>10 μg/L 
ln(aCDOM(412)) models         
B10/B4  0.23  3.67 − 4.54     0.66  0.17 
B11/B4  0.31  15.35 − 16.33     0.62  0.27 
B8/B12  0.17  1.46 − 1.64     0.76  0.09 
B4/B3  0.17  − 2.69 2.16     0.69  0.11 
(B3+B1)/B4  0.39  4.83 − 2.85     0.59  0.35 
(B10-B4)/(B10+B4)  0.24  − 0.86 8.00     0.66  0.19  

Table 5 
Regression results show that aCDOM(412) can be predicted by models with 
various bands and band ratios when Chl-a<10 μg/L.    

Equation Coefficients    

Independent  Y = b0 + b1(x1) + b2 
(x2)      

b0 b1 b2 Outlier RMSE Adj. 
R2 

Chl-a<10 μg/L 
ln(aCDOM(412)) 

models        
B10/B4 0.70 5.02 − 6.04   0.57 0.69 
B8/B12 0.68 2.56 − 2.83   0.59 0.66 
B8/B10 0.62 5.16 − 4.56   0.64 0.61 
B8/B4 0.63 2.29 − 2.39   0.64 0.61 
B4/B3 0.76 − 5.15 4.25   0.51 0.75 
(B3+B1)/B4 0.74 7.61 − 4.47   0.53 0.73 
(B10-B4)/ 

(B10+B4) 
0.74 − 1.08 11.22   0.53 0.72  

H. Zhang et al.                                                                                                                                                                                                                                  



Ecological Indicators 131 (2021) 108180

11

Acknowledgements 

This research was jointly supported by the National Natural Science 
Foundation of China (No. U1902207) and Yunnan Key Laboratory of 
Pollution Process and Management of Plateau Lake-Watershed (2020- 
02-2-W2, 2020-124A-W2). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecolind.2021.108180. 

References 
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