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In this paper, the Richtmyer–Meshkov instabilities in spherical and cylindrical converging
geometries with a Mach number of approximately 1.5 are investigated by using the high
resolution implicit large eddy simulation method, and the influence of the geometric effect
on the turbulent mixing is investigated. The heavy fluid is sulphur hexafluoride (SF6),
and the light fluid is nitrogen (N2). The shock wave converges from the heavy fluid into
the light fluid. The Atwood number is 0.678. The total structured and uniform Cartesian
grid node number in the main computational domain is 20483. In addition, to avoid the
influence of boundary reflection, a sufficiently long sponge layer with 50 non-uniform
coarse grids is added for each non-periodic boundary. Present numerical simulations have
high and nonlinear initial perturbation levels, which rapidly lead to turbulent mixing in
the mixing layers. Firstly, some physical-variable mean profiles, including mass fraction,
Taylor Reynolds number, turbulent kinetic energy, enstrophy and helicity, are provided.
Second, the mixing characteristics in the spherical and cylindrical turbulent mixing layers
are investigated, such as molecular mixing fraction, efficiency Atwood number, turbulent
mass-flux velocity and density self-correlation. Then, Reynolds stress and anisotropy
are also investigated. Finally, the radial velocity, velocity divergence and enstrophy in
the spherical and cylindrical turbulent mixing layers are studied using the method of
conditional statistical analysis. Present numerical results show that the geometric effect
has a great influence on the converging Richtmyer–Meshkov instability mixing layers.
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1. Introduction

The Richtmyer–Meshkov instability (RMI) will occur if a shock wave passes through a
perturbed interface between different materials. The main cause of RMI is baroclinic
instability (∇P · ∇ρ /= 0), which will result in the deposition of baroclinic vorticity on the
perturbed interface. Under the action of baroclinic vorticity, the amplitude of perturbation
experiences linear and nonlinear growth, and then leads to turbulent mixing.

Research on RMI began in the 1950s. This phenomenon was first discovered by
Markstein (1957), and then Richtmyer (1960), by reference to the analytical method
of Rayleigh–Taylor instability (RTI) (Rayleigh 1883; Taylor 1950), first carried out a
theoretical study on a small sinusoidal single-mode wrinkled interface accelerated by a
plane shock and proposed an impulsive model for the growth of amplitude of perturbation.
Later, Meshkov’s (1969) shock tube experiment verified the accuracy of Richtmyer’s
theoretical model to some extent. The RMI can be considered as a RTI of pulsed
acceleration; however, different from RTI, RMI will develops no matter whether the shock
wave converges from a heavy fluid into light fluid or from a light fluid into heavy fluid,
although the development process of the perturbed interface is greatly different in these
two cases. If the shock wave is incident from a heavy fluid into a light fluid, the baroclinic
vorticity deposited on the interface will first make the amplitude of the perturbed interface
decrease gradually and then increase in inverse, which is the so-called phase inversion
phenomenon (Zhai et al. 2019). If the shock wave is incident from a light fluid into a
heavy fluid, the baroclinic vorticity deposited on the interface will increase the amplitude
of the perturbed interface continuously. The RMI is very important in nature and many
practical engineering applications, such as inertial confinement fusion (ICF), supernova
explosion and supersonic combustion (Brouillette 2002; Livescu 2020). For example, in
ICF, RMI will induce turbulent mixing between the fuel and ablative layer in the capsule,
which can further influence the compression of the capsule and the formation of the hot
spot in the centre, leading to the failure of ignition. In supernova explosion, when the
shock wave caused by the outward projectile of matter converges toward the centre and
passes through the interface between different density materials, the RMI is induced and
then affects the life evolution of stars. In a supersonic combustion, the shock wave interacts
with the interface of fuel and oxidant and accelerates the mixing between fuel and oxidant,
which is helpful to the combustion process.

Very excellent review work for interfacial instability has been done by Zhou (2017a,b)
and Zhou et al. (2019, 2021). From these papers, it can be found that most of previous
theoretical, experimental and numerical studies on RMI have focused on the case of
a plane shock interacting with a perturbed plane interface (Chapman & Jacobs 2006;
Tritschler et al. 2014; Liu & Xiao 2016; Zhou, Cabot & Thornber 2016; Reese et al.
2018; Liang et al. 2019, 2020a,b; Luo et al. 2019b; Hill & Abarzhi 2020; Liu et al.
2020; Sun et al. 2020a; Zhao, Xia & Cao 2020; Peng et al. 2021). However, in nature
and many practical engineering applications, almost all RMI are converging, such as the
cylindrical converging shock wave interacting with a cylindrical interface or the spherical
converging shock wave interacting with a spherical interface. Moreover, comparing with
the plane RMI, the flow development of converging RMI is more intractable because of the
influence of the Bell–Plesset (BP) effect (Bell 1951; Plesset 1954; Epstein 2004), stronger
compressibility and the Rayleigh–Taylor (RT) effect.

Using a Lagrange-remap code TURMOIL, Youngs & Williams (2008) simulated
turbulent mixing in a sector of spherical implosions with random amplitude perturbations
that were initially applied to the interface between light and heavy fluids. The authors
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found that the width of the mixing layer shrank slightly and the sub-grid dissipation
was close to being mesh converged as the mesh was refined. Referring to Youngs
and Williams’ problem description, Boureima, Ramaprabhu & Attal (2018) used the
astrophysical FLASH code to carry out numerical simulations for spherical implosion
of relevance to the ICF application. Boureima et al.’s numerical results showed that the
radial trajectory of the undisturbed interface and the width of turbulent mixing layer to be
in very good agreement with the results of Youngs and Williams. Boureima et al. argued
that the spherical implosion was susceptible to multiple factors, including RMI, RTI, BP
effect and anisotropy.

El Rafei et al. (2019) conducted three different large eddy simulations (LES) in spherical
coordinates to investigate the effects of different initial surface perturbations on the
turbulent mixing in spherical implosion, and found that the initial perturbations had
almost no effect on the high wavenumber shape of the spectrum. For all three cases, the
spectra exhibit an approximate −5/3 spectral slope. However, for the initial broadband
perturbation case, the low wavenumber portion of the spectrum was still influenced.
Lombardini (2008) and Lombardini & Pullin (2009) investigated the characteristics of
turbulence and mixing in cylindrical converging RMI theoretically and numerically,
and compared with the results of plane RMI. A simple but more complete model for
the asymptotic growth of a three-dimensional cylindrical converging RMI mixing layer
was proposed by Lombardini. Lombardini’s LES results showed that the growth of the
cylindrical mixing layer lasted longer than the plane RMI mixing layer. Independent of the
incident Mach number, the cylindrical turbulent mixing layer in the late time was weakly
compressible. The mixing efficiency was greater for high incident Mach number. Isotropy
for Kolmogorov directional microscales and anisotropy for velocity power spectra were
found. The probability density function of the mixture fraction in the cylindrical mixing
layer showed a weak bimodal characteristic. Similar to the plane RMI, a −5/3 scaling law
was observed for the turbulent kinetic energy after the reshock. Subsequently, Lombardini
et al. (2014a,b) conducted LES for the spherical converging RMI with spherical harmonic
function disturbance. In the spherical mixing layer, the turbulent mixing exhibited stronger
anisotropy at large scales than that at small scales and the inertial sub-region of kinetic
energy and density spectra also showed a Kolmogorov-like −5/3 scaling law in late time,
which indicated that the turbulent scales were rarely affected by the spherical mixing layer
curvature. By numerically simulating two-dimensional single-mode interfaces driven by
convergent shock waves, Tang et al. (2021) investigated the effects of the Atwood number
on the compressibility, RT stabilization and the nonlinearity.

The linear stabilities of spherical and cylindrical converging RTI/RMI in an arbitrary
number of stratified shells had been studied by Mikaelian (1990, 2005). In these
two papers, the evolution equations of interfacial perturbations for stratified spherical
and cylindrical shells were derived. Subsequently, Liu, He & Yu (2012) presented a
simple method based on the formal perturbation expansion and potential flow theory to
investigate the cylindrical effects in weakly nonlinear RMI by considering the nonlinear
correlations up to fourth order. Then, based on the Padé approximation and perturbation
expansion directly on the perturbed interface, Liu et al. (2014) developed a nonlinear
theory to describe the cylindrical RMI under incompressible, inviscid and irrotational
assumptions, and obtained the fourth-order explicit solution in the weakly nonlinear
region. Later, using weakly nonlinear analysis up to the third order, Liu et al. (2018)
researched the finite-thickness effect on harmonics in the RMI for arbitrary Atwood
number and found that the thickness had a large effect on the amplitude of the first three
harmonics.
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Experimental investigations of cylindrical converging RMI in shock tubes had been
conducted by several researchers, such as Hosseini & Takayama (2005), Biamino et al.
(2015), Luo et al. (2015, 2018, 2019a), Zhai et al. (2017), Rodriguez et al. (2017), Ding
et al. (2017, 2019), Lei et al. (2017), Li et al. (2020), Vandenboomgaerde et al. (2018),
Courtiaud et al. (2019), Sun et al. (2020b) and Zou et al. (2019). These experimental
results are particularly helpful for the development of theory and numerical simulation.
However, to the author’s knowledge, there are few experiments on the spherical converging
RMI. Inspired by this, we plan to investigate the similarities and differences between the
spherical and cylindrical converging RMI using the method of high resolution implicit
large eddy simulation (ILES).

In our previous paper (Fu, Yu & Li 2020), the turbulent kinetic energy and enstrophy
transport equations in the mixing layers of spherical and cylindrical converging RMI
were analysed and compared in detail. In the present paper, the main focus is on the
statistical characteristics of turbulence and mixing in spherical and cylindrical converging
RMI mixing layers. Therefore, two numerical simulations are conducted, using the high
accuracy finite difference solver code named Opencfd-Comb developed by our group for
multicomponent and chemical reaction flows, for the spherical and cylindrical converging
RMI with a Mach number of approximately 1.5. The heavy fluid is SF6, and the light fluid
is N2. The shock waves converge from the heavy fluids into the light fluids. The Atwood
numbers are both A = (ρh − ρl)/(ρh + ρl) = 0.678. Here, ρh is the density of SF6 and ρl
is the density of N2 at the initial time.

2. Computational set-up and numerical method

In this paper, three-dimensional compressible and multicomponent Navier–Stokes
(NS) equations without chemical reaction, including the mass conservation equation,
momentum conservation equation, energy conservation equation and species conservation
equation, are solved in the Cartesian coordinate system using the finite difference method.
The NS equations are as follows:

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0, (2.1)

∂(ρui)

∂t
+ ∂(ρuiuj)

∂xj
= −∂P

∂xi
+ ∂τij

∂xj
, (2.2)

∂E
∂t

+ ∂[(E + P)uj]
∂xj

= ∂[uiτij + qj]
∂xj

, (2.3)

∂ρk

∂t
+ ∂(ρkui)

∂xi
= ∂

∂xi

[
ρDkm

∂Yk

∂xi

]
, (2.4)

where t denotes the time, xi denotes the spatial position in the i direction, ui denotes
the velocity in the i direction, P denotes the static pressure, E = ρ(e + uiui/2) denotes the
total energy per unit volume where e is the internal energy per unit mass, ρ denotes the
density of the mixture, ρk denotes the density of species k, Yk = ρk/ρ is the mass fraction
of species k, Dkm denotes the mixture diffusion coefficient of species k, τij denotes the
viscous stress tensor and qj denotes the heat flux in the j direction. According to the
Newtonian fluid hypothesis, the viscous stress tensor is calculated using the equation,

τij = μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij
∂uk

∂xk

)
, (2.5)
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where μ is the viscosity coefficient of the mixture and δij is the Kronecker function. The
heat flux can be obtained by using Fourier’s law of heat conduction

qj = λ ∂T
∂xj

+ ρ
∑

k

Dkmhk
∂Yk

∂xk
, (2.6)

where λ denotes the thermal conductivity coefficient of the mixture, hk = CpkT denotes
the enthalpy per unit mass of species k, T denotes the temperature of the mixture, Cpk =
γkRk/(γk − 1) denotes the specific heat at constant pressure of species k, γk and Rk =
R0/Wk denote the specific heat ratio and gas constant of species k, respectively. Here, R0
is the universal gas constant and Wk is the molecular weight of species k. In the present
numerical simulations, it is assumed that the N2 and SF6 both are calorically perfect gas
with γN2 = 1.4 and γSF6 = 1.09.

The viscosity and thermal conductivity coefficients of species k can be computed by
using the polynomial fit method used in the CHEMKIN software (Design 2008)

lnμk =
N∑

n=1

bn,k(ln T)n−1, (2.7)

ln λk =
N∑

n=1

cn,k(ln T)n−1. (2.8)

These coefficients of polynomial fit can be found in Appendix A. The viscosity and
thermal conductivity coefficients of the mixture can be calculated by using the Wilke
formula (1950),

μ =
N∑

k=1

Xkμk
N∑

j=1
Xjφkj

, (2.9)

φkj = 1√
8

(
1 + Wk

Wj

)−1/2
(

1 +
(

Wj

Wk

)1/4(
μk

μj

)1/4
)2

, (2.10)

λ = 1
2

⎛
⎜⎜⎜⎝

N∑
k=1

Xkλk + 1
N∑

k=1
Xkλk

⎞
⎟⎟⎟⎠ , (2.11)

where Xk denotes the volume fraction. In addition, the mixture diffusion coefficient of
species k is obtained by using the Schmidt number Sck = μ/ρDkm and the Schmidt
numbers of N2 and SF6 both are assumed to be 1 (Tritschler et al. 2014).

For the initial material interface, in order to make sure that there is no singularity
on the spherical surface, the spherical harmonic function is used to generate the initial
perturbation

ψ(r, θ, ϕ) = 1
2

{
1 − tanh

[
r − ξ0(θ, ϕ)

Lr

]}
, (2.12)

ξ0(θ, ϕ) = R0 − a0|f (R0, θ, ϕ)|, (2.13)
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f (R0, θ, ϕ) =
N∑

l=0

l∑
m=−l

flmYlm(θ, ϕ), (2.14)

flm =
√
(2l + 1)Cl

cos(2πωm
l )√

l∑
i=−l

cos (2πωi
l)

2

, (2.15)

Cl = 1
4(2l0 + 1)

1

σ0
√

2π
exp

[
−(l − l0)2

2σ 2
0

]
, (2.16)

where ωm
l is a series of random numbers distributed between 0 and 1, and these random

numbers are the same for different numerical simulations in this paper. The mass fraction
of light fluid near the material interface is YN2 = ψ and Ylm(θ, ϕ) is the spherical harmonic
function defined as follows:

Ylm = (−1)m
√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!Pm

l (cos θ) eimϕ. (2.17)

Here, Pm
l (x) denotes the associated Legendre polynomial and is written as

Pm
l (x) = (1 − x2)|m|/2 d|m|

dx|m| Pl(x). (2.18)

Here, Pl(x) is the l-order Legendre polynomial and defined as,

Pl(x) = 1
2ll!

dl

dxl (x
2 − 1)l. (2.19)

For the simulation of cylindrical converging RMI, r =
√

x2 + y2, ϕ = a tan 2( y, x) and
θ = π(k − 1)/(nk − 1). Here, nk is the grid node number in the spanwise direction. For
the simulation of spherical converging RMI, r =

√
x2 + y2 + z2, ϕ = a tan 2(z, x) and θ =

a tan 2(
√

x2 + z2, y). The radius of the N2 density layer at the initial time is R0 = 7 mm.
In addition, a0 = 0.375 mm, Lr = 0.2 mm, N = 40, l0 = 20, σ0 = l0/15 and the position
of shock wave at the initial time is located at Rsp = 8.5 mm. The present numerical
simulations have high initial perturbation levels, which rapidly lead to turbulent mixing
in the mixing layers. In the present paper, we plan to study the influence of the geometric
effect on the turbulent mixing, but it is impossible to make the initial perturbation exactly
the same on different geometric surfaces. The cylindrical initial condition is a remapping
of the same perturbation as in the spherical case. The smearing effect of the cylindrical
initial condition can be gradually reduced by gradually reducing the statistical region
towards the middle. Statistical averaging is done over the whole mixing layer. We will
evaluate the effects of different statistical regions in more detail in future work. The main
computational domains in the Cartesian coordinate system for spherical and cylindrical
converging RMI both are Lx = Ly = Lz = L = 20 mm.

In addition, in order to avoid the influence of boundary reflection, a sufficiently long
sponge layer of approximately 40L with 50 non-uniform coarse grid nodes is added for
each non-periodic boundary. The flow parameters at the initial time can been seen in
table 1. The isosurface of YSF6 = 0.99 for spherical and cylindrical converging RMI and
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Figure 1. Isosurfaces of YSF6 = 0.99 for spherical and cylindrical converging RMI, and the shock wave and
interface configuration diagram at the initial time.

Pre-shock Post-shock

N2 SF6 SF6

P/pa 101325 101325 233435.425
ρ/(kg m−3) 1.145 5.971 12.748
Ur/(m s−1) 0 0 108.456
γ 1.4 1.09 1.09

Table 1. Flow parameters at the initial time. Here, Ur is radial velocity.

the shock wave and interface configuration diagram at the initial time are displayed in
figure 1.

When solving the NS equations by using the finite difference method, the sixth-order
monotonicity-preserving optimized scheme (OMP6) (Li, Leng & He 2013) is used to
discretize the convective terms. An eighth-order central difference scheme is employed
for the viscous terms and a third-order Runge–Kutta approach is adopted for the time
integration.

In order to ensure the mesh convergence, four sets of grids are selected for the
simulations of cylindrical and spherical converging RMI. The grid node numbers in the
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Figure 2. Inner and outer radii of mixing layer (a,b) and turbulent kinetic energy (c,d) vs. time. Here, (a,c)
are for cylindrical converging RMI and (b,d) are for spherical converging RMI.

main computational domain are 5123, 7683, 10243 and 20483, respectively. Therefore, the
maximum total grid node number is 21482 × 2048 for a cylindrical converging RMI and
21483 for a spherical converging RMI. In addition, in the following paper, the spherical
or cylindrical shell averaging method is used to process the data of the simulations. In
the time evolution analysis, the physical quantities are averaged in the entire spherical or
cylindrical mixing layer.

Figures 2(a)–2(d) respectively show the time developments of the inner and outer radii
of the mixing layers and the turbulent kinetic energy in the mixing layers for cylindrical
and spherical converging RMI obtained from four sets of grids. Here, the mixing layer
width is defined by using the threshold of mass fraction. The inner radius r1 is the position
where the mass fraction of heavy fluid is 0.01. The outer radius r2 is the position where
the mass fraction of light fluid is 0.01. It can be seen that the outer radii are identical for
four sets of grids. However, there are some very small differences for the inner radii when
the inner radii are near the converging centres. The main reason is that, when the shell
averaging method is used, the grid node number is relatively small near the converging
centre position. For turbulent kinetic energy, each peak indicates that the transmitted or
reflected shock wave is passing through the mixing layer. Therefore, there are some slight
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Figure 3. Skewness (a,b) and kurtosis factors (c,d) vs. time. Here, (a,c) are for cylindrical converging RMI
and (b,d) are for spherical converging RMI.

differences at the peak positions due to numerical dissipation. At other times, the turbulent
kinetic energy is exactly the same.

Figures 3(a)–3(d) show the time developments of the skewness and kurtosis factors in
cylindrical and spherical mixing layers. The skewness factor is a third-order moment and is
defined as S = 〈u′′3〉/〈u′′2〉3/2. Similarly, the kurtosis factor is a fourth-order moment and
is defined as K = 〈u′′4〉/〈u′′2〉2. Here u′′

i is the density-weighted radial fluctuation velocity.
It can be seen from figure 3 that both the skewness factor and the kurtosis factor have
achieved grid convergence.

Because we use a monotonicity-preserving and dissipative numerical scheme in these
numerical simulations, and the numerical results achieve at least fourth-order statistical
convergence, we believe that the current numerical simulations meet the requirements of
ILES. In addition, it is worth noting that most of the turbulence and mixing statistics in
the subsequent analysis of the present paper are of first-order or second-order statistics. In
order to ensure the reliability of our numerical simulations, the results on the finest grid
are used for subsequent analysis.

3. Results and discussions

In terms of the RMI and RTI, the evolution of turbulent mixing can be characterized
on three different levels, i.e. mixing layer width, mean profiles and turbulent fluctuation
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statistics (Zhang et al. 2020a,b). In this section, a comprehensive analysis will be
conducted for the spherical and cylindrical converging RMI on these three different levels.

First of all, the isosurfaces of mass fractions of SF6 for spherical and cylindrical
converging RMI at different moments are displayed in figures 4 and 5, respectively. In
order to observe the degree of mixing between species, only one eighth of the main
computational domain is shown for each isosurface. As we can see from these isosurfaces,
the evolution processes of the amplitudes of perturbations for spherical and cylindrical
converging RMI are basically identical. Firstly, the phase inversion phenomenon is
observed as the shock wave converges from the heavy fluid into the light fluid. The
amplitudes of the perturbations decrease after the shock waves first pass through the
interfaces from the heavy fluids, so that the isosurfaces are smoother at t = 0.01 ms.
Then, the reflected shock waves interact with the interfaces secondly, resulting in abundant
large-scale bubble structures being generated on the interfaces (see the isosurfaces at
t = 0.02 ms and 0.04 ms). Finally, these large-scale bubbles interact with each other and
break into a large number of small-scale structures, and the turbulent mixing begins (see
the isosurfaces at t = 0.08 ms and 0.2 ms).

The shock wave is the main driving force and energy source of RMI. Therefore, it is of
great physical significance to correctly capture the trajectory of the shock wave. Figure 6
shows the wave diagram illustrating the main shock wave positions, rs, and the outer
radii of the mixing layers for spherical and cylindrical converging RMI. The shock wave
positions are identified by the absolute maximum of velocity divergence, i.e. max(|∇ · V|).
As shown in figure 6, before the converging shock waves pass through the interfaces for
the first time, i.e. t < 0.005 ms, the velocities of the spherical and cylindrical converging
shock waves are identical. After the shock waves are incident into light fluids from heavy
fluids, the velocities of the shock waves increase obviously due to the changes of specific
heat ratios, and the velocity of the spherical converging shock wave is faster than that of
the cylindrical converging shock wave. The spherical transmitted shock wave arrives at the
converging centre point at t = 0.019 ms. The cylindrical transmitted shock wave arrives
at the converging centre line at t = 0.021 ms. Transmitted shock waves are reflected at
the converging centres and transformed into reflected shock waves. After reflections, the
difference of velocity difference between spherical and cylindrical reflected shock waves
is further enlarged. The spherical reflected shock wave interacts with the interface at
t = 0.026 ms, and the cylindrical reflected shock wave passes through the interface at
t = 0.03 ms. Due to the decreases of specific heat ratios, the velocities of the reflected
shock waves become slower after they are transmitted from light fluids into heavy fluids.
In a word, the geometric effect (sphere or cylinder) has a great impact on the trajectory of
the shock wave.

The mixing layer width of RMI is one of the most important physical quantities in
practical engineering applications. Studies on the planar RMI show that the increase of
the turbulent mixing layer width follows the law of h ∼ tθ . However, different studies have
given different exponents θ .

The time evolutions of the mixing layer widths for spherical and cylindrical converging
RMI are shown in figure 7. The mixing layer width h are defined as

h = r2 − r1. (3.1)

It can be seen from figure 7 that, after the shock waves interact with interfaces for the
first time, the initial mixing layer widths are compressed and reduce to the minimum
values. From here until t = 0.026 ms for the spherical mixing layer and t = 0.03 ms for
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Figure 4. Isosurfaces of mass fraction of SF6 for spherical converging RMI at t = 0 ms, 0.01 ms, 0.02 ms,
0.04 ms, 0.08 ms and 0.2 ms. Only one eighth of the main computational domain is shown for each isosurface.

the cylindrical mixing layer, the heavy fluids accelerate the light fluids in the mixing layers,
so the flow is RT stable. The RT stable effect results in a weak or even negative growth
of the mixing layer width. After the reflected shock waves impact interfaces again, the
light fluids accelerate the heavy fluids in the mixing layers, and the flow is RT unstable.
The mixing layer widths begin to grow rapidly, first linearly, then nonlinearly and finally
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Figure 5. Isosurfaces of mass fraction of SF6 for cylindrical converging RMI at t = 0 ms, 0.01 ms, 0.02 ms,
0.04 ms, 0.08 ms and 0.2 ms. Only one eighth of the main computational domain is shown for each isosurface.

reach the asymptotic saturation levels. In the linear growth stage, for spherical converging
RMI, the mixing layer width varies as h ∼ 0.7tUr. For the cylindrical converging RMI,
the mixing layer width varies as h ∼ 0.58tUr, which indicates that the linear growth rate
of the cylindrical mixing layer is approximately 17 % lower than that of the spherical
mixing layer. The asymptotic values of spherical and cylindrical mixing layer widths are
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Figure 6. Wave diagram showing main shock wave positions and the outer radii of the mixing layers.

5.1 mm(0.73R0) and 4.6 mm(0.66R0), respectively. There is a difference of approximately
10 % between the asymptotic values of spherical and cylindrical mixing layer widths. On
the whole, the geometric effect has a great influence on the developments of the mixing
layer widths, and the width of spherical mixing layer is obviously larger than that of the
cylindrical mixing layer. The main reason for this phenomenon may be that the spherical
mixing layer converges toward the centre point from three directions, while the cylindrical
mixing layer converges toward the centre line from only two directions, so that the BP
effect of spherical converging geometric is stronger.

According to the inner and outer radii of the mixing layer, the heights of the bubble
(light fluid penetrates heavy fluid) and spike (heavy fluid penetrates light fluid) can be
defined as,

hb = r2 − r0.5, hs = r1 − r0.5. (3.2a,b)

Here, the r0.5 denotes the position where the mass fractions of light and heavy fluids both
are 0.5. It can be clearly seen from figure 8 that, for the cylindrical converging RMI, the
bubble height always increases linearly and gently. For the spherical converging RMI,
the bubble height has a rapid growth stage (approximately in the range 0.05 ms < t <
0.07 ms). This is mainly because the spherical mixing layer has a geometric divergence
effect outwards. However, as large-scale bubbles interfere with each other and break into
small-scale structures, the mixing layer enters the turbulent mixing stage, and the spherical
geometrical outward divergence effect no longer plays a dominant role. Then, the bubble
height of spherical mixing layer also enters a slow linear growth stage. For spherical and
cylindrical converging RMI, the spikes reach the centre at approximately 0.1 ms, and from
then on the spike positions remains constant.

Figure 9 displays the time developments of mass fractions of SF6 in the mixing
layers. The distribution of mass fraction can, to a certain extent, characterize the mixing
degree of the two fluids, which includes not only the mixing at the molecular level,
but also the mixing of pure light/heavy fluid entering into heavy/light fluid through the
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bubble/spike structures and still maintaining the pure fluid state. As shown in figure 9,
before the reflected shock waves pass through mixing layers, the mass fractions of SF6
in the spherical and cylindrical mixing layers are roughly the same. The main reason
is that the first interactions between converging shock waves and interfaces cause the
amplitudes of interfacial perturbations to decrease. Meanwhile, the bubble and spike
structures are relatively small and develop slowly, and the influences of the geometric
effect are insignificant. In addition, as the shock waves converge from the heavy fluids into

928 A10-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

81
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.818


Statistical characteristics of turbulent mixing

t (ms)

Y S
F

6

0 0.05 0.10 0.15 0.2

0.4

0.5

0.6

0.7

0.8

0.9 Sphere

Cylinder

t2

t3

t2 = 0.026 ms

t3 = 0.03 ms

Figure 9. Mass fraction of SF6 in the mixing layer vs. time.

the light fluids, so-called phase inversion phenomena occur, that is, the amplitudes of the
initial perturbations on the interfaces first decrease and then increase in reverse. In other
words, the light and heavy fluids first separate from each other, and then penetrate each
other, which is also the reasons that the mass fraction of SF6 fluctuates during this stage.
After the second interactions between reflected shock waves and interfaces, the widths of
the spherical and cylindrical mixing layers start to grow quickly and the bubble and spike
structures develop rapidly so that a large amount of pure fluids are brought into the other
pure fluids. During this stage, the geometric effect becomes very important, resulting in a
large difference in the mass fractions of SF6 in spherical and cylindrical mixing layers, and
the mass fraction of SF6 in the spherical mixing layer is significantly higher than that in
the cylindrical mixing layer. This means that the spherical mixing layer brings more SF6
from the periphery into the mixing layer. For spherical and cylindrical mixing layers, the
light fluid is completely mixed after approximately 0.1 ms. Thus, the mass of light fluids
in the mixing layer remains constant and only the mass of heavy fluids increases. This is
also why the mass fractions of SF6 are large at the end of the two numerical simulations.

For viscous flow, physical viscosity can dissipate the small-scale structures and convert
kinetic energy into internal energy. The Taylor microscale is the length scale at which
viscosity begins to have a significant effect on the flow. Here, the radial Taylor microscale
λ is defined as,

λ2 = 〈u′′2
r 〉

〈(∂u′′r/∂r)2〉 . (3.3)

The Taylor Reynolds number Reλ based on the Taylor microscale and Reynolds number
Reh based on the mixing layer width can be defined as, respectively,

Reλ = urmsλ

ν
, Reh = urmsh

ν
. (3.4a,b)
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Here, urms(=
√

〈u′′2
r 〉) and ν(= μ/ρ) are the root mean square of the radial velocity and

the kinematic viscosity in the entire mixing layer, respectively. As shown in figure 10(a),
the maximum peak values of the time evolutions of the radial Taylor microscales in
the spherical and cylindrical mixing layers both are approximately 0.1 mm (≈0.014R0).
Combined with figure 7, it can be found that the radial Taylor microscales basically tend
to remain unchanged after the end of the linear growth stages of the mixing layer widths.
The asymptotic values of the radial Taylor microscales for spherical and cylindrical mixing
layers are approximately 0.08 mm (≈0.011R0) and 0.095 mm (≈0.014R0) respectively. In
addition, it is important to note that the radial Taylor microscale is very dependent on
the mesh resolution. Figure 10(b) describes the time developments of the Taylor Reynolds
numbers. The maximum peak value of the Taylor Reynolds number in the spherical mixing
layer is approximately 2000. However, the maximum peak value of the Taylor Reynolds
number in the cylindrical mixing layer is only approximately 1000, which only is half
of that in the spherical mixing layer. In the late stage, the Taylor Reynolds numbers
in the spherical and cylindrical mixing layers gradually decay to the same value. The
time development of the Reynolds numbers based on the mixing layer width is shown in
figure 10(c). The peak value of Reh for the spherical mixing layer is approximately 48 000.
However, it is only approximately 31 000 for the cylindrical mixing layer.

The helicity ht is also a noteworthy quantity, and is defined as,

ht = uiωi, (3.5)

where ωi denotes the velocity curl. The helicity is a quadratic invariant in addition to the
kinetic energy of the three-dimensional NS equations in the inviscid limit. Yu et al. (2013)
proposed a LES model by considering the inertial range balance of subgrid-scale helicity
dissipation in physical and spectral spaces and the joint cascade of energy and helicity.
Therefore, the studies on the evolution mechanisms of helicity in the turbulent mixing
layer induced by RMI are helpful to establish a new model or improve the existing model
for the turbulent mixing problem. The time developments of helicity in the mixing layers
are displayed in figure 11. After the reflected shock waves hit the interfaces for the second
time, the helicity begins to increase rapidly. On the whole, compared with the cylindrical
mixing layer, the spherical mixing layer has higher helicity. The peak of helicity appears at
approximately t = 0.055 ms. The radial distribution of helicity at t = 0.055 ms is shown
in figure 12(a). It can be found that, at this moment, the helicity in the spherical and
cylindrical mixing layers has a regular and similar chirality. Due to the effect of viscous
dissipation, the average helicities both tend to be zero at the later stage of spherical and
cylindrical mixing layers. The radial distribution of helicity at t = 0.2 ms is shown in
figure 12(b). At this moment, the helicity in the mixing layer has no regular chirality and
shows the characteristic of fluctuating up and down around zero.

The time evolutions of the root mean square of the velocities and turbulent kinetic
energy (TKE) in the mixing layers are shown in figure 13. Here, the turbulent kinetic
energy is defined as,

TKE = 1
2 〈ρu′′

i u′′
i 〉/〈ρ〉. (3.6)

As shown in figure 13, for both the spherical mixing layer and the cylindrical mixing layer,
the time development trend of TKE is very similar to that of the root mean square of
the velocities. The difference is that the root mean square of the velocities and the TKE
in the spherical mixing layer exhibit a single peak characteristic. However, they show a
three-peak characteristic in the cylindrical mixing layer, although the third peak may be
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Figure 10. Radial Taylor microscale (a), Taylor Reynolds number (b) and Reynolds number based on mixing
layer width (c) vs. time.

less obvious. The reason for this difference may be that different geometries have different
reflection or transmission effects on shock waves. At the later stage, the root mean square
of the velocities in the cylindrical mixing layer are at least approximately 50 % larger
than that in the spherical mixing layer, which indicates that the turbulent intensity in the
cylindrical mixing layer is higher. In terms of TKE, after t > 0.1 ms, at this time when
the spherical and cylindrical mixing layer widths begin to reach asymptotic saturation, the
TKEs have a power-law decay with time, i.e. TKE ∼ t−n. Groom & Thornber (2021) find
that the decay rate n of TKE is 1.51–2.20 in planar RMI, and the decay rate decreases
with increasing initial Reynolds number. In the present numerical simulations, the decay
exponents of the TKE in spherical and cylindrical mixing layers both are n = 2.20. This
indicates that the turbulent mixing effect is more dominant than the geometric effect in the
turbulent mixing stage.

As mentioned above, the RMI is mainly caused by the baroclinic vorticity. Therefore,
the analysis of the physical quantities related to the vortex dynamics can deepen our
understanding of the intrinsic mechanism of RMI. In our previous paper (Fu et al. 2020),
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the enstrophy transport equation has been analysed in detail. The enstrophy is defined as,

Ω = 1
2ωiωi. (3.7)

Figure 14 shows the time evolutions of the enstrophy in the spherical and cylindrical
mixing layers. From figure 14(a,b), it can be found that, for both spherical and cylindrical
converging RMI, refining the mesh greatly increases the enstrophy, which is similar to the
numerical results of Hahn et al. (2011). In addition, we also find that the quantities that
do not include the partial derivatives of the velocities have reached mesh convergence,
while the quantities that include the partial derivatives of the velocities, such as the
dissipation rate, enstrophy and Taylor scale, have not reached mesh convergence. This is a
consequence of using the ILES approach which resolves more and more of the fine-scale
structure as the mesh is refined. The peak value of enstrophy in the spherical mixing layer
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Figure 13. Root mean square of velocities (a–c) and turbulent kinetic energy (d) in the mixing layer vs. time.
For spherical converging RMI, u is the radial velocity, v is velocity in the ϕ(0 ≤ ϕ ≤ 2π) direction, w is the
velocity in the θ(0 ≤ ϕ ≤ π) direction. For cylindrical converging RMI, u is the radial velocity, v is the velocity
in the ϕ(0 ≤ ϕ ≤ 2π) direction, w is the velocity in the z direction.

is much larger than that in the cylindrical mixing layer. Combined with figure 7, it can be
found that the time interval corresponding to the linear growth stage of mixing layers is
approximately 0.03 ms < t < 0.08 ms, which is exactly consistent with the peak interval
of enstrophy. And outside of this time interval, the enstrophy tends to be zero. Therefore,
it can be concluded that the developments of enstrophy are closely related to the increases
of the mixing layer widths, and larger enstrophy is more conducive to the growth of the
mixing layer widths. When the spherical and cylindrical mixing layer widths begin to reach
asymptotic saturation (approximately t > 0.1 ms), the enstrophy has a power-law decay
with time, i.e. Ω ∼ t−a. In the spherical mixing layer, the decay exponents of enstrophy
is a = 2.58. In the cylindrical mixing layer, the decay exponents of enstrophy is a = 2.42.
The geometric effect has little effect on the decay exponent of enstrophy.

The probability density functions (PDF) of the mass fractions of SF6 in the spherical and
cylindrical mixing layers at t = 0.2 ms are displayed in figure 15. It can be found that the
PDF of the mass fractions of SF6 in spherical and cylindrical mixing layers have bimodal
characteristics. The first peak value of the PDF appears at the position of YSF6 = 0.89 in
the spherical mixing layer, and at the position of YSF6 = 0.8 in the cylindrical mixing layer.
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Figure 14. Enstrophy in the mixing layer vs. time.

The second peak values of the PDF appear at the positions of YSF6 = 1, which indicates
that there is still a large amount of pure SF6 in the mixing layers. In the range of low mass
fraction, the PDF in the cylindrical mixing layer is larger, and the left tail is flatter, which
shows that the mixing degree between light and heavy fluids in the spherical mixing layer
is greater than that in the cylindrical mixing layer.

Figure 16 describes the time developments of the skewness and kurtosis factors in
the spherical and cylindrical mixing layers. The skewness and kurtosis factors can
be used to describe the degree of deviation of the radial fluctuation velocity from
the Gaussian distribution due to the existence of turbulent intermittency. If a random
variable of zero mean is Gaussian, then its skewness factor S would be equal to 0
and kurtosis factor K would be equal to 3. In addition, the skewness factor can also
characterize the rate at which the enstrophy increase by vortex stretching, and the
equation is s = (135/98)1/2〈ωiωj(∂ui/∂xj)〉/Ω3/2 (Lesieur 1997). Figure 16 shows that
at the later turbulent mixing stage, both the skewness and kurtosis factors of the radial
fluctuation velocity in the cylindrical mixing layer are larger, indicating stronger turbulent
intermittency.
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The mixing layer width and mass fraction distribution can, to some extent, characterize
the mixing degree of different fluids, but, as mentioned above, these two quantities cannot
distinguish whether the mixing is true molecular-level mixing. There are many parameters
that have been proposed to measure the molecular mixing degree. Zhou et al. (2016)
compared in detail the asymptotic behaviour of different mixing parameters in plane
RTI and RMI with different density ratios. In this paper, the molecular mixing fraction
θ defined by Youngs (1991, 1994) is used to measure the molecular mixing degree

θ =
∫

X1X2 dV∫ 〈X1〉〈X2〉 dV
. (3.8)
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Figure 17. Molecular mixing fraction vs. time.

Here, θ = 1 denotes perfect mixing and θ = 0 denotes complete separation; Xk denotes the
volume fraction of species k. The time developments of the molecular mixing fractions of
the spherical and cylindrical mixing layers are shown in figure 17. The molecular mixing
fractions of spherical and cylindrical mixing layers first decrease monotonically and then
increase monotonically. This is because, at the early stage, the mixing layer is mainly
composed of pure fluids that penetrate each other. The molecular mixing fraction decreases
with the increase of the bubble and spike structures. After the reflected shock, the pure
fluid begins to break up into small structures and molecular mixing causes the molecular
mixing fraction to increase again. At the later stage, the increases of molecular mixing
fractions slow down and begin to reach the asymptotic values. At the growth stage, the
molecular mixing fraction in the spherical mixing layer is always larger. In other words, the
fluid in spherical mixing layer is more fully mixed. In addition, comparing figure 17 with
figure 14, it can be found that the time interval corresponding to the fastest growth rates of
molecular mixing fractions is basically consistent with the peak interval of enstrophy and
linear growth interval of the mixing layer width. This is mainly because the magnitudes of
enstrophy can represent the strength of vorticity, and the rotational motions of the vortex
can accelerate the mixing between light and heavy fluids.

The efficiency Atwood number can be defined as,

Ae = ρrms

〈ρ〉 . (3.9)

The efficiency Atwood number is a quantity related to the turbulent mixing and mixing
layer width growth. As Ae decreases, the entrainment, which is responsible for bringing
the large pockets of irrotational fluid into the turbulent flow region, is weakened gradually
and the turbulent mixing is strengthened gradually. Conversely, when Ae increases, pure
fluids come into the turbulent flow region faster than they are mixed. Cook, Cabot & Miller
(2004) believe that, at the stage of mixing transition, the turbulent mixing rate overtakes
the entrainment rate so that the growth rate of the mixing layer width is reduced. As shown
in figure 18, the time evolution trends of the efficiency Atwood numbers in the spherical

928 A10-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

81
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.818


Statistical characteristics of turbulent mixing

t (ms)

Ae

0 0.05 0.10 0.15 0.20
0.2

0.4

0.6

0.8

1.0

Sphere

Cylinder

Figure 18. Efficiency Atwood number in the mixing layer vs. time.
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Figure 19. (a) Radial distribution of turbulent mass-flux velocity at t = 0.2 ms. (b) schematic of radial
turbulent mass-flux velocity.

and cylindrical mixing layers are the inverse of the molecular mixing fractions. This reason
is that the efficiency Atwood number increases monotonically, indicating that the turbulent
mixing rate is weakening compared with the entrainment rate, so the molecular mixing
fraction decreases monotonically. Conversely, the efficiency Atwood number decreases
monotonically, indicating that the turbulent mixing is being intensified, so the molecular
mixing fraction increases monotonically. At the later stage, the efficiency Atwood number
in the spherical mixing layer is always smaller, indicating that the turbulent mixing rate is
faster in the spherical mixing layer.

The turbulent mass-flux velocity ai = −〈u′′〉 is also an important source term related
to turbulent mixing. For the three-equation Reynolds-averaged Navier–Stokes model,
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i.e. k−L−a mode (Morgan & Wickett 2015), the turbulent mass-flux velocity as a
prefactor appears in the energy equation, TKE equation and turbulent mass-flux velocity
equation. Therefore, the study of the turbulent mass-flux velocity is beneficial to improve
the turbulent mixing model. Mohaghar et al. (2017) and Reese et al. (2018) use the
density-weighted turbulent mass-flux velocity ai = 〈ρ′u′

i〉/〈ρ〉 in their papers instead of
−〈u′′〉. However, it can be proved that these two are equal, i.e.

ai = −〈u′′〉 =
〈 〈ρu〉

〈ρ〉 − 〈ρ〉u
〈ρ〉

〉
=
〈 〈ρ〉〈u〉 + 〈ρ′u′〉 − 〈ρ〉〈u〉 − 〈ρ〉u′

〈ρ〉
〉

= 〈ρ′u′〉
〈ρ〉 . (3.10)

The radial distributions of turbulent mass-flux velocities at t = 0.2 ms for spherical and
cylindrical mixing layers are shown in figure 19(a). The radial distance is normalized by
the inner and outer radii of mixing layer. First, it can be found that the turbulent masses
are transported mainly in the radial directions. In addition, the radial turbulent mass-flux
velocities a1 in the mixing layers are all negative. However, a1 being predominantly
negative does not indicate net negative fluctuation, or the transport of turbulence and
mass inwards. It indicates that, in a spherical or cylindrical averaging shell (as shown
in figure 19b), the negative mass fluctuations are paired with positive radial velocity
fluctuations, and positive mass fluctuations are correlated with negative radial velocity
fluctuations. In other words, the light fluids are being transported from the centre outward,
and the heavy fluids are being transported from the periphery inward. This leads to mutual
penetration and turbulent mixing between the two fluids. The larger the turbulent mass-flux
velocity is, the more intense the turbulent mass exchange is. At the later stage, because the
species in the spherical mixing layer have been mixed more fully, the turbulent mass-flux
velocity is generally smaller than that in the cylindrical mixing layer. The values of a2
and a3 both are close to zero, which means that the mass and velocity fluctuations are
uncorrelated, without a preferential direction of transport over the whole radial spherical
or cylindrical shell.

The density self-correlation b can also be used to measure the fluid mixing and is defined
as,

b = −
〈
ρ′
(

1
ρ

)′〉
. (3.11)

Here, b = 0 indicates that the fluid is perfect mixed fluid or pure fluid. The density
self-correlation as a prefactor appears in the production term of the turbulent mass-flux
velocity equation in the k − L − a model and is closed by a algebraic equation, i.e.

b = ρ̄

⎛
⎜⎝
∑
k

Xk
ρk+cρ̄∑

k

Xkρk
ρk+cρ̄

⎞
⎟⎠− 1. (3.12)

Here, c is an undetermined model constant and is set as zero through similarity analysis.
The radial distributions of the density self-correlations calculated by using (3.11) and
(3.12) for spherical and cylindrical mixing layers at t = 0.2 ms are shown in figure 20.
For convenience of viewing, the results of (3.12) are multiplied by the corresponding
coefficients to ensure that the peak values of the density self-correlations are equal. In
terms of the results of (3.11), outside the mixing layers, because the fluids are pure heavy
fluids, the density self-correlations are both zero for spherical and cylindrical mixing
layers. In the mixing layers, the density self-correlation of the spherical mixing layer
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Figure 20. Radial distribution of density self-correlation at t = 0.2 ms. Lines are the results of (3.11); squares
are the result of (3.12) with a scaling factor of 0.04 in spherical mixing; circles are the result of (3.12) with a
scaling factor of 0.096 in cylindrical mixing.

is generally lower than that of the cylindrical mixing layer, which again indicates that
there are more unmixed pure fluid bubbles in the cylindrical mixing layer. Comparing the
results of (3.11) with (3.12) in figure 20, it can be found that the density self-correlations
calculated using the algebraic equation of the k−L−a model are different in magnitude.
In addition, the shapes of the radial distribution of the real results and algebraic equation
results are also very different, especially for the spherical converging geometry. The main
reason for this phenomenon may be that the model constant c in the k−L−a model is
obtained by self-similarity analysis of one-dimensional RTI and RMI in the low Atwood
number limit, and the influence of the geometric effect is also not considered. Therefore,
it is necessary to improve this algebraic equation.

The Reynolds stresses are one of the most important unclosed terms in
Reynolds-averaged Navier–Stokes model, which are defined as,

Rij = 〈ρu′′
i u′′

j 〉. (3.13)

Figure 21(a) describes the radial distributions of Reynolds stresses in spherical and
cylindrical mixing layers at t = 0.2 ms. Compared with the Reynolds normal stresses
(R11,R22,R33), the Reynolds shear stresses (R12,R13,R23) are negligible, which indicates
that the shear effects in the mixing layers are very small and the turbulent production is of
baroclinic type. According to the Reynolds stresses, the Reynolds stress anisotropy tensor
can be defined as,

bij = 〈ρu′′
iu′′

j〉
〈ρu′′ku′′k〉 − 1

3
δij. (3.14)

The value of bij is between −1/3 and 2/3. If bij = −1/3, that means there is no TKE
distributed in this direction, and if bij = 2/3, that means that all the TKE is occupied
in this direction. The time developments of the Reynolds stress anisotropy tensors in the
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Figure 21. (a) Radial distribution of Reynolds stress at t = 0.2 ms. (b) Anisotropy of Reynolds stress in the
mixing layer vs. time.

spherical and cylindrical mixing layers are displayed in figure 21(b). When the reflected
shock waves pass through the interfaces for the second time, the Reynolds stress anisotropy
in spherical and cylindrical mixing layers reaches its peak value. The peak values are 0.48
and 0.42 for the spherical and cylindrical mixing layers, respectively. This means that
approximately 81 % of TKE is in the radial direction for the spherical mixing layer, and
approximately 75 % of TKE is in the radial direction for the cylindrical mixing layer. Then,
with the increase of time, the anisotropy decreases monotonically, indicating that the flows
in the mixing layers are developing toward isotropy. Finally, b11 in the spherical mixing
layer tends to 0.07, that is, approximately 40 % of TKE is distributed in the radial direction.
The value of b11 in the cylindrical mixing layer tends to 0.09, that is, approximately 42 %
of TKE is distributed in the radial direction. The spherical mixing layer is more isotropic.

Next, the method of conditional statistics will be applied in the mixing layers to study
the influence of the geometric effect under given conditions. Here, conditional statistics
means that, at a certain moment, within a certain space range, the data on the grid points
satisfying the given condition are recombined into a new data set, and then statistical
analysis is carried out on this new data set. The mass fraction is an extremely important
physical quantity in the turbulent mixing induced by the interfacial instability. Therefore,
in the present paper, the mass fraction of SF6 is selected as the condition to perform
conditional statistics.

Figure 22 shows the conditional mean of the radial velocity in mass fraction space in the
spherical and cylindrical mixing layers at t = 0.2 ms. It can be seen from figure 22 that the
radial velocities are obviously dependent on the mass fractions. For the spherical mixing
layer, when YSF6 < 0.89, the conditional mean of the radial velocity is greater than zero.
When YSF6 > 0.89, the conditional mean of the radial velocity is smaller than zero. For the
cylindrical mixing layer, when YSF6 < 0.82, the conditional mean of the radial velocity is
greater than zero. When YSF6 > 0.82, the conditional mean of the radial velocity is smaller
than zero. Combined with figure 15, it can be found that values of 0.89 and 0.82 roughly
correspond to the peak values of the PDF of the mass fraction of SF6 in spherical and
cylindrical mixing layers. This is mainly because the mixing degree between heavy and
light fluids tends to the peak position of the PDF. Therefore, a fluid element that is less
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Figure 22. Conditional mean of the radial velocity in mass fraction space in the mixing layer at t = 0.2 ms.
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Figure 23. Conditional root mean square of the radial velocity in mass fraction space in the mixing layer at
t = 0.2 ms.

mixed than the peak position of PDF moves outward and mixes with the SF6 fluid. A fluid
element with a mixing degree greater than the peak position of PDF moves inward and
mixes with the N2 fluid. Figure 23 shows the conditional root mean square of the radial
velocity in mass fraction space in the spherical and cylindrical mixing layers at t = 0.2 ms.
Obviously, in the whole mass fraction space, the conditional root mean square of the radial
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Figure 24. Conditional mean of the velocity divergence in mass fraction space in the mixing layer at
t = 0.2 ms.
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Figure 25. Conditional mean of enstrophy in mass fraction space in the mixing layer at t = 0.2 ms.

velocity in the cylindrical mixing layer is always larger. Therefore, it can be concluded that
in the mass fraction space, the turbulent intensity is stronger in the cylindrical mixing layer.

Figure 24 shows the conditional mean of the velocity divergence in mass fraction space
in the spherical and cylindrical mixing layers at t = 0.2 ms. The velocity divergence can
be used to measure the compression and expansion effects of the fluids. If the velocity
divergences are greater than zero, the fluids are expanding. Conversely, if the velocity
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divergences are smaller than zero, the fluids are being compressed. We see from figure 24
that the velocity divergence is also dependent on the mass fraction. In addition, it can
be found that a fluid element with a mixing degree smaller than the peak position of the
PDF of the mass fraction of SF6 is compressed, and a fluid element with a mixing degree
greater than the peak position of the PDF of the mass fraction of SF6 is expanding.

Figure 25 shows the conditional mean of enstrophy in mass fraction space in the
spherical and cylindrical mixing layers at t = 0.2 ms. The enstrophy has a significant
dependence on the mass fractions, and the geometric effect has a great influence on the
conditional mean of enstrophy.

4. Conclusions

In this paper, comprehensive analysis is conducted for the high resolution ILES data of
spherical and cylindrical converging RMI with a grid size of 20483. The numerical results
show that,

(i) The linear growth rate of spherical mixing layer is faster than that of cylindrical
mixing layer. The degree of mixing in the spherical mixing layer is greater. The
turbulence in the cylindrical mixing layer is more intermittent.

(ii) Because of the geometric divergence effect outward, the bubble height has a rapid
growth stage in the spherical mixing layer.

(iii) At the early stage, the helicity in the spherical and cylindrical mixing layers has
a regular and similar chirality. Compared with the Reynolds normal stresses, the
Reynolds shear stresses in the spherical and cylindrical mixing layers are negligible.
There is strong anisotropy in the mixing layers at the early stage, but the mixing
layers tend to become gradually isotropic as the developments of time. At the later
stage, the TKE and enstrophy have a power-law decay with time, and the geometric
effect has little effect on the decay exponent.

(iv) The conditional statistics analysis shows that the radial velocities, root mean square
of the radial velocity, velocity divergence and enstrophy in the spherical and
cylindrical mixing layers are obviously dependent on the mass fractions. In the mass
fraction space, the turbulent intensity is stronger in the cylindrical mixing layer.
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Appendix A.

In this paper, we use the polynomial fit of the logarithm of the viscosity and thermal
conductivity coefficients versus the logarithm of the temperature to obtain the transport
properties of species k. The coefficients of the polynomial fit can be found in tables 2
and 3.
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Species b1,k b2,k b3,k b4,k

N2 −1.554E + 01 1.934E + 00 −1.674E − 01 7.228E − 03
SF6 −1.058E + 01 −1.114E + 00 3.999E − 01 −2.618E − 02

Table 2. The coefficients of polynomial fit for the viscosity of species k. The unit of the viscosity coefficient
computed by using (2.7) is g (cm s)−1.

Species c1,k c2,k c3,k c4,k

N2 7.599E + 00 −1.180E + 00 3.030E − 01 −1.539E − 02
SF6 −8.058E + 01 3.758E + 01 −5.471E + 00 2.689E − 01

Table 3. The coefficients of polynomial fit for the thermal conductivity of species k. The unit of the thermal
conductivity coefficient computed by using (2.8) is erg (cm s K)−1.
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