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Two-dimensional periodic interfacial gravity waves travelling between two homogeneous
fluids of finite depth are considered. A boundary-integral-equation method coupled with
Fourier expansions of the unknown functions is used to obtain highly accurate solutions.
Our numerical results show excellent agreement with those already obtained by Maklakov
& Sharipov using a different scheme (J. Fluid Mech., vol. 856, 2018, pp. 673-708). We
explore the global bifurcation mechanism of periodic interfacial waves and find three types
of limiting wave profiles. The new families of solutions appear either as isolated branches
or as secondary branches bifurcating from the primary branch of solutions.
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1. Introduction

It is well known that two-dimensional periodic surface gravity waves have a limiting
configuration characterised by a sharp 120° angle at their crests. This is known as
the Stokes highest wave. However, periodic interfacial gravity waves between two
homogeneous fluids exhibit more complex limiting configurations. A local analysis
indicates that the configuration of the Stokes highest wave in a two-fluid system inevitably
results in an infinite velocity, and hence is not allowed (see e.g. Meiron & Saffman
1983). It was Holyer (1979) who first obtained solutions with a vertical tangent on the
interface based on the Stokes expansion and Padé approximations. Subsequently, Saffman
& Yuen (1982), Meiron & Saffman (1983), Pullin & Grimshaw (1983a,b) and Turner
& Vanden-Broeck (1986) extended Holyer’s results and found Omega-shaped profiles
(multivalued solutions). Meiron & Saffman (1983) further asserted that these overhanging
waves would develop into a self-intersecting profile as the limiting configuration but they
did not compute them.
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Figure 1. Three limiting profiles. We refer to them as (a) type I, (b) type II and (c) type III. Here, p; and p2
are the heavier and lighter fluid densities, respectively.

Grimshaw & Pullin (1986) investigated the two-fluid system in the Boussinesq limit (i.e.
the two fluids are of nearly equal density), when the lower layer is of infinite depth and the
upper layer has a mean depth / and a constant vorticity w. They found mushroom-shaped
solutions and proposed a limiting configuration that features a closed bubble of heavier
fluid on top of a 120° angle (see figure la). As h — oo and w — 0, they suggested a
second limiting configuration, which consists of two inverted Stokes highest waves with a
half-period phase shift and separated by a region of stagnant fluid (see figure 1c). This
would come about as the periodic wave profile self intersected at four points in each
period, effectively forming a four-layer system with two stagnant fluid regions cut off
from the outer flow by the folded interface. When # is finite but relatively smaller than the
wavelength, there is a third possibility. Although it was not indicated clearly by Grimshaw
& Pullin (1986), some of their numerical results suggest the limiting configuration shown
in figure 1(b), a closed bubble of lighter fluid underneath a downward 120° angle (i.e. the
inversion of 1a). For convenience, the limiting configurations shown in figure 1(a—c) are
hereafter termed type I, type II and type III limits, respectively. Although these results
were obtained under special assumptions (infinite depth and non-zero constant vorticity),
it turns out that they are valid in more general cases. For example, Maklakov & Sharipov
(2018) developed a highly accurate numerical method based on the piecewise-analytical
function theory, which provides solid numerical evidence for the existence of the type I
limit when both layers are irrotational and infinitely deep.

In the present paper, periodic interfacial gravity waves in a two-layer system of finite
depth are investigated numerically. The motion is assumed to be irrotational in each layer.
We take a frame of reference moving with the wave, so that the flow is steady. Using the
Cauchy integral formula and Fourier series, we obtain highly accurate numerical solutions
which provide strong evidence for the existence of all three types of limiting configurations
shown in figure 1. In the Boussinesq limit, we confirm the assertion of Grimshaw &
Pullin (1986) on the type III solution by following the branch arising from a uniform
flow (referred to as the primary branch), on which a secondary bifurcation point is found
leading to type I and type II limits. The new branch isolates from the primary branch and
gradually shrinks to zero when the density ratio is decreased from 1. Surprisingly, this
novel bifurcation mechanism, i.e. the coexistence of three limiting types in one bifurcation
diagram, can also be found in non-Boussinesq cases.

2. Mathematical formulation

Consider two-dimensional periodic interfacial waves propagating at a constant speed ¢
between two incompressible, inviscid, irrotational and immiscible fluids that are bounded
above and below by horizontal solid walls (see the schematic in figure 2). We denote by 4;
and p; (j = 1, 2) the depth and density in each fluid layer, where subscripts 1 and 2 refer
to fluid properties associated with the lower and upper fluid layers, respectively. Assuming
that the waves are symmetric, we choose a frame of reference moving with the wave and
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Figure 2. Schematic of the flow configuration. Here only one wavelength of the wave is sketched.

introduce a Cartesian coordinate system with the x-axis on the undisturbed interface and
the y-axis on a line of symmetry (for example, a vertical line through a crest). The only
restoring force under consideration is gravity which acts in the negative y-direction. It is
convenient to choose p1, i1 and c to be the units of density, length and velocity. Since the
flow is irrotational in each fluid layer, we can introduce the velocity potentials ¢ and ¢;
satisfying the Laplace equation

¢l,xx + ¢1,yy =0, -1 < y<n (21)
¢2,xx + ¢2,yy =0, n<y< h, (2.2)

where 7 stands for the displacement of the interface and & = hy/hy is the depth ratio. On
the interface, the kinematic and dynamic boundary conditions read

dry — Granx = P2y — P2anx =0, (2.3)
RIV? — V1> +2(R — 1)n/F* = B, (2.4)

where R = py/p1 < 11is the density ratio, F’ 2=¢2 /(ghy) the square of the Froude number,
g the acceleration of gravity and B the Bernoulli constant.

3. Numerical methods
3.1. Boundary integral equations

We introduce a complex variable { = e~ %2 where k is the wavenumber and z = x + iy.
This transformation maps the physical flow domain [—7/k, t/k] x [—1, h] onto an
annular region in the complex ¢-plane (see, e.g. Papageorgiou & Vanden-Broeck 2004).
Since the complex velocity w = u — iv is an analytic function (u and v are the x and y
components of the velocity), the Cauchy integral formula gives

Lo
w(i) = — d¢’, 3.1
() in?gcg/—gg (3.1)
where C represents the boundary of the upper or lower layer and ¢ denotes a point on C. We
can express w in terms of the velocity modulus g and the inclination 6 as w = qe“@. Note
that the relation between 6 and the arclength parameter s takes the formula of e = dz/ds.
Using these notations, (3.1) can be rewritten as

k q
w(¢) = ——% ——ds. (3.2)

nJel=¢/¢
Let Yy =y(o)+y(s), Y- =y(o) —y(s), Xy =x(0) +x(s) and X_ = x(o) — x(s).
Applying the Schwarz reflection principle to (3.2) for both fluid layers and taking the
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real part of equations, one then obtains
ng1(0)x (o) /k
/“ ( q1(s)(1 — ek V+72) cos (kX)) q1(s)(1 — e~ cos(kX_)) ) q
= — \)
0

1+ e2k(Vet2) — 2ek(Vi42) cos(kX_) 1 + e2K~ — 2ekV~ cos(kX_)

B /( N1 =T coskXs)) g1 — M cos(kX,)) ) N
0 ,

1 4 e2k(Y++2) _ 2ek(Y++2) cos(kX ) C ] 4 e2kYo _pekr- cos(kX )

3.3)
nq2(0)x'(0)/k
_ /"‘ q2(s)(1 — X' cos(kX_)) g2(s)(1 — X721 cos (kX)) q
T Jo \ 14 e —2ekY-cos(kX_) 1 4 e2k(Y+=2h) _ Dek(Y+=21) cos(kX_) g
/a ¢2(s)(1 — X' cos(kX1)) q2(s) (1 — X572 cos (kX)) d
[— [— S,
o \1+eX¥— —2ek¥—cos(kX,) 1+ eZk(Y4+=2h) _ 2ek(Y+—21) cog(kX )
(3.4)

where o denotes the total arclength of the interfacial wave in half period and the assumed
symmetry property of waves has been used.

3.2. The Fourier method

Due to the periodicity and symmetry of the computed waves, we can express the unknown
functions as Fourier series. For convenience, we introduce a normalised arclength
parameter T = s/« and write the Fourier expansions as

o o
q1(1) =Y _aycos(nmr),  qa(t) =Y bycos(nmr),
n=0 n=0 (35)
X ¢ > d
x(1) = coT + Z 2 sin(nmr), n(t) =dy — Z 2 cos(nmr).
nm nm
n=1 n=1

Truncating these series after N terms gives 4N unknowns, namely a,, by, ¢, and d,
(n=0,1,...,N — 1). Putting them together with F, B and «, there are eventually 4N + 3
unknowns to be found. We evaluate (3.3) and (3.4) over the interval [0, 1] at N equally
spaced mesh points:

L TR (3.6)
7=, =1,...,N. .
I=N-1
To avoid the singularity in the Cauchy integral formula, we introduce another set of mesh
grids:
m_ Tt Tl
=
and calculate the integrals by applying the midpoint rule. The Bernoulli equation and the
arclength equation

, j=1,....N—1, 3.7)

Rg3 — ¢4 +2(R — 1)n/F* =B, (3.8)
4t =a? 3.9)
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are satisfied at the mesh points 7;. Since the x-axis is fixed on the undisturbed interface
level, we impose

d
nn L codo = 0. (3.10)
21n

1 N—1
/ N (1)dr =0= Y
0 n=1

To close the system, we also need to give a definition of the wave amplitude H:
H = n(0) —n(l), (3.11)

and prescribe the wave speed ¢ (which has been scaled to unity). There are different ways
to define c. Following a widely used condition in surface gravity waves, we define ¢ as the
averaged velocity in the lower fluid

k n/k
—/ ui(x,y = const.)dx = —1, (3.12)
T Jo

where y = const. is an arbitrary horizontal line within the lower layer. The negative sign
reflects the fact that the background current is from right to left in the moving frame
of reference. Equation (3.12) can be rewritten in terms of ¢; by using the irrotationality
condition

ak ! T

— qi(t)ydt = -1 = g = ——. (3.13)

T Jo k

In addition, a similar condition for ¢ is necessary for solving the problem:

B!
boo = ——. (3.14)
k
Although it is beyond the scope of this paper, it should be pointed out that the right-hand
side of (3.14) can be an arbitrary constant, which can be thought of as giving different
background current in each layer. Note that there are some extra conditions due to the
symmetry of waves:

x(0)=0, 7'(0)=0, 7»'(1)=0, (3.15a—c)

which are automatically satisfied owing to their Fourier representations. It is not difficult
to verify that co = w/k due to the spatial periodicity of waves. Finally, we have 4N +
4 (3.3)—(3.11) and (3.13)—(3.14) with only 4N + 2 unknowns. Therefore, we choose to
drop the equations of (3.3) and (3.4) at T = 1, and perform the Newton iteration to solve
the system for given values of R, k, h and H. The iteration process is repeated until the
maximum residual error is less than 10710, At first glance it seems dangerous to abandon
two integral equations. However, our numerical results show that the maximum residual
error of these two equations (denoted as § hereafter) is of the order of 10~ M in most cases.
Based on our numerical experience, N = 600 usually gives accurate enough results and
thus is used in most computations. For almost-limiting solutions, however, typically 1200

Fourier modes are necessary to maintain appropriate accuracy and to ensure § < 1074,

4. Numerical results
4.1. Validation

In table 1, we present results for R = 0.1 and compare them with the works of Saffman
& Yuen (1982) and Maklakov & Sharipov (2018). Since their results were obtained in
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KH Gy (S&Y) Cy(M&S)  Cy (N=200) C, (N =300)

0.1 1.0010433  1.001043327  1.001043327 1.001043327
0.3 1.0093851  1.009385147  1.009385147 1.009385147
0.5 1.0260381  1.026038075  1.026038075 1.026038075
0.7 1.0509243  1.050924313  1.050924313 1.050924313
0.9 1.0839603  1.083960270  1.083960271 1.083960271
110 1.125454 1.125454593  1.125454593 1.125454593
1.20  1.149904 1.149903889  1.149903889 1.149903889

1.30 1177 1.177754503 1.177754503 1.177754503
1.32 — 1.183901408 1.183901408 1.183901408
1.34 — 1.190327567  1.190327567 1.190327567
1.36 — 1.197125838  1.197125838 1.197125838
1.38 — 1.204514662  1.204514662 1.204514662
1.39 — 1.208645838  1.208645838 1.208645838
1.39 — 1.213326106  1.213326105 1.213326106
1.38 — 1.210675485  1.210675484 1.210675485
1.36 — 1.204401123  1.204401182 1.204401123
1.34 — 1.197369928  1.197369998 1.197369929
1.32 — 1.189740717 1.189740717 1.189740717
1.30 — 1.181506483 1.181506847 1.181506483
1.28 — 1.172510673 1.172523419 1.172510684

Table 1. Cs vs kH for R = 0.1, h = 1 and k = 100. The second and third columns are the results of Saffman
& Yuen (1982) and Maklakov & Sharipov (2018), respectively.

the case when both layers are infinitely deep, we let # = 1 and k& >> 1 to achieve a good
approximation of their results, and after many tests it was found that £k = 100 is large
enough to provide an excellent agreement. Note that these authors used a different length
scale, +/g/k, so their dimensionless wave amplitude reads kH. The dimensionless wave
speed defined by Saffman & Yuen (C;) and Maklakov & Sharipov (Cy,) can be expressed
as

1+R
1-R’
Increasing N up to 300, we have nine correct decimals in comparison with Maklakov
& Sharipov (2018) in most cases except for a few solutions very close to the limiting
configuration. Though not explicitly shown in table 1, for most solutions § = O(10~!1),

which demonstrates the validity of our numerical method. Even when § increases to
0(10*6), seven correct decimals can be guaranteed with N = 300.

Cs = FVk Cn = FVk. (4.1a,b)

4.2. Bifurcations and profiles

For any R € (0, 1), there is a branch of solutions bifurcating from infinitesimal periodic
waves, which always leads to overhanging solutions. When £ > 1, the limiting profiles
of these branches are of type I and their geometry relies on the values of k£ and R.
From a physical point of view, overhanging waves and associated limiting profiles would
presumably suffer different instabilities (Kelvin—Helmholtz, Rayleigh—Taylor, etc.) and
thus are difficult to be observed in experiments. However, our main concern here is the
existence of limiting shapes which is separate from the question of instability. In figure 3,
we show typical speed—amplitude bifurcation curves and related almost-limiting profiles
for h = 1. The bubble features a half-lens shape and becomes horizontally long and
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Figure 3. Typical speed—amplitude bifurcation curves and related almost limiting profiles. (a,b) R = 0.9, h =
1 and k =1 (blue), k = 2 (red), k = 3 (yellow). (c¢,d) k =3, h=1and R = 0.2, 0.5, 0.9. The corresponding
almost-limiting profiles are plotted from top to bottom.

vertically thin when the value of k is gradually decreased for a fixed R. Note that to compare
the profiles with different wavelengths, we rescale the horizontal and vertical coordinates
by multiplying k, as shown in figure 3(b). On the other hand, for a given wavenumber
k, the bubble enlarges when the value of R is increased, which is clearly demonstrated by
figure 3(d). For general sets of parameters, bifurcation curves, along which almost-limiting
profiles that are either of type I or of type II can be found. They appear qualitatively similar
to those shown in figures 3(a) and 3(c). Guan et al. (2021) proposed a local model for the
limiting configuration of type I for a small density ratio and calculated numerically profiles
of the closed bubble. The almost-limiting profiles computed with the primitive equations
when both layers are deep (h = 1, k = 100) and solutions of the simplified model are
shown in figure 4. For comparison purpose, we make sure they match at the wave crest
and flat bottom. The density ratios are R = 0.1, 0.2 and 0.3 from top to bottom and, as
expected, the smaller density ratio gives a better agreement.

When R — 1, i.e. the Boussinesq limit, Grimshaw & Pullin (1986) predicted the
existence of the type III solution. This is intuitively reasonable since gravity is negligible
and the wave profile should be invariant after being turned upside down, if one omits
the possible phase shift. Maklakov & Sharipov (2018) also supported this assertion but
did not provide direct numerical evidence. In the top diagram of figure 5(a), we display an
almost-limiting solution in the Boussinesq limit (R = 0.999999) where # = 1 and k = 100
are used to approximate the condition that both layers are of infinite depth. This solution
features a wave steepness of 0.1518 and a wave speed of 1.141 after being converted to
the scaling of Grimshaw & Pullin (1986), which agree well with the corresponding values
of 0.1411 1 and 1.0923 for the Stokes highest wave. It is also clear that the almost-limiting
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Figure 4. Comparisons between the almost-limiting solutions (blue) and solutions of the simplified model
(red) from Guan et al. (2021). The parameters are chosen as 2 = 1, k = 100 and R = 0.1, 0.2, 0.3 from panels
(a—c).
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Figure 5. The bifurcation in the Boussinesq limit with 27 =1, k=100 and R = 0.999999. (a) Three
almost-limiting profiles that correspond to type III, type I and type II limits from top to bottom. (b) A new
speed—amplitude bifurcation branch (red) bifurcates from the primary one (blue) at a secondary bifurcation
point (black dot). The circle relates to type III limit and the asterisk corresponds to type I and type II limits.

profile tends to become self-intersecting at both x = 0 and x = +m/k, hence yielding a
limiting profile of type IIL. It is not surprising that the condition k£ > 1 is unnecessary to
lead to such solutions, since the mirror symmetry with a possible phase shift relies only
on the conditions R — 1 and & = 1 (recalling that the lower layer has a unit depth).
However, it is found that the type III solution is not the only possible limiting profile
in the Boussinesq limit. Other branches of solutions can arise through the secondary
bifurcation mechanism as shown in figure 5(b). The blue curve is the primary branch
bifurcating from infinitesimal periodic waves and the red circle denotes the almost-limiting
configuration of type III (see the top figure of 5a). We check the Jacobian matrix along
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Figure 6. Speed—amplitude bifurcation curves and related almost-limiting profiles with 2 =1 and k = 100.
(a) R =10.999. (b) R = 0.99, 0.98, 0.96. (c) A series of new bifurcation branches shrinking from left to right.
The leftmost curve bifurcating from a uniform flow corresponds to R = 0.92. (d) Almost-limiting profiles with
R =0.92, 0.88, 0.86 from top to bottom. Blue and red profiles correspond to dots and asterisks in panel (c),
respectively.

the primary branch and the solution is picked up as a candidate for the secondary
bifurcation point if the matrix becomes nearly singular (interested readers are referred
to Chen & Saffman (1980) for more details). It is shown in figure 5(b) that a secondary
bifurcation point is found to exist (black dot), from which two coincident branches of new
solutions (red curve) arise terminating at the limiting profiles of type I and type II. The
almost-limiting profiles are labelled by the asterisk and plotted in the middle and bottom
figures of 5(a). Therefore, limiting configurations of types I-III coexist in the Boussinesq
limit for h = 1.

We take one of the secondary bifurcation branches as an example (the one which
terminates at the type II limit, say) to explore its behaviour as R varies. If the value of
R is slightly decreased, one can observe a separation of the secondary bifurcation curve
from the primary branch as shown in figure 6(a). The isolated branch connects two limiting
profiles labelled by a red dot and an asterisk, both of which are of type II. Three curves
for R =0.99, 0.98, 0.96 are shown in figure 6(b), from which one can see a growing
distance between the isolated branch and the primary one as R is gradually decreased.
Another striking feature is the shrinking tendency of these isolated curves as R decreases
(see figure 6¢). For R < 0.86, the new branch almost becomes a point, which indicates
that these new solutions can exist only in a specific range of parameters. Therefore, it
is also expected that the difference between the two limiting profiles at opposite ends of
the isolated curve should gradually diminish as shown in figure 6(d), where blue and red
curves correspond to dots and asterisks, respectively. It is worth mentioning that when the
density ratio deviates from 1, the limiting configuration on the primary branch (labelled
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Figure 7. Speed—amplitude bifurcation curves and related almost-limiting profiles with R = 0.5 and k = 3.
(a) h =0.3601. (b) h = 0.3602. (c) A sequence of new bifurcation curves. (d) Three almost-limiting profiles
corresponding to the asterisk, the circle and the dot in panel (a) from top to bottom.

by a red circle) becomes type I, and the readers should not associate these markers (circle,
dot and asterisk) with any specific type of limit in general.

As discussed above, the existence of the secondary bifurcation and of the branch
separation phenomenon is found near the Boussinesq limit. One can then ask whether
or not this novel bifurcation mechanism exists in other situations. We give a positive
answer to this question based on the numerical results shown in figure 7. For k = 3 and
R = 0.5, it is found that there is a special depth ratio i, for which three types of limiting
solutions coexist and are linked via a secondary bifurcation point. Although the exact value
of Ay is not easy to determine, the numerical evidence shown in figure 7(a,b) strongly
suggests 0.3601 < Ay < 0.3602 in this case. As & deviates from /g, there are two types
of branch separation depending on whether / is decreasing or increasing. There are three
sub-branches arising from the secondary bifurcation point at 7 = hg. When £ is slightly
below A, as shown in figure 7(a) for A = 0.3601, the top sub-branch stays on the primary
branch (blue line) while the bottom two sub-branches form a new curve with a sharp corner
(red line) which isolates from the primary one. Figure 7(b) shows the result for 4 = 0.3602
where the top and bottom sub-branches form a new curve (red line) breaking away from the
primary branch (blue line). Note that although the two curves intersect at a common point
in the parameter space as shown in figure 7(b), the two wave profiles at the intersection
point are slightly different and this difference increases with 4, indicating the branch
separation phenomenon. A sequence of new bifurcation curves for different values of / are
plotted in figure 7(c), which clearly shows a transition near 0.36. Almost-limiting waves
akin to types I-III are labelled by the asterisk, circle and dot in figure 7(a) for 4 = 0.3601,
and corresponding typical profiles are plotted in figure 7(d) from top to bottom.
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5. Conclusion

In the present paper, we have investigated the bifurcation mechanism and limiting
configurations of periodic interfacial gravity waves. Highly accurate numerical solutions
have been obtained by applying a boundary-integral-equation method together with the
Fourier representation of the unknown functions on the interface. Strong numerical
evidence has been provided to support the existence of three kinds of limiting
configurations as shown in figure 1. New branches of solutions, which are either isolated
or connected to primary branches via secondary bifurcation points, have been discovered
in both the Boussinesq and non-Boussinesq cases. The new bifurcation mechanism
can be understood as follows. At some critical points in the parameter space (k, &, R),
the secondary bifurcation occurs on the primary branch and three types of limiting
configurations coexist in the same bifurcation diagram. As the parameter set deviates from
the critical point, the new branch breaks away from the primary branch and gradually
shrinks until it vanishes completely as the parameter set further varies.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.854.
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