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A B S T R A C T   

In many applications of heat exchanger, due to the heat convection, the wall temperature of the 
channel usually varies along the streamwise direction. The present paper reports the analysis of 
nanofluid flows in the channel with linearly varying wall temperature. The non-uniform equi
librium fluid medium model proposed by Buongiorno is applied, where the Brownian diffusion 
and thermophoresis of nanoparticles are considered. The numerical solutions of laminar flows are 
determined by the iteration method in conjunction with the Chebyshev collocation method. The 
results show that: (1) there is a Gaussian distribution of nanoparticle concentration in the wall- 
normal direction for convective cooling, while its standard deviation depends on the Peclet 
number and the ratio of Brownian diffusivity to thermophoretic diffusivity; (2) there are obvious 
stratifications for the viscosity and thermal conductivity in the flow; (3) the velocity decreases 
significantly with the increase of nanoparticle concentration for convective heating, while there is 
only a little decrease for the velocity in the cold region for convective cooling.   

1. Introduction 

Nanofluids, introduced by Choi in 1995 [1], are the colloidal suspensions obtained from dispersing nanoparticles in base fluids. In 
these fluids, nanometre-sized (<100 nm) particles such as metal, oxide, carbide or carbon nanotubes are suspended in the base fluids 
such as water and ethylene glycol [2]. In the past two decades, nanofluids have received much attention for their remarkably improved 
thermal properties [3] and great application potentials in aerospace, energy, electronics, chemical industry et al. [4]. 

Many works on nanofluids have been devoted to the study of their thermophysical properties (e.g., thermal conductivity, heat 
transfer coefficients, viscosity, density) [5], preparation methods [6] and transport characteristics in porous media [7]. Some rheo
logical experiments have shown that nanofluids have non-Newtonian behavior [8]. Recently, the properties of nanofluids flows have 
been investigated by many authors by analytical and numerical methods [9–12]. Simple mathematical models are adopted to describe 
the mechanical properties of nanofluids from a macroscopic perspective based on the continuous-medium approximation. The nu
merical studies of convective heat transfer of nanofluids have been reviewed by Vanaki, Ganesan & Mohammed [13]. 

Two main models are widely used in these theoretical studies for nanofluid flows. The first is the homogeneous fluid medium model 
proposed by Choi [1]. Si et al. [14]have used this single-phase model to study the mixed convection flow and heat transfer of 
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pseudo-plastic power law nanofluids past a stretching vertical plate. Dual solutions have been obtained for some values of the physical 
parameters. However, this model ignores the non-uniformity of the distribution of nanoparticles, which is also significantly different 
from the experimental results [15]. The second is the non-uniform equilibrium fluid medium model proposed by Buongiorno [15], 
where the nanoparticle concentration is determined by considering the Brownian diffusion and thermophoresis. Garoosi & Talebi [16] 
have studied the conjugate natural and mixed convection heat transfer of nanofluids in a square cavity by Buongiorno model. The 
results suggest that there are lower and higher nanoparticles concentration around the heat sources and sinks, respectively. Therefore, 
the non-uniform model can describe the flow properties of nanofluids more accurately. 

In many applications of heat exchanger, due to the heat convection, the wall temperature of the channel usually varies along the 
streamwise direction. For this reason, some authors have turned to the problems of channel flows with non-uniform wall temperature. 
Ostrach [17] has examined the combined natural and forced convection laminar flow and heat transfer of fluids in channels with 
linearly varying wall temperatures. It was found that the velocities and temperatures decrease with increasing values of the modified 
Rayleigh number. The laminar flow forced convection in ducts with several boundary conditions have been reviewed by Shah & 
London [18], including the case with non-uniform wall temperature. However so far, to our best knowledge, no studies have been 
carried out for the nanofluid flows in channels with varying wall temperatures. It is highly desirable to solve this problem for its great 
practical importance, which is the purpose of this paper. 

In the present work, the plane Poiseuille flow of nanofluids in a channel with linearly varying wall temperature is investigated 
numerically. The non-homogeneous equilibrium model is used to describe the coupling of nanoparticle motion, fluid flows and heat 
transfer. Two viscosity models of nanofluids are considered, which are the theoretical model given by Brickman [19] and the empirical 
model of water–γAl2O3 presented by Maiga et al. [20].The solutions of laminar flows are derived, and the stratifications of nano
particles, viscosity and thermal conductivity are demonstrated. 

The paper is organized as follows. In Section 2, the physical model and mathematical formulation of the problem are presented, 
while the dimensionless governing equations are derived and the numerical methods are illustrated. Then in Section 3, the distri
butions of velocity, temperature, particle volume fraction, thermal conductivity and viscosity at different parameters are displayed, the 
effect of temperature on the viscosity is discussed, and comparisons are made with different viscosity models. Finally, our conclusions 
are drawn in Section 4. 

2. Problem formulation 

Here, we consider the plane Poiseuille flow in Fig. 1, where a steady flow between two fixed parallel planes is driven by a constant 
pressure gradient. x and y are the streamwise and wall-normal direction, respectively. p is the pressure. The channel has linearly 
varying wall temperatureTb. We assume that the temperature in the flow region T is linear in x plus a distribution in y, and the 
temperature variation in the normal direction is much larger than that in the streamwise direction. So the variations of viscosity and 
velocity in x direction are neglected. The flow is parallel and u is the velocity, which only depends on y. 

Generally, there are two models which are suitable for simulation of the nanofluids: Manninen’s two phase model and Buongiorno’s 
model. The first model is suitable when the size of the nanoparticles is larger than the 100 nm [21]. However, in this paper, we only 
considered the alumina nanoparticles in the tens of nanometers. Therefore, we use the Buongiorno’s model in the following. 

2.1. Governing equations 

We use the non-uniform equilibrium model to describe the nanofluid flow. The continuity equation is 

∇· u = 0, (2.1)  

which is satisfied as the flow is parallel. The momentum equation with negligible external forces is 

Fig. 1. The plane Poiseuille flow of nanofluids in the channel with linearly varying wall temperature.  
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ρ
(

∂u
∂t

+u · ∇u
)

= − ∇p+∇· τ, (2.2)  

where τ is the stress tensor and ρis the density. They can be expressed as follows: 

τ= μ
(
∇u+(∇u)T)

, (2.3)  

ρ=φρs + (1 − φ)ρf , (2.4)  

where μis the viscosity, φis the nanoparticle concentration (particle volume fraction), ρs,ρf ,ρare the densities of the nanoparticle, the 
base fluid and the nanofluid. 

For the heat transfer in the nanofluid, we consider the convection, conduction and the nanoparticle diffusion. So the energy 
equation is: 

ρc
(

∂T
∂t

+ u · ∇T
)

=∇ · (k∇T)+ (ρc)s

(

DB∇φ+DT
∇T
T

)

· ∇T, (2.5)  

where c is the specific heat of the nanofluid, k is the nanofluid thermal conductivity. It goes 

ρc=φ(ρc)s + (1 − φ)(ρc)f , (2.6)  

where the subscripts s & f stand for nanoparticle and base fluid, respectively. Usually(ρc)s, (ρc)f have the same order, for exam
ple,(ρc)s ∼ 3.1 × 106J/(m3 ·K) for alumina while (ρc)f ∼ 4.2 × 106J/(m3 ·K) for water [15]. Meanwhile, φ is small, so the variation of 
ρc in the y direction is neglected in this paper. DB is the Brownian diffusion coefficient, DT is the thermal diffusion coefficient, 

DB =
kBT

3πμds
, DT = β

μf

ρf
φ . (2.7) 

Here, kB is Boltzmann constant, ds is the diameter of the nanoparticle, 

β= 0.26
kf

2kf + ks
, (2.8) 

ks, kf are the thermal conductivities for nanoparticle and base fluid, respectively.μf is the viscosity of the base fluid. 
The governing equation of nanoparticles without chemical reactions is: 

∂φ
∂t

+u · ∇φ=∇ ·

(

DB∇φ+DT
∇T
T

)

. (2.9) 

In the fluid, the viscosity and thermal conductivity depend on the particle concentration. We use two simple models to predict the 
viscosity. The first is presented by Brickman [19]: 

μ= μf

/
(1 − φ)2.5

. (2.10) 

The other is presented by Maiga et al. [20] for water–γAl2O3: 

μ= μf
(
1+ 7.3φ+ 123φ2). (2.11) 

These two models are independent of the temperature. However, when the temperature difference in y direction is big enough, we 
should consider the effect of temperature on the viscosity. In this work, the temperature dependent viscosity model is as follows [22]: 

μfT = μ0 exp
(

ς+ ξ
(

T0

T

)

+ ζ
(

T0

T

)2)

, (2.12)  

μ= μfT
(
1+ 7.3φ+ 123φ2), (2.13)  

where μ0 is the reference viscosity. For water, T0 = 273K,ξ = − 4.45, and ζ = 6.55. In this paper, we choose μ0as the viscosity of the 
base fluid at the lower wall, so ς = − 0.514. 

The thermal conductivity is predicted by the Maxwell-Garnett model [23]: 

k= kf
ks + 2kf − 2φ

(
kf − ks

)

ks + 2kf + φ
(
kf − ks

) ≈ kf (1 − 3κφ), (2.14)  

κ=
kf − ks

2kf + ks
. (2.15) 

For alumina nanoparticles in water at room temperature, kf ∼ 1W/(m ·K),ks ∼ 40W/(m ·K)[15], therefore, we assume κ ∼ − 0.93. 
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The above governing equations can be made dimensionless by the following transformations: 

ũ = u
/

U0, ρ̃ = ρ
/

ρf , μ̃ = μ
/

μf , φ̃ = φ
/

φb,

T̃ = (T − Tb)
/

ΔT, ∇̃ = ∇ · d, t̃ = tU0

/
d.

(2.16) 

Here U0is the reference velocity defined as follows: 

U0 =

(

−
dp
dx

)

d2
/

(
8μf

)
, (2.17)  

d is the distance between two plane, φbis the average concentration, Tbis the temperature of the lower wall,ΔT = d · ∂
∂x Tis the tem

perature difference in the distance of d in x direction. Now the nanoparticle concentration is normalized: 

∫1

0

φ̃dy= 1. (2.18) 

The dimensionless governing equations are derived as follows: 

∇̃ · ũ = 0, (2.19)  

ρ̃Re
(

∂ũ
∂̃t

+ ũ · ∇̃ũ
)

= − ∇̃p̃+∇̃ ·
[
μ̃
(
∇̃ũ+(∇̃ũ)T)]

, (2.20)  

∂T̃
∂̃t

+ ũ · ∇̃T̃ =
1

Re ·Pr

[

∇̃ ·
(

k∇̃T̃
)
+

1
Le

(

D̃B∇̃φ̃+ D̃T
1

NBT
∇̃T̃

)

· ∇̃T̃
]

, (2.21)  

∂φ̃
∂̃t

+ ũ · ∇̃φ̃=
1

Re · Sc∇̃
·

(

D̃B∇̃φ̃+ D̃T
1

NBT
∇̃T̃

)

. (2.22) 

Here the Reynolds number (Re), Prandtl number (Pr), Schmidt number (Sc) and Lewis number (Le) are defined as follows: 

Re= ρf U0d
/

μf , (2.23)  

Pr = cμf

/
kf , (2.24)  

Sc=
μf

ρDb
B
, Db

B =
kBTb

3πμf ds
, (2.25)  

Le=
k

(ρc)sDBφb
. (2.26) 

The other parameters are defined as 

D̃B =
T
μ

/
Tb

μf
, D̃T =

φ
T

/ φb

Tb
, (2.27)  

NBT =
Db

Bρf Tb

βμf ΔT
. (2.28) 

The boundary conditions are set as follows: 

ũ = 0, D̃B
∂
∂y

φ̃ + D̃T
1

NBT

∂
∂y

T̃ = 0, y = 0, 1 (2.29a)  

T̃(0)= 0, T̃(1) = Γ. (2.29b) 

Here, Γis the temperature difference of two walls in the normal direction. 
We assume the flow is parallel, and its temperature is linear in x as imposed plus a distribution in y as follows: 

ũ=(ũ(y), 0), (2.30)  

T̃(x, y)= ± x + T̃y(y), (2.31)  

where, (+ x)stands for the convective cooling, while ( − x)stands for the convective heating. 

In (2.21), the temperature gradient has two components:∇̃T̃ = ∂̃T
∂x i+ ∂̃T

∂y j, where i, jare the unit vectors in the x and y directions, 
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respectively. For simplicity, we assume that 1 =

⃒
⃒
⃒
⃒
⃒
∂̃T
∂x

⃒
⃒
⃒
⃒
⃒
<<

⃒
⃒
⃒
⃒
⃒
∂̃T
∂y

⃒
⃒
⃒
⃒
⃒
. This is also confirmed in the temperature distributions in Fig. 7 &10. 

Thus, we ignore the temperature gradient along the flow direction on the right side of (2.21). Similarly, we assume that the con

centration of nanoparticles has φ̃(x,y) = αx+ φ̃y(y)and |α| =
⃒
⃒
⃒
⃒
∂̃φ
∂x

⃒
⃒
⃒
⃒ <<

⃒
⃒
⃒
⃒
∂̃φ
∂y

⃒
⃒
⃒
⃒. 

Now the governing equations can be simplified as follows: 

d
dy

(

μ̃ d
dy

ũ
)

= − 8, (2.32)  

±Pe · ũ(y)=
d
dy

·

(

k̃
d
dy

T̃y

)

+
1
Le

(

D̃B
d
dy

φ̃+ D̃T
1

NBT

d
dy

T̃y

)

·
d
dy

T̃y, (2.33)  

(Re · Sc)α · ũ(y)=
d
dx

(

D̃Bα± D̃T
1

NBT

)

+
d
dy

(

D̃B
d
dy

φ̃y + D̃T
1

NBT

d
dy

T̃y

)

. (2.34) 

Here Pe is the Peclet number, 

Pe=Re ·Pr, (2.35)  

and two viscosity models and a thermal conductivity model have 

μ̃= 1
/
(1 − φbφ̃)2.5

, (2.36)  

μ̃= 1 + 7.3φbφ̃ + 123φbφ̃2
, (2.37)  

k= 1 − 3κφbφ̃. (2.38) 

We suppose the parameters have the order as follows, 

Re ∼ 40,Pr ∼ 10,Pe ∼ 400, (2.39)  

φb ∼ 0.04,Tb ∼ 350K,Tc ∼ 320K, d ∼ 0.01m,ΔT = 0.2K. (2.40) 

Here, Tc is the temperature on the centre line y = 0.5. 
The other parameters are estimated as follows [15], 

Sc ∼ 105,Le ∼ 5× 105,NBT ∼ 0.2 × 30 = 6, ​ κ ∼ − 1. (2.41) 

As Le is very large, the right side of (2.33) is nearly independent of Le. So the effect of Lewis number on the result is not discussed in 
the following. 

In (2.34), as |α| =
⃒
⃒
⃒
⃒
∂̃φ
∂x

⃒
⃒
⃒
⃒ <<

⃒
⃒
⃒
⃒
∂̃φ
∂y

⃒
⃒
⃒
⃒, we have 

⃒
⃒
⃒
⃒

d
dx

(
D̃Bα

)⃒⃒
⃒
⃒ < <

⃒
⃒
⃒
⃒

d
dy

D̃B ·
d
dy

φ̃y

⃒
⃒
⃒
⃒,

⃒
⃒
⃒
⃒

d
dx

(

D̃T
1

NBT

)⃒
⃒
⃒
⃒< <

⃒
⃒
⃒
⃒

d
dy

(

D̃T
1

NBT

)

·
d
dy

T̃
⃒
⃒
⃒
⃒, (2.42)  

the gradient along the flow direction on the right side of (2.34) can be neglected. Thus, 

(Re · Sc) ·α · ũ(y) ≈
d
dy

(

D̃B
d
dy

φ̃y + D̃T
1

NBT

d
dy

T̃y

)

. (2.43) 

The integration along the vertical direction can be obtained with the boundary conditions in (2.29a), 

(Re · Sc) ·α ·

∫1

0

ũ(y)dy≈
(

D̃B
d
dy

φ̃y + D̃T
1

NBT

d
dy

T̃y

)⃒
⃒
⃒
⃒

1

0
= 0. (2.44) 

As the mass flux 
∫1

0

ũ(y)dy is the order of 1, |α| << 1, and the left side of (2.34) can be neglected. 

In this paper, we used the Chebyshev collocation method to solve the governing equations. N Chebyshev-collocation pointsz =
(

1 − cos
(

jπ
N+1

))/

2, j = 1 ∼ N are set in the flow region, while two points z = 0,1 are set at the boundaries. The static flow is 

determined by the iteration method. We set the velocity field of plane Poiseuille flow of Newtonian fluid as the initial condition for the 
iteration, then T, φand μ can be obtained, finally the velocity can be updated for the next iteration. And after several iterations, all the 
variables are convergent. 
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3. Numerical results 

We consider ten cases with different parameters in Table 1, and four kinds of viscosity models in Table 2. Here, case (N) has φb = 0, 
which stands for the Newtonian fluid. 

3.1. The case of convective cooling of laminar flows 

First, we consider the case of convective cooling, where the temperature of the flow region is lower than that on the wall. 

3.1.1. The distributions of nanoparticle concentration 
The distributions of the nanoparticle concentration at Γ = 0 are displayed in Fig. 2. It can be seen that ̃φ reaches its maximum at y =

0.5. The maximum of φ̃ increases significantly with the increase of Pe (see curves (A), (D) in Fig. 2 (a)) and the decrease ofNBT (see 
curves (A), (F) in Fig. 2 (a)). In Fig. 2 (b), we can find that the distributions of φ̃ with model (II) are more concentrated in y = 0.5 than 
those with model (I). However, there is little variation for φ̃when the effect of temperature on the viscosity is considered. 

The distributions of φ̃can be fitted by a Gaussian distribution after normalization, 
Which can be seen in Fig. 3, and the standard deviation is shown in Table 3. When Γ = 0, it has 

φ̃(y)≈
1̅̅̅
̅̅

2π
√

σ
· exp

(

−
(y − 0.5)2

2σ2

)

. (3.1) 

It can be seen in Table 3 that the standard deviation σ increases with the decrease of Pe and the increase of NBT . However, κ and φb 
have little effect on σ. The value of σ can be obtained as follows. When the variations of μ, k,DB along y axis are not too large, and DT ≈

φ, then (2.32)–(2.34) can be simplified as follows: 

d2

dy2 u≈
d
dx

p = − 8, (3.2)  

Pe · u(y) ≈
d2

dy2Tl, (3.3)  

d2

dy2 φ+
d2

dy2 T ·
1

NBT
φ ≈ 0. (3.4) 

With the boundary conditions of u, we can deduce that 

u ≈ 4(1 − y)y, (3.5)  

d2

dy2 φ+ 4(1 − y)y ·
Pe
NBT

φ ≈ 0. (3.6) 

So comparing to the Gaussian distribution near the region y = 0.5, we have 

σ ≈

̅̅̅̅̅̅̅̅
NBT

Pe

√

. (3.7) 

However, when NBTis small (Cases (H) & (I)), the thermophoresis makes more nanoparticles concentrate to the region with lower 
temperature. The stratifications of μ, k become more obvious. The approximations in (3.2)-(3.4) will lead to a large deviation and (3.7) 
is not valid. 

Physically, the motion of nanoparticles can be seen as a superposition of the thermophoresis and Brownian diffusion [15]. Due to 
the former, nanoparticles concentrate to the centre of the flow regiony = 0.5, which has the lowest temperature. In contrast, the 

Table 1 
10 kinds of parameters.  

Case κ Pe  φb  NBT  

(A) − 0.93 400 0.02 9 
(B) − 0.7 400 0.02 9 
(C) − 0.93 200 0.02 9 
(D) − 0.93 800 0.02 9 
(E) − 0.93 400 0.04 9 
(F) − 0.93 400 0.02 6 
(G) − 0.93 400 0.02 20 
(H) − 0.93 400 0.02 1 
(I) − 0.93 400 0.02 0.3 
(N) − 0.93 400 0.00 9  
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Brownian diffusion drives the nanoparticle away from the centre. Finally, these two effects reach an equilibrium. It is well known that 
the distribution of a free particle in the Brownian motion is Gaussian [24]. This can explain the reason for the distributions of φ̃. 

The Gaussian distribution can also be found when there is a temperature difference of between two walls, which is displayed in 
Fig. 3(b). By comparing with temperature distributions in Fig. 7(b), we find that the concentration reaches its maximum at the coldest 
region. The standard deviation increases with increase of Γ. 

3.1.2. The distributions of viscosity 
The distributions of the viscosity are displayed in Fig. 4. It can be seen that when Γ = 0,μ̃reaches its maximum at y = 0.5. The 

maximum of ̃μdecreases with the increase of NBT(see curves (A) and (F) in Fig. 4 (a)) and the decrease of Pe (see curves (A) and (C) in 
Fig. 4 (a)). Obviously, μ̃always increases with φb (see curves (A) and (E) in Fig. 4 (a)). 

In Fig. 4 (b), we can find that the viscosities determined by four viscosity models differ from each other. The viscosity obtained by 
model (II) is larger than that by model (I). When the effect of temperature on the viscosity is considered, the viscosity stratification 

Table 2 
4 kinds of viscosity models.  

Case μ  

(I) μ = μf/(1 − φ)2.5
,

(II) μ = μf (1 + 7.3φ + 123φ2),

(III) 
μ = μ0 exp

(

− 0.51 − 4.45
(

T0

T

)

+ 6.55
(

T0

T

)2)/

(1 − φ)2.5
,

(Ⅳ) 
μ = μ0 exp

(

− 0.51 − 4.45
(

T0

T

)

+ 6.55
(

T0

T

)2)(
1 + 7.3φ + 123φ2).

Fig. 2. The distributions of nanoparticle concentration at Γ = 0: (a) the results with viscosity model (II); (b) the comparisons of different viscosity 
models at case (A). 
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becomes lager. 
As φbis small, we have 

μ= 1
/
(1 − φbφ)2.5

≈ 1 + 2.5φbφ, (3.8)  

for the viscosity model (I) and 

μ≈ 1 + 7.3φbφ, (3.9)  

for the viscosity model (II). So μ and μ̃ also have Gaussian distributions. When |y − 0.5| > 0.2, μ̃ tends to 1 as φ → 0. 
When Γ > 0, the increase of μ̃ at y = 0is caused by the increase of nanoparticle concentration, while the decrease of μ̃ at y = 1is 

caused by the increase of temperature. The maximum of μ̃ decreases by the increase of Γ. 
We can see that there are obvious stratifications for the viscosity in Fig. 4, which can be caused by both the nanoparticle con

centration and the temperature effect. In Fig. 6, the effect of viscosity stratifications on the velocity distribution is not very obvious. 
However, previous works have found that the viscosity stratifications have a great impact on the flow instability [25,26]. This suggests 
that the instability of nanofluid flows maybe very different from that of Newtonian fluid flows. 

Fig. 3. Comparison of the distributions of φ̃ and Gaussian distributions: (a) the results with viscosity model (II) at Γ = 0; (b) the results with 
viscosity model (Ⅳ) at differentΓ. Here, GD stands for Gaussian distribution. 

Table 3 
The standard deviations of Gaussian distributions with viscosity model (II).  

Standard deviation (A) (B) (C) (D) (E) (F) 

σ 0.1415 0.1410 0.2100 0.0899 0.1202 0.1084  
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3.1.3. The distributions of thermal conductivity 
The distributions of the thermal conductivity are displayed in Fig. 5. The results with viscosity model (II) are shown in Fig. 5. It can 

be seen that ̃k reaches its maximum at y = 0.5. The maximum of ̃k increases with the increase of Pe (see curves (A) and (D) in Fig. 5) and 
the decrease of NBT (see curves (A) and (F) in Fig. 5). 

Obviously, ̃kalways increases with φb (see curves (A) and (E) in Fig. 5). When κ becomes smaller (see curves (A) and (B) in Fig. 5), 
the stratification of ̃kdecreases. As k has a linear relationship with φ in (2.38), the thermal conductivity also has a Gaussian distribution 

Fig. 4. The distributions of viscosity: (a) the results with viscosity model (II) at Γ = 0; (b) the comparisons of different viscosity models at case (A).  

Fig. 5. The distributions of thermal conductivity with viscosity model (II) at Γ = 0.  
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after normalization. The thermal conductivity is not sensitive to the viscosity model. 

3.1.4. The distributions of velocity 
The distributions of the velocity are displayed in Fig. 6. Comparing with the case of Newtonian fluid (see curve (N) in Fig. 6 (a)), 

there is only a little decrease for the velocity in the cold region.ũreaches its maximum at y = 0.5. The maximum of ̃uincreases with the 
increase of Pe (see curves (A) and (D) in Fig. 6 (a)) and the decrease of φb (see curves (A) and (E) in Fig. 6 (a)). However, NBThas little 
effect on the velocity (see curves (A) and (G) in Fig. 6 (a)). Fig. 6 (b) shows that there is a slight decrease for the velocity when the 
temperature effect on the viscosity is considered. The effect of Γfor the velocity is not obvious. 

3.1.5. The distributions of temperature 
The distributions of the temperature are displayed in Fig. 7. It can be seen that T̃reaches its minimum at y = 0.5. With the decrease 

of Pe, the minimum of T̃increases significantly (see curves (A) and (C) in Fig. 7 (a)). WhenNBTdecreases, the minimum of T̃ decreases 
slightly (see curves (A) and (F) in Fig. 7 (a)). The minimum of ̃Tincreases with the increase of φb(see curves (A) and (E) in Fig. 7 (a))and 
Γ(see Fig. 7 (b)). Meanwhile, the temperature distribution is not sensitive to the viscosity model. 

3.2. The case of convective heating of laminar flows 

Then we pay attention to the case of convective heating, where the temperature of the flow region is higher than that on the wall. 

3.2.1. The distributions of nanoparticle concentration 
The distributions of the nanoparticle concentration are displayed in Fig. 8, where the viscosity model (II) is used. In contrast to the 

case of convective cooling, when Γ = 0,φ̃ reaches its minimum at y = 0.5, while its maximum is reached at the wall. The minimum of 
φ̃is obviously larger than zero, which differs from the case of convective cooling (see Fig. 2).The minimum of φ̃ decreases significantly 
with the increase of Pe (see curves (A) (C) in Fig. 8), and the decrease ofNBT (see curves (A), (G) in Fig. 8). However, the variation of 

Fig. 6. The distributions of velocity: (a) the results with viscosity model (II) at Γ = 0; (b) the comparisons of different viscosity models and Γat 
case (A). 
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φb(see curves (A) (E) in Fig. 8), and κ have little effect on φ̃. When Γincreases, the maximum of φ̃appears at the cold wall, where the 
value of φ̃ increases with Γobviously. 

3.2.2. The distributions of thermal conductivity and viscosity 
The distributions of the thermal conductivity and viscosity are displayed in Fig. 9, where the viscosity model (II) is used. Due to the 

nanoparticle concentration, the distributions of the thermal conductivity and viscosity of convective heating are opposite to the case of 

Fig. 7. The distributions of temperature: (a) the results with viscosity model (II) at Γ = 0; (b) the comparisons of different viscosity models and Γat 
case (A). 

Fig. 8. The distributions of nanoparticle concentration with viscosity model (II).  
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convective cooling (see Figs. 4 and 5). 

3.2.3. The distributions of velocity and temperature 
The distributions of the velocity and temperature are displayed in Fig. 10. When Γ = 0, ũreaches its maximum at y = 0.5. The 

maximums ofũ,T̃decrease significantly with the increase of φb(see curves (N), (A) in Fig. 10). The effects of Γ, Pe and NBTon the velocity 
are not obvious. 

Compared to the case of convective cooling (see Figs. 6 and 7), the decreases of the amplitudes of ũ, T̃at the case of convective 
heating are much larger. This can be explained as follows. The temperature distribution highly depends on the velocity distribution, 
which is closely related to the viscosity. For the convective heating, when Γ = 0,φ̃ reaches its maximum at the wall, where the shear 
stress is large. Due to the nanoparticle concentration near the wall, the viscosity increases, and the shear rate decreases significantly. In 
contrast, when Γ = 0,φ̃ ≈ 0near the wall for the convective cooling. Therefore, the increase of nanoparticle has less effect on the 
velocity. 

4. Conclusion 

In this work, the plane Poiseuille flow of nanofluids in the channel with linearly varying wall temperature is investigated 
numerically. The cases of convective cooling and heating of laminar flows are considered, respectively. The distributions of the 
nanoparticle concentration, thermal conductivity, viscosity, velocity and temperature are determined. 

For convective cooling, the temperature on the wall is higher than that in the flow region in the normal direction. Due to the 
temperature difference and thermophoresis force, nanoparticles move from hot region to the cold one. Thus, the nanoparticles con
centration φ has a Gaussian distribution in the normal direction, and reaches its maximum at the coldest region. When the temperature 
difference of two walls Γ = 0, the standard deviation has σ ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
NBT/Pe

√
, where NBT stands for the ratio of Brownian diffusivity to 

thermophoretic diffusivity. The distribution of nanoparticles by viscosity model (II) is more concentrative than that by viscosity model 
(I). 

Fig. 9. The distributions of (a) thermal conductivity and (b)viscosity with model (II).  
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Due to the linear relationship of thermal conductivity k and φ, the thermal conductivity also has a Gaussian distribution after 
normalization. The viscosity μ increases with the increase of Pe and the decrease of NBT . When the average volume fraction of 
nanoparticle is small, there is a linear relation between φand μ, thus μ also has a Gaussian distribution after normalization. 

Comparing with the case of Newtonian fluid, there is only a little decrease for the velocity in the cold region. The amplitudes of 
velocity and temperature increase with the increase of Pe and are nearly independent on NBT. The increase of nanoparticle concen
tration leads to a little decrease for the velocity. When the temperature dependent viscosity model is used, the viscosity stratification 
becomes lager, while the variations of velocity and temperature are small. 

For convective heating, the distributions of the nanoparticle concentration, thermal conductivity and viscosity are opposite to those 
at convective cooling. φ reaches its minimum at the hottest region, which is obviously larger than zero. As φ reaches its maximum at 
the wall, the velocity and temperature decrease significantly. 
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Nomenclature 

Ψ , Ψ̃ : Ψ is a variable, Ψ̃ is its dimensionless form 
c: nanofluid specific heat (J /(kg ·K))
d: the distance between two plane (m) 
ds: nanoparticle diameter (m) 
DB: Brownian diffusion coefficient (m2/s) 
Db

B: Brownian diffusion coefficient under the wall temperatureTb (m2/s) 
DT: thermal diffusion coefficient (m2/s) 
k: nanofluid thermal conductivity (W /(m ·K))
kB: Boltzmann constant (J/K) 
kf : base fluid thermal conductivity(W /(m ·K))
ks: nanoparticle thermal conductivity(W /(m ·K))
Le: Lewis number 
NBT: ratio of Brownian and thermophoretic diffusivities 
p: pressure (Pa) 
Pe: Peclet number 
Pr: Prandtl number 
Re: Reynolds number 
Sc: Schmidt number 
t: time (s) 
T: nanofluid temperature (K) 
T0: reference temperature (K) 
Tb: the temperature of the lower wall (K) 
u: nanofluid velocity (m/s) 
U0 : reference velocity (m/s) 

Greek 
α: the concentration gradient along the flow direction 
β: thermophoretic coefficient 
Γ: the temperature difference of two walls in the normal direction 
τ: stress tensor (Pa) 
ρ: nanofluid density (kg/m3) 
μ: viscosity (Pa · s)
μ0: reference viscosity (Pa · s)
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μf : base fluid viscosity (Pa · s)
μfT: base fluid viscosity under the influence of temperature(Pa · s)
φ: nanoparticle concentration 
φb: average concentration 
ρs: nanoparticle density (kg/m3) 
ρf : base fluid density (kg/m3) 
κ: ratio of thermal conductivities between base fluid and nanoparticle 
ΔT: temperature difference in the distance of d in x direction (K) 
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