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A B S T R A C T   

In this paper, the equilibrium asymptotic stress and solvent concentration fields around stationary sharp V- 
notches are extracted for in-plane mixed mode loadings employing the linear poroelasticity theory. It is shown 
that at thermodynamic equilibrium, mechanical and chemical equilibrium equations are uncoupled and thus can 
be solved independently. The mechanical equilibrium equations are then solved using the Airy stress function 
technique. This technique replaces the coupled mechanical equilibrium relations with the compatibility bihar
monic equation which can be solved using the separation of variables method. Applying traction free boundary 
conditions on the notch edges leads to an eigenvalue problem which gives both mode I and mode II eigenvalues. 
These eigenvalues can be real or complex numbers depending on the notch opening angle. Since there are infinite 
eigenvalues for both modes of deformation, series solutions will be obtained for the equilibrium fields. From 
these asymptotic solutions, it is found that the obtained stress fields are similar to their corresponding linear 
elasticity solution. Furthermore, from the solutions, it can be observed that the opening and shear deformations 
near the notch tip lead to cosine and sine variations of the solvent concentration field with respect to the angular 
coordinates, respectively. The accuracy of these asymptotic results is finally verified using finite element analyses 
of a single-edge notched (SEN) specimen subjected to far field applied small displacements. The numerical an
alyses are performed for two notch opening angles of 30◦ and 60◦ for both plane stress and plane strain con
ditions. The comparative study between the finite element results and the asymptotic solution proves that the 
present solution can accurately capture the near notch tip stress and solvent concentration fields by considering 
only the first few terms of the series solutions.   

1. Introduction 

Polymer gels are essentially biphasic materials composed of an 
elastic polymer network swollen by a solvent (e.g. water) as the second 
phase. These soft materials possess exceptional mechanical and chemi
cal properties which make them ideal candidates for a diverse range of 
applications including soft actuators [1], drug delivery systems [2], 
microvalves [3] and tissue engineering [4]. In many of these applica
tions, gels are subjected to mechanical loads and displacements and thus 
their failure assessment is essential. On the other hand, stress concen
trators like cracks and sharp corners are frequently seen in these soft 
structures due to their versatile geometries. Lee and Jho [5], for 
instance, utilized a V-notched hydrogel structure as a temperature sen
sitive bilayer gripper which is able to lift and release objects much 
heavier than the gripper itself. Similar notched structures are fabricated 

and utilized in [6–8]. Son et al. [9], also employed V-notched hydrogel 
sheets to construct a macro-scale 3D cell culture system. As another 
example, Cheng et al. [10] synthesized notched light driven gel valves 
that can control the flow rate via out of plane notch deformations. On 
the other hand, due to their large solvent content, gels are brittle ma
terials [11]. Therefore, these soft materials are vulnerable to stress 
concentrators as the likely places of fracture initiation. Consequently, a 
throughout understanding of the gel fracture is highly important. To this 
end, a deep knowledge of the stress and solvent concentration fields 
around the concentrator is crucial. 

The singular stress and solvent concentration fields in cracked gels 
have been the subject of many recent research works. Hui et al. [12], for 
instance, studied the asymptotic time-dependent stress and deformation 
fields around the tip of a mode I plane stress crack in a hydrogel. These 
researchers showed that the stress component normal to the crack line 
have a 1/r singularity (see Fig. 1) and the crack profile becomes a 
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parabolic upon deformation. The same researchers in a similar work 
[13] studied asymptotic stress fields around a mode III or anti-plane 
shear crack in a double network hydrogel. They found that for the 
special case of Gaussian polymer chains (i.e. with neo-Hookean strain 
energy), the asymptotic stress fields show a square-root singularity (i.e 
σ∝r− 0.5). In another work, Bouklas et al. [14] explored the transient 
asymptotic mode I stress fields in a cracked plane strain gel and showed 
that the stress singularity depends on the solvent diffusion. According to 
these authors, in the early stages, stress singularity is strong (σ∝r− 1) and 
then becomes weaker (σ∝r− 0.5) due to solvent diffusion around the 
crack. Solvent diffusion, is, indeed, an important factor in crack prop
agation in gels which leads to interesting phenomena like poroelastic 
toughening and delayed fracture [15–17]. Apart from these large 
deformation studies, for the sake of both numerical and theoretical 
convenience, linear poroelasticity has also been frequently utilized by 
researchers to examine the asymptotic fields around cracked gels which 
are reviewed next. 

Hui and his co-workers [18] studied the short time transient stress 
fields around a plane strain stationary crack under opening deformation 
mode when a sudden load is applied to a poroelastic solid. In these 
conditions, stress relaxations due to solvent flow are confined to a small 
region near the crack tip as the fluid molecules far from the tip do not 
have enough time to flow. This situation leads to a square-root singu
larity for the near crack tip stresses [18]. Similar results were obtained 
for near crack tip fields in a poroviscoelastic plane strain solid using 
finite element method by Yang and Lin [19]. Furthermore, Yu et al. [20] 
using linear poroelasticity theory presented an asymptotic analysis for a 
steady state growing mode I plane strain crack in a polymer gel. These 
researchers concluded that the near crack tip stress singularity is the 
same as that in the linear elastic crack tip solution (i.e. square-root 

singularity). Moreover, Yu et al. [21] employed linear poroelasticity 
theory to explore the transient asymptotic fields around a stationary 
mode I plane strain crack. They showed that the stress and solvent 
concentration fields possess the same order of singularity while the 
solvent chemical potential is not singular at the crack tip. It should be 
noted that all the aforementioned works studied plane strain cracks 
while, experimentally, thin sheet samples are used to study gel fracture 
and thus plane stress conditions prevail. Pure shear test is, as an 
example, close to plane stress conditions. Consequently, Yu et al. [16], in 
another work, studied the subtle differences between plane strain and 
plane stress conditions employing linear poroelasticity theory. It was 
shown that the plane stress solvent concentration field depends on both 
in-plane normal strains and the chemical potential. 

The literature review shows that the available works are limited to 
cracked gels which are special cases of sharp corners. The only excep
tion, is our recent work [22] in which we have studied asymptotic fields 
around stationary sharp V-notches with different opening angles 
employing linear poroelasticity theory. In this work, we have shown that 
near notch tip stress fields possess the same singularity as their corre
sponding linear elasticity solution. All of these researches, however, are 
restricted to pure mode I or mode III loading conditions and, to the best 
of our knowledge, there is no work available focusing on mixed mode 
fracture of gels. To fill this gap, the present work is devoted to theo
retical and numerical study of the equilibrium near notch tip stress and 
concentration fields under in-plane mixed mode loadings. To this end, in 
the next section, we will obtain the near notch tip asymptotic stress and 
solvent concentration fields by solving equilibrium equations utilizing 
the Airy stress approach. Section 3, on the other hand, is devoted to 
finite element investigation of the asymptotic solution to verify its 
applicability and accuracy. Section 4, finally, summarizes the main 
findings of the present study. 

2. Linear poroelastic analysis of a stationary notch 

Consider a freely swollen gel in the initial state which is completely 
immersed in a solvent. If λ0 denotes the swelling ratio of the gel relative 
to its dry state, and in addition, μ0 represents the chemical potential of 
the solvent, the following equation states the relation of these two pa
rameters with the gel material parameters [23]: 

μ0

kBT
= ln

(
λ3

0 − 1
λ3

0

)

+
1
λ3

0
+

χ
λ6

0
+NΩ(

1
λ0

−
1
λ3

0
) (1) 

where kB, χ and T show the Boltzmann constant, the Flory–Huggins 

Nomenclature 

a Notch depth 
An (n = 1,2, ..)Mode I coefficients of the notch tip asymptotic 

fields 
Bn (n = 1,2,..)Mode II coefficients of the notch tip asymptotic 

fields 
c Number of solvent molecules per unit gel volume 
c0 Initial solvent concentration 
fn(θ) Unknown function ofθ 
G Shear modulus 
KI

V Mode I notch stress intensity factor 
KII

V Mode II notch stress intensity factor 
kB Boltzmann constant 
M Number of terms considered in the truncated series of the 

asymptotic solutions 
N Number of polymer chains per unit reference volume 
r,θ Polar coordinate components 

T Absolute temperature 
u1,u2 Far field applied small displacements 
V Deformed gel volume 
W Specimen width 
x, y Cartesian coordinate components 
βI

n, βII
n nth mode I and mode II eigenvalues 

γ Notch opening angle 
εij Strain Fields 
εkk Volumetric part of the strain fields 
λ0 Initial swelling ratio 
μ0 Solvent chemical potential 
ν Poisson’s ratio 
ρ Parameter related to the notch angle 
σrr , σθθ ,σrθ Notch tip stresses in polar coordinate 
∅ Airy stress function 
χ Flory–Huggins interaction parameter 
Ω Volume of one solvent molecule  

r
x

y

θ
ρ

Fig. 1. Schematic representation of a sharp V-notch with the associated polar 
coordinates. 
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interaction parameter and absolute temperature, respectively. More
over, N and Ω denote the number of polymer chains per unit reference 
volume and the volume of one solvent molecule, respectively. It can be 
proven that under small deformation conditions, the following relation 
is established between the Cauchy stress and the strain fields [24]: 

σij = 2G
(

εij +
ν

1 − 2νεkkδij

)
(2) 

where ν and G denote the Poisson’s ratio and shear modulus of the 
gel which can be obtained from the following equations: 

G =
NkBT

λ0
(3a)  

ν =
1
2
−

NΩ
2

[
1

λ2
0

(
λ3

0 − 1
)+

NΩ
λ2

0
−

2χ
λ5

0

]− 1

(3b) 

In addition, the volumetric part of the strain fields (εkk), which ap
pears in Eq. (2), is related to the solvent concentration changes as 
follows: 

εkk = Ω(c − c0) (4) 

where c and c0 represent the number of solvent molecules per unit gel 
volume (i.e. solvent concentration) in the deformed and initial states of 
the gel, respectively. Furthermore, the initial solvent concentration is 
related to the initial swelling ratio as Ωc0 = 1 − λ− 3

0 . 
On the other hand, in the absence of body and inertial forces, the 

given stress fields σij in Eq. (2) should satisfy the following mechanical 
equilibrium equation: 

∂σij

∂xj
= 0 (5) 

In addition to Eq. (5), the solvent concentration field should also 
satisfy the following equation to guarantee the chemical equilibrium of 
the gel [24]: 

∇2c = 0 (6) 

For small deformations, Eqs. (5) and (6) are the main governing 
equations of the gel thermodynamic equilibrium based on the linear 
poroelasticity theory. More details about the derivation of these equa
tions from the original Biot’s poroelasticity theory can be found in [24]. 
These equations, therefore, should be solved employing proper bound
ary conditions to extract the equilibrium stress and solvent concentra
tion fields around sharp V-notches. It can be observed that these 
equations are decoupled and thus can be solved independently. 
Furthermore, one may note that if the stress fields have been calculated, 
employing Eqs. (2) and (4), the solvent concentration field can also be 
determined accordingly. This concentration field should also certainly 
satisfy the chemical equilibrium equation (i.e. Eq. (6)). Therefore, first, 
we solve the mechanical equilibrium equations. 

To solve the mechanical equilibrium equations, similar to two- 
dimensional linear elasticity problems, we employ the Airy stress func
tion ∅(r, θ) which is related to different stress components in polar co
ordinates as follows: 

σθ =
∂2∅
∂r2 , σrθ = −

∂
∂r

(
1
r

∂∅
∂θ

)

, σr =
1
r

∂∅
∂r

+
1
r2

∂2∅
∂θ2 (7) 

It can be checked that by the above definition, mechanical equilib
rium equations are satisfied automatically and we should only find the 
proper form of the Airy stress function. To this end, we note that the 
stress function should be a biharmonic one to guarantee the solution 
compatibility which means that we should solve: 

∇4∅ = 0 (8) 

instead of the original mechanical equilibrium equations. After 
finding the stress function, we can utilize Eqs. (2) and (4) in order to 

determine the concentration field. Doing so, the following relation is 
obtained between the concentration field and the stress function: 
⎧
⎪⎪⎨

⎪⎪⎩

(c − c0) =
0.5 − ν

(1 + ν)GΩ
∇2∅planestress

(c − c0) =
0.5 − ν

GΩ
∇2∅planestrain

(9) 

From this equation, it is clear that since the stress function is a 
biharmonic one, the chemical equilibrium equation would also be 
automatically satisfied using the Airy stress function approach. In the 
next subsection, we will employ this approach to study equilibrium 
asymptotic stress and concentration fields around sharp V-notches under 
in-plane mixed mode loadings in polymer gel samples. Here it should be 
noted that the obtained asymptotic fields in the present study are valid 
when the gel body deforms close to its equilibrium states. These con
ditions realize when the mechanical loads are applied sufficiently slow 
to the gel specimens (e.g. [25,26]) to avoid dynamic effects like 
poroelastic toughening or viscoelastic deformations. 

2.1. Asymptotic analysis 

This subsection is devoted to obtaining the equilibrium stress and 
solvent concentration fields around a stationary sharp V-notch subjected 
to mixed mode (I/II) deformations. Consider a typical notched sample, 
as shown schematically in Fig. 1 with the polar coordinates (r − θ)
attached to the notch tip, where r and θ are the radial and tangential 
coordinates, respectively. Based on Fig. 1, γ shows the notch opening 
angle which can be written in terms of ρ as γ = 2π − 2ρ. 

Next following Williams’ solution [27] for linear elastic problems, 
we assume the following multiplicative form for the stress function ∅: 

∅(r, θ) =
∑

n=1
rβn+1fn(θ) (10) 

This function should satisfy the biharmonic equation in the polar 
coordinates which is: 

∇4∅ = (
∂2

∂r2 +
1
r

∂
∂r

+
1
r2

∂2

∂θ2)(
∂2∅
∂r2 +

1
r

∂∅
∂r

+
1
r2

∂2∅
∂θ2 ) (11) 

Thus, by substituting Eq. (10) into Eq. (11) and after some simplifi
cations, one can obtain the following fourth order differential equation 
for the unknown function fn(θ): 

f ’’’’
n (θ) + 2

(
1+ βn

2)f ’’
n (θ)+ (βn

2 − 1)2fn(θ) = 0 (12) 

with the following solution: 

fn(θ)=Ancos((1+βn)θ)+Bnsin((1+βn)θ)+Dncos((βn − 1)θ)+Ensin((βn − 1)θ)
(13) 

By substitution of this solution into Eq. (7), one can obtain the stress 
components around the notch tip in terms of fn(θ) as follows: 

σθθ = βn(βn + 1)rβn − 1fn(θ) (14a)  

σrr = rβn − 1[(βn + 1)fn(θ)+ f ’’
n (θ)

]
(14b)  

σrθ = − βnrβn − 1f ’
n(θ) (14c) 

These stress components should satisfy the following traction free 
boundary conditions: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σθθ|θ=ρ = 0→fn(ρ) = 0
σθθ|θ=− ρ = 0→fn( − ρ) = 0

σrθ |θ=ρ = 0→f ’
n(ρ) = 0

σrθ|θ=− ρ = 0→f ’
n( − ρ) = 0

(15) 

These boundary conditions lead to a system of homogeneous equa
tions which is essentially an eigenvalue problem with the following two 
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independent characteristic equations: 

βI
nsin(2ρ)+ sin

(
2ρβI

n

)
= 0 (16a)  

βII
n sin(2ρ) − sin

(
2ρβII

n

)
= 0 (16b) 

in which the superscripts of “I” and “II” are added to denote the ei
genvalues related to mode I and mode II loadings, respectively. It can be 
checked that the first characteristic equation comes from the first two 
boundary conditions for the circumferential stress while the second 
characteristic equation is a result of the last two boundary conditions for 
the shear stress component σrθ .Therefore, Eqs. (16a) and (16b) deter

mine the eigenvalues related to the symmetric (mode I) and antisym
metric (mode II) modes of deformation, respectively. 

Fig. 2a and 2b show the variations of the first three eigenvalues of 
mode I and mode II against the notch opening angle, respectively. Based 
on this figure, while the first eigenvalues for both modes of deformation 

are real numbers, the higher order ones can be complex numbers 
depending on the notch opening angle. Furthermore, it is clear that the 
first mode I eigenvalue is always less than one and hence, based on Eq. 
(14), the corresponding stress components are singular accordingly. For 
mode II deformations, however, the first eigenvalue is larger than one 
for opening angles greater than about 102◦ and hence the associated 
stress fields would not be singular. Here, it should be mentioned that the 
characteristic equation for mode II deformations (i.e. Eq. (16b)) also 

admits βII
n = 1 as a solution for all notch angles. However, the associated 

term to this eigenvalue shows rigid body rotations of the notch around 
its tip and thus does not contribute to the notch tip stress and strain 
fields. Therefore, we have not plotted this eigenvalue in Fig. 2b. More 
details about this rigid body rotation and plots similar to Fig. 2 can be 
found in [28,29]. Finally, note that in Fig. 2 and throughout the paper 
the notations Re(■) and Im(■) denote the real and imaginary parts of 
(■), respectively. 

After some simplifications, it can be shown that the stress function ∅ 
can be obtained as follows:   

and thus the stress fields near the notch tip loaded in mixed mode (I/ 
II) conditions, considering Eq. (7), can be achieved as follows:   

which is similar to the linear elastic solution for sharp V-notches 
where the first summation is for mode I while the second summation 
calculates the mode II contributions to the stress fields. For complete 
determination of the stress fields in the proximity of the notch tip, the 
unknown coefficients An and Bn should be obtained from the loading and 
geometry conditions. Similar to linear elastic fracture mechanics 
(LEFM), we relate the singular terms A1 and B1with the mode I and mode 
II notch stress intensity factors (i.e., KI

VandKII
V) as follows:  

∅(r, θ) = rβI
n+1An

[

cos
( (

βI
n − 1

)
θ
)
−

βI
ncos(2α) + cos(2βI

nα)
(βI

n + 1)
cos
( (

βI
n + 1

)
θ
)
]

+ rβII
n +1Bn

[

sin
( (

βII
n − 1

)
θ
)
+

cos
(
2βII

n α
)
− βII

n cos(2α)
(βII

n + 1)
sin
( (

βII
n + 1

)
θ
)
]

(17)   

⎧
⎨

⎩

σrr
σθθ
σrθ

⎫
⎬

⎭
=
∑

n=1
Re

⎛

⎜
⎜
⎜
⎝

βI
nAn

r1− βI
n

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
3 − βI

n

)
cos
( (

βI
n − 1

)
θ
)
+ (cos

(
2βI

nρ
)
+ βI

ncos(2ρ))cos
( (

βI
n + 1

)
θ
)

(
βI

n + 1
)
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( (

βI
n − 1

)
θ
)
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(
2βI

nρ
)
+ βI
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θ
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(
βI

n − 1
)
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( (

βI
n − 1

)
θ
)
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(
2βI

nρ
)
+ βI

ncos(2ρ))sin
( (

βI
n + 1

)
θ
)

⎫
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⎞

⎟
⎟
⎟
⎠

−
∑

n=1
Re

⎛

⎜
⎜
⎜
⎝

βII
n Bn

r1− βII
n

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
3 − βII

n

)
sin
( (

βII
n − 1

)
θ
)
− (cos

(
2βII

n ρ
)
− βII

n cos(2ρ))sin
( (

βII
n + 1

)
θ
)

(
βII

n + 1
)
sin
( (

βII
n − 1

)
θ
)
+ (cos

(
2βII

n ρ
)
− βII

n cos(2ρ))sin
( (

βII
n + 1

)
θ
)

(
1 − βII

n

)
cos
( (

βII
n − 1

)
θ
)
− (cos

(
2βII

n ρ
)
− βII

n cos(2ρ))cos
( (

βII
n + 1

)
θ
)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟
⎟
⎟
⎠

(18)   

⎧
⎪⎪⎨

⎪⎪⎩

KI
V = lim

r→0

( ̅̅̅̅̅
2π

√
r1− βI

1 × σθθ(θ = 0)
)
=

̅̅̅̅̅
2π

√
βI

1

(
1 + βI

1 − βI
1cos(2ρ) − cos(2ρβI

n)
)
A1

KII
V = lim

r→0

( ̅̅̅̅̅
2π

√
r1− βII

1 × σrθ(θ = 0)
)
=

̅̅̅̅̅
2π

√
βII

1

(
βII

1 − 1 − βII
1 cos(2ρ) + cos(2ρβII

1 )
)
B1

(19)   
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On the other hand, by substitution of Eq. (17) into Eq. (9), the 
following relation will be obtained for the solvent concentration field:   

which shows that mode I and mode II deformations exhibit cosine 
and sine variations with respect to the angular coordinates, respectively. 

This means that adding shear deformations to the near notch tip region 
will break the symmetry of the solvent distribution around the notch tip 
with respect to the notch bisector line. It is here worth mentioning that 
the near notch tip solvent concentration field can be obtained through 
any of Eqs. (20), (9) or (4) which are theoretically equivalent. Appli
cability of these equations, however, depends on the available infor
mation from the field. For example, if we have already calculated the 
coefficients An and Bn, it is easier to employ Eq. (20) while Eq. (4) would 
be more convenient if we have the notch deformation fields as in finite 
element simulations. Summarily, Eqs. (18) and (20) are the asymptotic 
stress and solvent concentration fields around the notch tip with the 
specified boundary conditions in Eq. (15). In the next section, we will 

Fig. 3. Schematic representation of the single edge notch sample, loaded in the 
shear-tension (i.e., mixed-mode I/II) loading condition. 

Fig. 4. A typical mesh pattern utilized in the finite element analyses of sharp V- 
notches with γ = 30oand a/W = 0.1. 

(c − c0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

n=1
Re
(

2(1 − 2ν)
(1 + ν)GΩ

(
βI

nAn

r1− βI
n

cos
( (

βI
n − 1

)
θ
)
−

βII
n Bn

r1− βII
n

sin
( (

βII
n − 1

)
θ
)
))

planestress

∑

n=1
Re
(

2(1 − 2ν)
GΩ

(
βI

nAn

r1− βI
n

cos
( (

βI
n − 1

)
θ
)
−

βII
n Bn

r1− βII
n

sin
( (

βII
n − 1

)
θ
)
))

planestrain

(20)   
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Fig. 2. The first three eigenvalues of a) mode I and b) mode II against the notch opening angle.  
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explore the accuracy of these analytical fields with their corresponding 
numerical results obtained from the finite element method for different 
notch angles under mixed mode I/II loadings. 

Finally, it should be mentioned that although the obtained stress 
field equations are similar to their corresponding results of linear elas
ticity theory [30–34], there is an essential difference between the two 
solutions. Linear elastic solutions are valid for single phase materials 
while the present solution is applicable to polymeric gels which have 
two phases, namely polymeric network and the diffusing solvent mole
cules. In fact, in gels, solvent diffusion is coupled to the network 
deformation and hence can affect the fracture behavior of the network as 
well. This fact will be discussed in more details later. Therefore, the 
results of Eq. (20) which are irrelevant for linear elastic materials is an 
important difference between linear elasticity and poroelasticity the
ories. The solutions of the linear elasticity and poroelasticity theories 
become the same if we can ignore the effects of the solvent phase. This 
condition realizes, for example, if the loading rate is so much fast that 
the solvent molecules do not have enough time to diffuse and redis
tribute inside the gel. In these conditions, the gel will behave as an 
incompressible elastic material with c = c0 everywhere and thus our 
equilibrium solution does not apply. 

3. Numerical results and discussion 

In this section, the near notch tip stress and solvent concentration 
fields are calculated using finite element method and the obtained re
sults are compared with the predictions of the present asymptotic so
lution to verify its accuracy. To this end, SEN samples made from 
polymer gels subjected to mixed mode deformations are modeled in 
ABAQUS finite element code for both plane stress and plane strain 
conditions. Fig. 3 shows a schematic representation of this specimen. 

Based on this figure, parameters W, a and γ denote the sample width, 

Table 1 
Geometry and material properties of the SEN 
samples.  

Parameter Value 

a/W 0.1 
γ  30◦, 60o 

GΩ/kBT  3× 10− 4  

ν  0.24  

FE
M =1
M =2
M =3

FE
M=1
M=2
M=3

FE
M=1
M=2
M=3

ba

c

Fig. 5. Comparison between the FE solution and the presented asymptotic solutions for a 30◦ plane stress notch with M = 1,2 and 3 : a) radial b) tangential and c) 
shear stress components versus θ on a ring around the notch tip with r/a = 0.08. The applied boundary displacements are u1/a = 0.018andu2/a = 0.002. 

Table 2 
The first three mode I and II eigenvalues and their corresponding 
asymptotic coefficients of the 30◦ SEN specimen under plane 
stress conditions with u1/a = 0.018andu2/a = 0.002.  

Parameter Value 

βI
1   0.5015 

A1aβI
1 − 1Ω/kBT   6.0336× 10− 8  

βI
2   1.2030 

A2aβI
2 − 1Ω/kBT   − 1.3687× 10− 8  

βI
3   1.4904 

A3aβI
3 − 1Ω/kBT   1.1063× 10− 8  

βII
1   0.5982 

B1aβII
1 − 1Ω/kBT   − 3.4422× 10− 8  

βII
2   1.8389 

B2aβII
2 − 1Ω/kBT   − 5.9680× 10− 8  

βII
3   1.9486 

B3aβII
3 − 1Ω/kBT   5.7750× 10− 8   
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notch depth and the notch opening angle, respectively while u1 and u2 
show the far field applied small displacements to the specimen to induce 
mixed mode conditions around the notch tip. To be more precise, the 
mode mixity of the notch tip deformations can be controlled by changing 
the ratio of u1/u2. Indeed, by increasing this ratio from zero to big 
numbers, the near notch tip deformations change from pure mode I to 
mixed mode conditions. Furthermore, to model the gel equilibrium 
behavior under small strains, the UHYPER subroutine presented by [35] 
is employed in our study. This subroutine provides the gel strain energy 
density and its derivatives to ABAQUS which in effect, for small strains, 
results in the material behavior given in Eqs. (2) to (4). 

Furthermore, Fig. 4 shows a typical mesh pattern used for the finite 
element analyses. As it can be seen, due to the high stress/solvent con
centration gradients close to the notch tip, a very fine mesh is employed 
in this region. In fact, six-node quadratic triangular elements with 
reduced integration (CPS6R or CPE6R) are utilized for the first row of 
elements around the notch apex while for the rest of the near notch tip 
region (i.e. inside the circle) eight-node quadratic quadrilateral ele
ments with reduced integration (CPS8R or CPE8R) are used. Further
more, as schematically shown in Fig. 3, the far field small displacements 
are applied to the upper horizontal edge of the specimen while the lower 
horizontal edge is fixed to eliminate possible rigid body motions. 

Table 1 gives the geometry and material parameters considered in 
the finite element analyses. Based on this table, two notch opening an
gles, namely 30◦ and 60◦ are considered for the analyses. Here, it should 

be noted that the UHYPER subroutine needs NΩ and χ as the input pa
rameters which are related to the gel material properties (given in 
Table 1) according to Eqs. (3a) and (3b). It can be checked that these 
values are 0.001 and 0.2, respectively which leads to λ0 = 3.215 for μ0 =

0. 
After explaining the finite element model details, we focus on the 

present asymptotic solution. This solution has a series form with infinite 
terms and hence it is needed to utilize a truncated form of this solution 
with M terms. Clearly, for a specified radial distance from the notch tip, 
by increasing M, the solution accuracy should also increase. Therefore, 
there is a true need for a reliable and applicable algorithm to calculate 
any desired number of coefficients An andBn. Among available algo
rithms, the finite element over deterministic (FEOD) method proposed 
by [29] which has been widely applied in previous studies (e.g. 
[22,36–38]), is utilized in the current research due to its proven 
simplicity and accuracy. In this method, first, the notched sample should 
be modeled in a finite element code. Then, the nodal coordinates and 
displacements are extracted from the nodes closed to the notch tip. Next, 
these nodal values should be substituted into the series solution of the 
displacement fields and as a result an over-determined set of linear 
equations is achieved. Employing the least-squares method, finally, the 
nodal displacements reduce to a small set of unknown coefficients (i.e., 
An and Bn) which can be calculated accordingly. For more details about 
this approach, one can refer to [29]. 

Fig. 5a to 5c illustrate variations of different stress components near 
the notch tip for the 30o SEN specimen with the angular coordinate θ 
obtained from the asymptotic solution (i.e. Eq. (18)) with one, two and 
three terms in comparison with the finite element results. The corre
sponding first three eigenvalues of mode I and mode II and their asso
ciated coefficients An and Bn obtained from the FEOD method are also 
given in Table. 2. The stress components are calculated at the radial 
distance of r/a = 0.08 and under plane stress conditions. The applied 
boundary displacements are, furthermore, u1/a = 0.018 and u2/a =

0.002. According to Fig. 5, the asymptotic solution can accurately 
capture variations of all the stress components at the radial distance of r/ 
a = 0.08 by considering only the first three terms of the truncated mode I 
and mode II solutions. Here it should be noted that none of the stress 
components are symmetric with respect to the notch bisector line (i.e. 
θ = 0) which implies that mode II deformations have a considerable 
contribution to the near notch tip stresses. This fact can also be observed 
from the magnitudes of mode II coefficients B1 to B3 in Table. 2 which 
are in the same order of their corresponding values for mode I co
efficients A1 to A3, respectively. 

Now and after validation of the stress fields, it is of interest to 
compare the predictions of the asymptotic solution for the solvent 
concentration field (i.e. Eq. (20)) in the proximity of notch tip with its 
corresponding finite element data. To do so, we consider again the plane 
stress 30o SEN gel sample with the previous applied boundary dis
placements (i.e., u1/a = 0.018andu2/a = 0.002). For this specimen, 
considering the first three terms of the mixed mode asymptotic solution 
(i.e. Eq. (20) with M = 3) with the given coefficients in Table. 2, one may 
reconstruct contours of the dimensionless solvent concentration (i.e. cΩ) 
close to the notch apex. These contours are illustrated in Fig. 6 in dashed 
black lines for the typical values of cΩ = 2 × 10-4, 3 × 10-4, 4 × 10-4 and 
5 × 10-4 in comparison with their corresponding finite element results. 
In this figure, SDV1 is a state variable which is defined and calculated in 
the subroutine UHYPER. To be more precise, based on Eq. (4), solvent 
concentration is related to the gel volume change (i.e. εkk). On the other 
hand, this volume change can be calculated using variable “AJ” which is 
passed in by ABAQUS in UHYPER subroutines [39]. This variable, at any 
material point, based on the formulation given in [35], shows the ratio 
of deformed gel volume V to its initial value λ3

0 (i.e. AJ = V/λ3
0). 

Therefore, by defining SDV1=AJ − 1 = εkk, we can simply calculate the 
solvent concentration. According to Fig. 6, it is clear that the present 
asymptotic solution with three terms can accurately predict the solvent 

Fig. 6. Comparison between the reconstructed contours from the asymptotic 
solution with M = 3 and the finite element results for the dimensionless solvent 
concentrations of cΩ = 2 × 10-4, 3 × 10-4, 4 × 10-4 and 5 × 10-4 in a 30◦

notched gel for the applied boundary displacements of u1/a = 0.018andu2/a =

0.002. 

Table 3 
The first two mixed mode eigenvalues and the corresponding asymptotic co
efficients of the 60◦ SEN specimen under plane strain conditions with u1/a =

0.018andu2/a = 0.002.  

Parameter Real Part Imaginary Part 

βI
1   0.5122 0 

A1aβI
1 − 1Ω/kBT   6.1802× 10− 8  0 

βI
2   1.4710 0.1419 

A2aβI
2 − 1Ω/kBT   − 1.6818× 10− 9  − 2.2071× 10− 8  

βII
1   0.7309 0 

B1aβII
1 − 1Ω/kBT   − 5.4755× 10− 8  0 

βII
2   2.0748 0.2294 

B2aβII
2 − 1Ω/kBT   − 2.5144× 10− 9  1.7536× 10− 8   

Y. Li et al.                                                                                                                                                                                                                                        



Theoretical and Applied Fracture Mechanics 116 (2021) 103122

8

concentration field around the notch tip up to radial distances of about 
r/a = 0.16. Furthermore, from Fig. 6, it can be observed that the pore 
pressure field around the notch tip is not symmetric with respect to the 
notch bisector line and is, in fact, rotated due to anti-symmetric (mode 
II) deformations. 

For the sake of more verification, we next consider a 60◦ SEN sample 
made of the polymer gel with the material and geometry parameters 
given in Table. 1 and under plane strain conditions. For this sample, 
employing the FEOD method, the first two mixed mode eigenvalues and 
their corresponding coefficients are calculated and reported in Table. 3. 
Utilizing these coefficients and the asymptotic solution given in Eq. (18) 
with M = 2, one may calculate the in-plane stress components, namely 
σrr, σθθ and σrθ as a function of polar coordinates r and θ. Fig. 7 depicts 
the angular variations of these stress components at a radial distance of 
r/a = 0.2 obtained from both the asymptotic solution with M = 2 and 
the finite element simulations with boundary displacements of u1/a =

0.018andu2/a = 0.002. 
According to Fig. 7, considering only the singular terms of the 

asymptotic solution (i.e. M = 1) cannot accurately capture the stress 
fields variations around the notch tip at the specified radial distance. 
Adding the first non-singular term, however, will remove the discrep
ancy between the finite element results and the asymptotic solution and 
make the predictions accurate. This result also confirms the accuracy 
and the applicability of the present solution for the equilibrium 
asymptotic fields around stationary sharp V-notches made of polymer 
gels under mixed mode loadings. 

Let us finally explore the effects of mode mixity on the solvent 
concertation field around the notch tip of the 60◦ SEN specimen. To this 
end, we have repeated the finite element simulation for the applied 
boundary displacements of u1/a = 0andu2/a = 0.002 which induce pure 
mode I loading conditions around the notch tip. Table. 4 gives the first 
two corresponding coefficients obtained by the FEOD method. Using 
these coefficients and the information provided in Table. 3 accompanied 
with Eq. (20), we may reconstruct contours of the solvent concentration 

FE
M =1
M =2

FE
M=1
M=2

FE
M=1
M=2

ba

c

Fig. 7. Comparison between the FE results and the present asymptotic solutions for a 60◦ plane strain notch with M = 1, 2: a) radial b) tangential and c) shear stress 
components versus θ on a ring around the notch tip with r/a = 0.2. The applied boundary displacements are u1/a = 0.018andu2/a = 0.002. 

Table 4 
The first two mode I asymptotic coefficients of the 60◦ SEN specimen under 
plane strain conditions with u1/a = 0andu2/a = 0.002.  

Parameter Real Part Imaginary Part 

A1aβI
1 − 1Ω/kBT  5.6874× 10− 8  0 

A2aβI
2 − 1Ω/kBT  − 6.0301× 10− 9  − 2.1518× 10− 8   

0.00 0.08 0.16 0.24
0.00

0.08

0.16

Fig. 8. Comparison between the reconstructed contours of the solvent con
centration around the plane strain notch tip of the 60◦ SEN specimen under 
pure mode I (dashed line) and mixed mode (full line) loading conditions. The 
contours are plotted for the typical value of cΩ = 2 × 10-4. 
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field for the typical value of cΩ = 2 × 10-4 for both pure mode I and 
mixed mode loading conditions (i.e. u1/a = 0.018andu2/a = 0.002). 
Fig. 8 illustrates these reconstructed contours together. 

According to Fig. 8, by increasing the loading mode mixity (i.e. the 
ratio of u1/u2), the solvent concentration contour will expand and rotate 
around the notch tip and lose its symmetry with respect to the notch 
bisector line. In fact, by increasing u1, the normal stress components (i.e. 
σrrandσθθ) will increase and decrease for negative and positive values of 
θ, respectively. This fact can be observed from the sine terms of Eq. (18) 
and the coefficients given in Tables. 3. These changes in the stress 
components will affect the pore pressure field around the notch tip 
which in effect alter the solvent concentration distribution. To be more 
precise, upon increasing u1, the near notch tip material points below and 
above the notch bisector line will be expanded and squeezed, respec
tively. Consequently, higher suctions will appear in the lower material 
points which leads to absorbing more solvent molecules to these points. 
This unequal distribution of solvent molecules with respect to the notch 
bisector line, will certainly affect the propensity of near notch tip ma
terial points to crack propagation. Indeed, more swollen points are more 
vulnerable to brittle fracture as they have lower number of stretched 
polymer chains per volume and thus needs less energy to be ruptured 
[40]. Clearly, a more detailed study is needed to investigate this phe
nomenon which would be an interesting extension of the present work. 

4. Conclusion 

The present work was devoted to extracting equilibrium stress and 
solvent concentration fields around stationary sharp V-notches made 
from polymer gels under mixed mode in-plane loadings utilizing linear 
poroelasticity theory. To this end, first, the mechanical equilibrium 
equations were solved employing the Airy stress function and then the 
near notch tip stress components were obtained accordingly. The stress 
fields have series forms and are similar to their corresponding linear 
elastic solution. Next, considering the incompressibility of the gel con
stituents (reflected in Eq. (4)), the solvent concentration field was ob
tained based on the already obtained stress components for both plane 
stress (thin specimens) and plane strain (thick specimens) conditions. It 
is found that mode I and mode II deformations have cosine and sine 
contributions to the solvent concentration field with respect to the 
angular coordinates. This means that by adding mode II deformations to 
the near notch tip region, the symmetry of the solvent distribution will 
break with respect to the notch bisector line and the solvent molecules 
will be pumped from one side of the bisector line to the opposite side. 
After that and to verify the accuracy of the obtained asymptotic fields, 
finite element simulations were performed on a SEN specimen with 
opening angles of 30◦ and 60◦ to calculate the fields numerically. The 
numerical results were finally compared with their corresponding 
asymptotic fields employing the FEOD method for mixed mode loadings. 
The comparison study shows that the present asymptotic solution can 
accurately capture the finite element results up to radial distances of r/
a = 0.2with only two or three terms. 

The main novelties of the present work can be summarized as fol
lows: 1) For the first time, the mixed mode in-plane equilibrium stress 
and solvent concentration fields around sharp V-notched polymer gels 
were obtained theoretically. 2) These theoretical results showed that the 
solvent concentration and stress fields possess the same degrees of sin
gularity around the notch tip. 3) Explicit relations were provided for 
calculating solvent concentration fields. These calculations can be 
directly done through the displacement fields obtained from finite 
element simulations. 4) The theoretical results indicated that shear de
formations due to mode II loading can alter the propensity of the gel 
material points to brittle fracture by tuning their solvent content. This 
interesting result has substantial consequences on fracture criteria de
velopments for notched gels under mixed mode loadings. 
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