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This paper introduces an ensemble-based field inversion framework to augment the turbulence models by

incorporating prior physical knowledge. Different types of prior knowledge such as smoothness, prior values, and

sparsity are enforced to improve the inference of the eddy viscosity and laminar–turbulent intermittency. This work

first assesses the method on the problems of inferring eddy viscosity in the Reynolds-averaged Navier–Stokes

equation from the velocity observation data for separated flows over periodic hills. Further, the method is used to

infer the intermittency field in the transport equation of turbulent kinetic energy from measurements of the friction

coefficient for transitional flows over a plate. The results demonstrate the performance of the regularized ensemble

method by enforcing prior knowledge into the inference. The method serves as a useful inverse modeling tool to

augment the turbulence model from observation data.

Nomenclature

Cf = friction coefficient

D = dimension of observation space
G = regularization function
H = height of hill crest or half channel
H = tangent linear operator; H ∈ RD×N

J = cost function
K = kernel function
k = turbulent kinetic energy
M = size of ensemble
N = dimension of parameter space
N = Gaussian process
P = turbulent kinetic energy production term
P = covariance of model error; P ∈ RN×N

R = covariance of observation errors; R ∈ RD×D

S = sigmoid function
T = Chebyshev basis
U = mean velocity
uτ = friction velocity
W = weight for regularization term
w = mode coefficients
x = state vector; x ∈ RN

x = spatial coordinate
xtr = location of transition point
y = observation vector; y ∈ RD

ycrit = critical curve for the interface between laminar flow
and turbulent flow

∂ = finite difference operator
β�; σk = model parameter in turbulent kinetic energy transport

equation
γ = laminar–turbulent intermittency
δ = regularization correction
ϵ = dissipation rate
λ = regularization parameter
ν = molecular viscosity
νt = eddy viscosity
σ1; σ2 = parameters in sparse representation of intermittency

field
τ = Reynolds stress
ϕ = basis of Karhunen–Loève expansion
ω = specific dissipation rate

Subscripts

i = index of spatial dimension
j = index of sample
n = index of mode

Superscripts

a = analysis
f = forecast (propagated by using dynamic model)
l = index of spatial location
⊤ = transpose
0 = prior
0 = gradient
− = mean

I. Introduction

T HE Reynolds-averaged Navier–Stokes (RANS) method is one
of the most widely used approaches for estimation of turbulent

mean flows, in which theReynolds stress requiresmodeling based on
the mean flow quantities. The Reynolds stress-related models have
been developed over decades, but there is still no universalmodel that
makes flow predictions accurately and robustly. Field inversion has
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emerged as a promising method to assist the RANS modeling by
inferring modeled quantities, e.g., eddy viscosity [1], from available
observation data. However, the field inversion problem is usually ill-
posed. That is, the optimal solutions are not unique, and different
fields can lead to good agreement with observation data. To this end,
enforcing additional regularization based on prior knowledge is
usually required to alleviate the ill-posedness of the field inversion
problem and thus improve the accuracy of the inferred field.
Various types of prior knowledge are desired for the modeled

quantities in turbulence models. For example, Wang et al. [2]
embedded some specific types of prior knowledge (e.g., realizability
of Reynolds stresses, variance of model error in different regions) in
their problem formulation and demonstrated that these types of prior
knowledge could improve inversion results and reduce the amount of
required data. However, it is more desirable to incorporate more
general prior knowledge such as smoothness, prior values from
existing models, and sparsity on a chosen basis.
Both the adjoint-based [3] and ensemble-based [4] method can be

used to solve the inverse problem and meanwhile enforce the general
prior knowledge. The adjoint method is able to enforce prior knowl-
edge through adding the regularization term in the objective function.
Various regularization terms have been formulated to ensure the
desired property of inferred fields [1,5] and applied for field inversion
in different flow configurations [6,7]. However, most computational
fluid dynamics solvers have no readily available adjoint capabilities
and need intrusivemodifications to develop the adjoint solver. On the
other hand, ensemble methods use an ensemble of simulations to
estimate themodel sensitivity and thus do not require extra efforts for
the development of adjoint solver. For this reason, the ensemble-
basedmethods have been increasingly used to solve inverse problems
in turbulence modeling [8–11], flow state estimation [12–14], and
fluid mechanics in general applications [15].
Traditional ensemble methods are incapable of using regularization

to enforce general prior knowledge, e.g., smoothness, as in adjoint-
based methods. The common approach to enforce the desired proper-
ties with the ensemble methods is through the model error covariance,
which can indicate the spatial properties of the inferred solution.
Specifically, smoothness can be achieved by generating smooth sam-
ples based on theGaussian processwhere theGaussian kernel is chosen
as the model error covariance. These prior realizations can enforce the
smoothness, because the inferred field is within the subspace spanned
by these smooth samples [16]. As to constraints from prior values, the
model error covariance can be prescribed with specific variance. That
is, one can assign small values to the prior variance, indicating the high
degree of confidence on the prior values, to avoid large deviation from
prior. Nevertheless, enforcing these properties through specific covari-
ance is not sufficient on someoccasions. For example, in the casewhere
weneed to ensure thenonnegativityof the inferred field, one commonly
takes the logarithm on the inferred quantity. As a result, smoothing the
prior samples can only ensure the smoothness in the logarithmic space,
which still allows large gradients in the linear space. On the other hand,
theprior information aboutmodel error covariance isoftennot available
and cannot be enforced during the inference. Moreover, the inference
can deviate significantly from the prior value due to the repeated use of
the observation data in the steady-state scenario [17]. To this end, it is
desired to devise regularization schemes for enforcing general prior
knowledge in the ensemble method. In this context, a regularized
ensemble Kalman method [18] was proposed to enforce general regu-
larization for ensemble-based inversion.
The regularized ensemble Kalman method inherits the advantage of

ensemble methods in that it does not require extra efforts in developing
an adjoint solver.Moreover, it provides a derivative-free update scheme
capable of enforcing general regularization, with only minor modifi-
cations to the conventional ensemble Kalman method. It has been
demonstrated that this method is capable of enforcing straightforward
constraints on simple inference problems [18]. However, enforcement
of more general prior knowledge such as smoothness and prior values
has not been explored and warrants further investigations. Such con-
straints are more common in practical applications.
In thisworkwe demonstrate applications of the regularized ensem-

ble Kalman method on practical turbulence modeling problems.

Specifically, our contributions include 1) the derivation and imple-
mentation of such common constraints as smoothness, prior values,
and sparsity in the general framework proposed in [18], and 2) dem-
onstration of the merits in incorporating such prior knowledge in
inferring turbulence quantity fields such as eddy viscosity and inter-
mittency. Moreover, this work highlights the need of regularization
in the inference for turbulence quantity fields and demonstrates the
capability of ensemble-based approach in enforcing such general
regularization.
The rest of the paper is structured as follows. In Sec. II, the

ensemble-based field inversion framework is introduced along the
problem of inferring turbulence quantity fields. In Sec. III, the
method is assessed on two canonical cases of separated flows and
transitional flows, demonstrating the merits of the proposed frame-
work. Finally, the paper is concluded in Sec. IV.

II. Ensemble-Based Inverse Modeling Methodology

In this section, we describe the inverse modeling methodology
based on the regularized ensemble Kalman method. Moreover, the
turbulence quantity to be inferred is described as well as the prior
knowledge on the turbulence field.

A. Formulation of Regularized Ensemble Kalman Method

Weemploy a regularized ensembleKalmanmethod [18] to enforce
regularization into the inference process. The ensemble method
uses the Monte Carlo technique to draw an ensemble of samples
for the inferred quantities and estimates the model error covariance
with these samples. Further, the optimal solution is searched in the
space spanned by these samples through minimizing a cost function.
Specifically, for a generic constraint G�x� on the inferred state x, the
cost function with such regularization can be written as

J � kxaj − xfj k2P−1 � kyj − Hxaj k2R−1 � λkG�xaj �k2W−1 (1)

In this equation, superscripts “a” and “f” denote “analysis” and
“forecast” following the convention of nomenclature in data assimi-
lation, x is the quantities to be inferred, H is the model operator that
maps the inferred variable x to the observation space, P is the model
error covariance, R is the observation error covariance, λ is the
regularization parameter to control the tradeoff between the penalty
term and the data fit, and W is the weight for the penalty function.
The first term on the right-hand side of Eq. (1) is the departure of the
analysis from the forecast state x, the second term represents the data
discrepancy, and the third term is the regularization. The sum of the
three terms, which form the cost function J, is to be minimized.
By setting the gradient of the cost function to be zero, the analysis

scheme of the regularized ensemble Kalman method can be formu-
lated as [18]

~xfj � xfj � δ; with δ � −λPG 0�xfj �W−1G�xfj � (2a)

and xaj � ~xfj � PH⊤�HPH⊤ � R�−1�yj − H ~xfj � (2b)

where δ is the regularization correction term, and G 0�x� is the deriva-
tive of penalty functionwith respect to state x. The scheme aboveuses
a similar Kalman update as in the traditional ensemble Kalman
method but adds an extra regularization step in Eq. (2a). The method
inherits the advantages of the ensemble Kalman method, which is
applicable to nonlinear problems [19,20].

B. Formulation of Prior Knowledge for Turbulence Quantity Fields

Different prior knowledge can be used to improve the inference of
the turbulence quantities. Here we formulate the regularization in
the ensemble-based framework to enforce three representative con-
straints on the inferred fields: 1) smoothness, 2) prior values, and
3) sparsity.
The regularization term for smoothness can be formulated as the

functional derivatives or the total variation in a discrete manner. The
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functional derivative measures the change rate of value in adjacent

grids, and the total variation measures the difference among the

values in the adjacent mesh cells. Both the functional derivative

and total variation are able to measure the smoothness of a field

and have been adopted in different contexts [1,21]. In this work, we

use the total variation as the regularization to favor that the values in

the adjacent grids differ onlymoderately. The regularization term can

be written as

G�x� � ∂x; and G 0�x� � ∂ (3)

where ∂ is the discrete difference operator. Many latent fields, such as

eddy viscosity, laminar–turbulent intermittency, and thermal diffu-

sivity, are assumed to be positive. In such cases, the logarithm is

usually imposed on the turbulence fields to ensure the nonnegativity,

and thus the logarithmic quantity is regarded as the inferred quantity.

The smoothness property is often desired for the inferred field in the

linear space instead of the logarithmic space. Accordingly, the regu-

larization term need to be formulated as

G�x� � ∂ex; and G 0�x� � ∂diag�ex� (4)

Note that in this work we use the first-order operator to enforce the

smoothness, but the method can be extended to use high-order

operators to measure the smoothness. The weight for the constraint

W can be constructed simply as an identitymatrix. For field inference

problems, Karhunen–Loève (KL) expansion is often used to reduce

the dimensionality of the problem, and only themode coefficients are

inferred [8]. In such a representation, the present framework can also

be used to impose smoothness constraints. This is derived and

presented in Appendix A.
The constraint on the prior value is essentially implemented in the

conventional ensemble Kalman method as in the first term of the

Eq. (1). However, in the stationary scenario, the iterative ensemble

Kalman method updates the state with artificial dynamics. This

results in the prior distribution shifting away from the initial guess

[17]. To this end, an additional regularization term can be formulated

in the regularized ensemble Kalman method as

G�x� � x − x0; and G 0�x� � I (5)

to minimize the departure from the initial estimation x0.
The sparsity is often desired in reduced-order representations for

the inferred field with a given basis such as the KL modes. In this

case, the inferred quantities are the mode coefficients, i.e., x � w.

It is usually desirable to represent the field with fewermodes. In other

words, the number of nonzero mode coefficients w is expected to be

as small as possible. To this end, the regularization for sparsity

constraint can be formulated as

G�x� � x; and G 0�x� � I (6)

Lasso regularization based on L1 norm is often used to yield sparsity

[22]. Here, to facilitate analytical derivations of the derivative G 0�x�,
we use shrinkage method based on L2 norm [23] along with thresh-

olding method [22] to achieve sparsity. Specifically, we set x � 0

for x <
���������������
2λkWkp

.

Other constraints, such as symmetry and physical realizability, are

also able to be employed in the framework. For instance, the sym-

metric constraints can be enforced by penalizing the difference at the

symmetric locations. The physical realizability can be considered by

formulating the inequality constraints to bound the constructed

Reynolds stress within the Lumley triangle. The inequality constraint

can be achieved by formulating the regularization term as a specific

bounding function. The reader is referred toRef. [18] for details about

enforcing inequality constraints with the regularized method.

Besides, other physical constraints such as the divergence-free con-

dition for incompressible flows can be also enforced by penalizing

the divergence of the reconstructed velocity field.

C. Turbulence Model Uncertainties

The RANSmethod is not able to predict the flows accurately in the

presence of separation and adverse pressure gradient, which ismainly

due to the model-form uncertainties in Reynolds stress [24]. The

Reynolds stress indicates the nonlinear effects of small-scale turbu-

lence and usually requires modeling based on the mean flow quan-

tities. Various models, such as the linear eddy viscosity model [25],

the nonlinear eddy viscosity model [26], the explicit algebraic Reyn-

olds stress model [27], and the Reynolds stress transport model [28],

have been developed over years. All thesemodels and the data-driven

counterparts (e.g., [8,29–32]) based thereon remain an important

topic in the turbulence modeling community today. Because of the

ease of implementation, the linear eddy viscosity model is still the

most widely used model, particularly in industrial applications.

Hence, in this work, we focus on the uncertainties of the linear eddy

viscosity model. The extensively used linear eddy viscosity models,

such as Spalart–Allmaras model [33], k − ε [25], k − ω [34], and k −
ω SST model [35], estimate the turbulent eddy viscosity through

introducing additional assumptions such as the mixing length

hypothesis and equilibrium turbulence [36]. These modeling

assumptions often lead to the poor predictive performance of the

RANS method. For this reason, turbulence model uncertainties have

been proposed and introduced in different manners, such as in the

momentum equation [37], in the Reynolds stress [8,38,39], in the

eddy viscosity [1], and in the model transport equations for turbu-

lence quantities [5]. Two types of the RANS model uncertainties are

investigated in this work: 1) uncertainties in the modeled eddy

viscosity, and 2) uncertainties in the equation governing the turbu-

lence quantities, e.g., the turbulent kinetic energy (TKE). That is,

νt � νRANSt exp�fνt �;
∂k
∂t

� ∂�Ujk�
∂xj

� γP − β�kω� ∂
∂xj

�
�ν� σkνt�

∂k
∂xj

�
(7)

where fνt is a multiplicative correction to the RANS-modeled eddy

viscosity, and γ is the laminar–turbulent intermittency, which can be

obtained from transition models [40]. In the TKE transport equation,

the term γP represents the turbulence production, and the term β�kω
is the turbulence dissipation, where the parameter β� is chosen as

0.09 in this work. The introduced uncertainty fνt is flexible to correct
the magnitude of the Reynolds stresses. However, it has been

observed that nonphysical correction with strong gradient is often

obtained due to the ill-posedness [6], and hence smoothness regu-

larization is required to penalize these strong gradients during the

inference. On the other hand, the intermittency γ in the TKE transport

equation can provide the smooth νt field, due to the advection–

diffusion effects in the transport equation [6]. In this work, we will

consider the inference of the two turbulence quantify fields to assess

the ensemble-based inverse modeling framework.

D. Practical Implementation

The framework solves inverse problems in a statistical formu-

lation. First, it requires generating an ensemble of realizations from

the Gaussian process. We draw the prior samples x based on the KL
decomposition to ensure the smoothness of the prior samples and

then estimate model error covariance P with these samples. The

specific inference procedure is as follows. Given the prior field x0,
kernel function K of a Gaussian process, and the observation error

covariance R, the procedure is as follows:
1) Sampling: Construct the prior ensemble from a Gaussian proc-

ess as x � fxjgMj�1
∼N �x0;K�.

2) Propagation: Propagate each sample to the observation space
through the forward model as ŷj � Hxj.
3) Regularization:Construct the constraint term G�x� as well as the

gradient of the constraint term G 0�x� for the desired properties, and

then obtain the regularized correction field xf based on Eq. (2a).
(4) Kalman update: Update the regularized field ~x based on

Eq. (2b). Return to step 2 until the convergence is reached.
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Theconvergence is considered achievedwhena) thedata discrepancy
error is smaller than the observation error and b) the penalty term is
smaller than the constraint error in the objective function in Eq. (1). The
regularization parameter λ in Eq. (2a) is set to ramp up gradually to its
full value in about 10 steps to ensure the robustness of the inference. See
[18] for further details. The regularized ensemble Kalman method is
implemented in the open-source code Data Assimilation and Field
Inversion (DAFI) [41].

III. Assessment for Performance of Ensemble-Based
Inverse Modeling Method

Two canonical test cases are used to assess the ensemble-based
method for the inference of turbulence quantity fields: 1) separated
flow over periodic hills, and 2) the transitional flow over flat plates.
We apply the ensemble-based inverse modeling to improve the mean
flow estimation by inferring the eddy viscosity for the periodic hill
case and the laminar–turbulent intermittency for the flat plate case.
Moreover, themethod is validated on a simpler case of inferring eddy
viscosity from mean velocities in the plane channel flow. This is
presented in Appendix B.

A. Separated Flows over Periodic Hills

The turbulent flow over periodic hills [42] is one of the canonical test
cases for validation of numerical simulations. Here, we apply this
configuration to demonstrate the ability of the proposed method to
infer the eddy viscosity. The Reynolds number based on the height of
crest and bulk velocity is Re � 5600. The unstructured mesh is
generated with 50 cells in the streamwise direction and 30 cells in the
normal-to-wall direction as previous works [8,43]. The periodic boun-
dary condition is imposedon the inlet andoutlet, and thebottomand top
boundaries apply the no-slipwall condition. The k − εmodel is used as
the baseline, and the time-averaged results from the direct numerical
simulation (DNS) are used as the truth. TheDNSdata are obtained from
Ref. [44], and theDNSmesh has nx × ny � 768 × 385 cells per plane.

The velocity along the profiles at x1∕H � 0; 1; : : : ; 8 is used as
observation data. In this case, we prescribe as prior knowledge that
the inferred field is smooth and also does not deviate significantly from
the prior value obtained with the k − ε model. Hence, we employ the
regularization of the smoothness and the prior value simultaneously.
Note that penalizing the deviation from the prior value can also enforce
the smoothness because the prior is smooth in this case.
The comparison of the inference results and propagated velocity

without andwith regularization is shown in Fig. 1. The eddy viscosity
of DNS is computed by projecting the deviatoric part of DNS
Reynolds stress τ onto the mean strain rate S [30], i.e.,

νDNSt � dev�τ�:S
S:S

(8)

The obtained eddy viscosity νDNSt is an optimal solution in the a priori

sense (i.e., achieving the least error norm kdev�τ� − νtSk in recon-

structed Reynolds stresses). Because of the misalignment between

the Reynolds stress and the strain rate, there exist negative values of

eddy viscosity, and hence they are clipped to zero. The peak of the

eddy viscosity in some regions such as the downhill is caused by the

near-zero strain rate (i.e., singularity) in these areas. Both ensemble-

based methods without and with regularization can provide similar

velocity fields in good agreements with the DNS data. The recon-

structed velocity with the regularized method is not as close to DNS

as the unregularized case. This is likely because the regularized

method has an objective function that aims to achieve the compro-

mise between the data misfit and regularization. As a result, the

regularization term is enforced at the expense of data fitting accuracy.

On the other hand, the inferred eddy viscosity from the standard

ensemble Kalman method without regularization leads to a very

rough field, which has a large departure from the prior value in most

areas. Particularly, at x1∕H � 0, the magnitude of the inferred eddy

viscosity without regularization is many times larger than that pro-

vided by the k − ε model. In contrast, the regularized ensemble

Kalman method can infer a relatively smooth field of eddy viscosity

by enforcing the regularization on the smoothness and prior values.

The inferred eddy viscosity field is significantly improved in the

magnitude and the smoothness compared with the inference results

without regularization. Admittedly, the eddy viscosity field is still

different from the DNS in this case, but noticeable improvement is

achieved in the magnitude and smoothness compared with the

unregularized method. It is emphasized that the main aim of the

present work is to demonstrate the superiority of the regularized

method over the unregularized method in inferring the turbulence

quantities such as the eddy viscosity. To further improve the infer-

ence, one needs to incorporate additional observation data, explore

better representation of inferred fields [30], and leverage additional

physical constraints, e.g., from the boundary condition [45] and the

characteristics of the governing equations [46]. Additionally, we

emphasize that the eddy viscosity is not a physical concept in a strict

sense, particularly for regions where Boussinesq hypothesis is

invalid, i.e., where the Reynolds stress and strain rate are not aligned.

For this reason, the comparison in the eddy viscosity between the

inferred field and the DNS should be interpreted with caution. Here

the inferred field can be considered as the optimal eddy viscosity in

the a posteriori sense (i.e., it allows us to achieve the best agreement

a) Inferred velocity, unregularized b) Inferred eddy viscosity, unregularized

c) Inferred velocity, regularized d) Inferred eddy viscosity, regularized

Fig. 1 The inferred eddy viscosity and the propagated streamwise velocity field by use of the ensemble methods without and with regularization for
periodic hill case.
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with the velocity data), which is fundamentally different from the
DNS eddy viscosity computed by tensor projection in Eq. (8).
The contour plots of reconstructed velocity are presented in Fig. 2

to show the structure of thevelocity field in comparisonwith the k − ε
model and the DNS results. The streamlines show that the baseline
with k − ε underestimates separation bubble sizes significantly com-
pared with DNS data. The reconstruction results without and with
regularization both provide better estimates in the separation bubble
size compared with the baseline. The structure of the reconstructed
separation bubble is noticeably improved compared with the predic-
tion by k − εmodel but still deviates from theDNS. That is consistent
with the slight deviation in the velocity field as shown in Fig. 1.
The contour plots of the eddy viscosity are provided in Fig. 3 to

show the structure of the inferred fields. It is clear that the regularized
EnKF method can significantly reduce the magnitude of the inferred
eddy viscosity and smooth the entire field comparedwith the unregu-
larized method. In this case, the inferred eddy viscosity has no
apparent patterns. In the separation region, the local eddy viscosity
is around zero, which is smaller than the k − ε modeled values. The
inferred eddy viscosity field embeds underlying information for the
turbulence modelers to construct an improved predictive closure
model for the RANS methods. The regression technique such as
sparse regression and backpropagation is able to be used for training
the algebraic [47] or neural-network-based [48,49] models based on
the inferred fields.

B. Transitional Flows over a Flat Plate

In the second case, we demonstrate inference of the laminar–
turbulent intermittency in the equation governing turbulence kinetic
energy. The test case is the turbulent flow over a flat plate, which is
often used for investigations of the by-pass transition problem [50].
The inflow turbulence intensity is 0.033. The inlet bulk velocityUb is

5.4 m/s. The kinetic viscosity ν is 1.5 × 10−5 m2∕s. The turbulent

viscosity is set to νt � 12ν. The computational mesh has 104 cells.
The inlet is imposed with a uniform velocityUb, and the outlet has a
zero-gradient condition for velocity. The top boundary is set as the
freestream, and the plate is a solid wall with the no-slip condition.
The intermittency γ field has the value of one except in the laminar

and transition region. Inferring such a field is highly ill-posed,
because the intermittency away from the wall does not affect the
flow quantities near the wall where the observation, e.g., friction
coefficient, is often available. To this end, a sparse representation is
needed for this field. Based on this prior knowledge, we use the
Chebyshev basis and the sigmoid function to achieve this goal. First,
the Chebyshev basis is used to represent the interface between the
laminar region (γ � 0) and turbulent region (γ � 1), which is a line

y�x1� �
P

N
n�1 wnT̂n�x1� (truncated to N � 16 modes). Across the

interface, a sigmoid function is used to represent variation of γ from
0 to 1 in thewall-normal direction. Further, another sigmoid function
ftr�x1� is used to allow the transition point xtr in the streamwise
direction. The length scales of the streamwise and wall-normal
transitions are denoted as σ1 and σ2, respectively. Other basis func-
tions, such as the wavelet basis and Fourier basis, also can be used to
represent the interface. Specifically, thewavelet basis is often used for
the image with sharp edges, whereas the Fourier basis is widely used
for periodic signals. As for the intermittency field, the turbulent/
nonturbulent interface is smooth and also not subjected to the peri-
odic conditions. To this end, we choose the Chebyshev basis to
construct the interface. The sigmoid function is one of the most
widely used activation functions, and hence we apply it to represent
the transition from 0 to 1. It is noted that other activation functions,
such as the hyperbolic tangent function, can be also used for this
purpose. The representation is usually application specific and
defined in this case based on the prior knowledge. That is, the
intermittency field is demarcated by a turbulent/nonturbulent inter-
face, and a ramp-up region exists around the interface. In a scenario
where such prior knowledge about the inferred field is lacking, how to
represent the field in an inference problem is a challenge and remains
an open question. However, note that this work specifically targets
scenarios where such vague prior knowledge is available but difficult
to represent with traditional methods. The field representation
as illustrated in Fig. 4 and the details are provided in Appendix C.
With this scheme, the intermittency field γ�x1; x2� is parameterized

with parameter set fwng16n�1, xtr, σ1, and σ2. The prior parameters are

given as w1 � 0.5, wn � 0 for n � 2; : : : ; 16, xtr � 0.9,
and σ1 � σ2 � 0.9.
The experimental measurements [51] on the friction coefficients

are used as the observation data. We use 16 measurement points that
are evenly distributed along the plate to infer the intermittency field.
Based on our numerical tests, the inversion results are sensitive to the
measurements at the transition region where the friction coefficient
exhibits noticeable differences between the data and the prediction
from the baseline model. The k − ω SST model with γ − Reθ tran-
sition model [40] is used as a reference to evaluate our inference,
because this model has been validated to simulate the by-pass transi-
tional flow accurately. In this case, we enforce the sparsity constraint
on the mode coefficients such that fewer modes are used to avoid
complex field structures. Additionally, we penalize the large depar-
ture from the initially guessed location of the transition point as well
as the length scales σ1 and σ2. Therefore, in this case the sparsity and
prior are enforced simultaneously to improve inference results.
We present the results with the unregularized and regularized

ensemble method in Fig. 5. The ensemble methods with and with-
out regularization can both reconstruct the friction coefficient and

Fig. 2 Contour plots of reconstructed velocity with unregularized and regularized ensemble methods in comparison to the prediction with k − εmodel
and the DNS for the periodic hill case.
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velocity in good agreements with the reference. The similar recon-

struction between the regularized and unregularized methods is not

surprising, because the good agreement in the velocity and friction

coefficient is enforced by the observation data. Concretely, the initial

intermittency field leads to the large discrepancy in the friction coef-

ficient. By incorporating the experimental data of friction coefficients,

the reconstructed results are improved by comparison with the pre-

diction from the transition model as shown in Figs. 5a and 5c. More-

over, around x1 � 0.6 the inference leads to better estimation on the

friction coefficient compared with the transition model in this case.

Figures 5b and 5d show a good agreement between the inferred

velocity and that from the transition model. At x1 � 0.6, the gradient
of the velocity is slightly less than that from the transition model,

leading to the relatively small friction coefficient. Also, we present the

reconstructed TKE and dissipation rate with the unregularized and

regularized methods in Fig. 6. Here the dissipation rate is computed as

ϵ � β�kω. It can be seen that the regularizedmethod is able to provide

better estimation in the TKE and dissipation rate, which is closer to the

prediction of the Langtry–Menter model compared with the unregu-

larized method.

Fig. 4 Parameterization of the intermittency field.

Fig. 3 Contour plots of inferred eddy viscosity with unregularized and regularized ensemble methods in comparison to eddy viscosity from k − εmodel
for periodic hill case.

b) U1 , unregularized

c) Cf , regularized d) U1 , regularized

Fig. 5 Reconstructed results of the friction coefficient and velocity with the regularized ensemblemethod in comparison among the initial prediction, the
Langtry–Menter model [40], and the experimental data of Roach and Brierley [51] for the T3A case.
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The inferred intermittency fields with and without regularization
are shown in Fig. 7. It can be seen that the intermittency field without
regularization has strong gradients, particularly at the range from
x1 � 0 to 0.25. In contrast, the inferred intermittency field with the
regularization is much smoother than that without the regularization,
because the sparsity regularization drives the coefficients of high-
order modes to be zero. However, the results in the eddy viscosity
without the regularization can also be smooth, as presented in Fig. 8.
That is because the advection–diffusion function about the TKE is
still able to provide the relatively smooth eddy viscosity [6]. Also, the
high intermittency value at the front of the plate has no significant
effects on the eddy viscosity fields. That is because the production of
TKE diminishes in the region near the leading edge of the plate,
whereas, on the other hand, the intermittency influences the mean
field only through scaling the production term, i.e., γP in the TKE
transport equation (7). Consequently, the intermittency cannot be
inferred from the friction coefficient measurements (or any other
mean field quantities). In other words, even if the inferred intermit-
tency can admit arbitrary values in this region (e.g., with very large
magnitude and/or steep gradients), the mean field does not feel such
anomaly due to the small production term.

IV. Conclusions

This work demonstrates the application of an ensemble-based

inverse modeling method for the field inversion of turbulence quan-

tities by incorporating prior knowledge. The formulations are derived

to implement general prior knowledge such as smoothness, prior

value, and sparsity in the ensemble methods. Two different turbu-

lence quantities, including the eddy viscosity and the intermittency

field in the equation governing the TKE, are inferred from the

observation of velocity and friction coefficient. The separated flow

over periodic hills and transitional flow over a flat plate are used to

demonstrate the merits of the ensemble-based inference framework.

The results highlight the necessity of incorporating the prior knowl-

edge into the inference of turbulence quantities and demonstrate the

capability of the ensemble-based inference framework in implement-

ing general regularization.

This work mainly demonstrates the merits of the regularized

ensemble Kalman method in 2D scenarios. To further demonstrate

the practicality of the method, future works will be conducted to

apply the present method in 3D flow configurations. Moreover, the

proposed method can be extended to infer uncertain terms in other

a) Turbulent kinetic energy, k b) Dissipation rate, d

Fig. 6 Reconstructed results of turbulent kinetic energy and dissipation rate with the unregularized and regularized ensemble method in comparison
with the initial prediction and the Langtry–Menter model [40] for the T3A case.

Fig. 7 Inferred intermittency field γ, showing a comparison of inferred γ field with the initial estimation and the Langtry–Menter model [35]. The
background color contour is the γ field from the Langtry–Menter model.
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RANS models, such as the pressure–mean-strain correlation term in

the Reynolds stress model, and other applications such as the flow
state estimation problem. Finally, it is worthwhile to further inves-

tigate enforcing different physical constraints with this method, such

as symmetry, physical realizability, and divergence-free condition for
incompressible flows, which can further improve the inference.

Appendix A: Imposing Smoothness Constraints for States
Represented with KL Expansion

In some scenarios, we apply the KL expansion and take the KL
coefficients w as the inferred parameters to reduce the dimension of

field inversion problems. That is, the inferred quantity, e.g., the eddy
viscosity νt, is written as

log νt � log ν0t �
XN
n�1

wnϕn

where ν0t is the baseline of eddy viscosity from the RANS model. In
such cases, the total variationmethod cannot provide the derivative of

the penalty term to the inferred KL coefficients w. However, the
functional derivative can be formulated to enforce smoothness con-

straints for the ensemble method. The cost function can be written as

J � kwa
j −wf

j k2P � kHwa
j − yjk2R � λ

X3
i�1

���� ∂νt∂xi

����
2

W

(A1)

where j is index of samples and i is the index of spatial dimension.

Note that

log νt � log ν0t �
XN
n�1

wnϕn�x� � log ν0t �Φw (A2a)

log

�
νt
ν0t

�
� Φw (A2b)

νt � ν0t exp�Φw� (A2c)

where n is the index of mode, Φ � �ϕ1�x�;ϕ2�x�; : : : ;ϕN�x��,
ϕ�x� ∈ RP×1;Φ ∈ RP×N;w ∈ RN×1, and P is the dimension of

physical space. For each direction i, at the specific location xl the
smoothness penalty can be written as

∂νt�xl�
∂xl

�
∂ν0t exp

�P
N
n�1 wnϕn

�

∂xl

� ∂ν0t
∂xl

exp

�XN
n�1

wnϕn

�
� ν0t exp

�XN
n�1

wnϕn

�XN
n�1

wn

∂ϕn

∂xl

� νt
ν0t

∂ν0t
∂xl

� νt
∂
∂xl

�log�νt∕ν0t �� (A3)

The penalty function can be written as

Gi�wj� �
�
∂νt
∂x1

; · · · ;
∂νt
∂xl

; · · · ;
∂νt
∂xP

�
(A4)

The gradient of the penalty function on themode coefficientw can be

written as

G 0
i �wj� �

2
66666666666664

∂2νt
∂x1∂w1

· · ·
∂2νt

∂x1∂wk

· · ·
∂2νt

∂x1∂wN

..

. . .
. ..

. . .
. ..

.

∂2νt
∂xl∂w1

· · ·
∂2νt

∂xl∂wk

· · ·
∂2νt

∂xl∂wN

..

. . .
. ..

. . .
. ..

.

∂2νt
∂xP∂w1

· · ·
∂2νt

∂xP∂wk

· · ·
∂2νt

∂xP∂wN

3
7777777777777775

(A5)

where

∂2νt�xl�
∂xl∂wk

� ∂
∂wk

�
∂νt
∂xl

�
(A6)

Fig. 8 Inferred eddy viscosity field νt (normalized bymolecular viscosity ν), showing a comparison of inferred νt field with the initial estimation and the
Langtry–Menter model [35]. The background color contour is the νt∕ν field from Langtry–Menter model.
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� ∂
∂wk

�
∂ν0t
∂xl

exp

�XN
n�1

wnϕn

�
� ν0t exp

�XN
n�1

wnϕn

�XN
n�1

wn

∂ϕn

∂xl

�

(A7)

� ∂ν0t
∂xl

exp

�XN
n�1

wnϕn

�
ϕk � ν0t exp

�XN
n�1

wnϕn

�
ϕk

XN
n�1

wn

∂ϕn

∂xl

� ν0t exp

�XN
n�1

wnϕn

�
∂ϕk

∂xl
(A8)

� ∂ν0t
∂xl

νt
ν0t

ϕk � νtϕk

∂ log
�
νt
ν0t

�

∂xl
� νt

∂ϕk

∂xl
(A9)

Equation (A9) is the gradient of the regularization term for smooth-

ness when using the KL coefficient as inferred parameters.

Appendix B: Validation of Ensemble-Based Field
Inversion in Channel Flow

We validate the capability of the ensemble method to enforce
the smoothness properties in inferring eddy viscosity in the channel
case. The Reynolds number based on friction velocity and
half channel height is 180. The inferred parameter x is the eddy

viscosity field νt, which can be formulated as νt � fν�1�t ; : : : ; ν�l�t ;

: : : ; ν�90�t g. Accordingly, the forward difference operator can be
constructed as

∂ �

2
664
−1 1

. .
. . .

.

−1 1

0

3
775 (B1)

The ensemble-based field inversion is used to infer the eddy
viscosity from the DNS data of the time-averaged velocity. The
DNS data are from Ref. [52], which are widely used for numerical

validation and analysis. The initial field x0 is from the k − ωmodel.
The inference results without and with smoothness regularization
are shown in Fig. B1. The propagated velocity without and with
regularization both have good agreements with DNS, and hence
the plots are omitted. It is clear that the unregularized method infer
the eddy viscosity with strong gradients in the center region of
the channel, where the velocity is insensitive to the eddy viscosity
due to the small value on the norm of mean rate-of-strain jSj, as it is
the shear stress τ12 � νt�∂U1∕∂x2� that appears in the RANS
momentum equation. As such, enforcing the smoothness regulari-
zation provides better inference in the eddy viscosity.

Appendix C: Parameterization of the Intermittency Field

The intermittency field is parameterized by using a sigmod func-
tion as follows:

γ�x1; x2� � S

�
x2 − ycrit�x1�

σ2

�

where σ2 is the length scale of transition in the vertical direction, and
the location of transition ycrit�x1� (i.e., the contour line γ � 0.5) is

Fig. 9 Inferred eddy viscosity by using the ensemble method with and
without regularization for the channel case. The green/light dash-dotted
line denotes the norm of mean rate-of-strain S � ∂U1∕∂x2.

Fig. 10 The comparison between the projection and the result from the Langtry–Menter transitionmodel. The projected curve ycrit with the Chebyshev
basis based on the intermittency at level γ � 0.5 from Langtry–Menter transition model.
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parameterized by using a shifted Chebyshev basis for dimension
reduction purposes:

ycrit�x1� �
�XN

n�1

wnT̂n�x1�
�
ftr�x1�; with ftr�x1� � S

�
−
x1 − xtr

σ1

�

where xtr is the location of laminar–turbulent transition on the plate,
and σ1 is the length scale of transition. The standard Chebyshev
polynomial of the first kind is an orthogonal basis on the domain
�−1; 1� defined based on the following recursive relation [53]:

T0�x� � 1; T1�x� � x; : : : ; Tn�1�x� � 2xTn�x� − Tn−1�x� (C1)

For example, the first few basis functions are T2�x� � 2x2 − 1,

T3�x� � 4x3 − 3x, T4�x� � 8x4 − 8x2 � 1, and T5�x� � 16x5 − 20x3

�5x. When x1 ∈ �xs; xe�, the following transformation should be

performed to obtain polynomials T̂n�x� that are orthogonal on the
new domain:

T̂n�x� � Tn�a� bx�

where the argument to the basis function Tn is a� bx with coeffi-
cients a � −1 − 2xs∕�xe − xs� and b � 2∕�xe − xs�. Therefore, the
intermittency field is parameterized by the parameters fwngNn�1, the

location of transition xtr, and the length scales σ1 and σ2 over which γ
varies from0 to 1.We project the contour line of intermittency at level
γ � 0.5 from the Langtry–Menter transitionmodel on theChebyshev
basis, and the projected curve represents that of the reference data
very well, as is shown in Fig. C1a. Further, the best fit of the γ�x1; x2�
on the parameterization above is shown in Fig. C1b. These results
suggest that the proposed parameterization is suitable for the repre-
sentation of underlying intermittency field. The plots along the
profiles are provided in Fig. C1, clearly showing that the projected
profiles have a good alignment with the results from Langtry–Men-
ter model.
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