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Fe-based metallic glasses (MGs) have attracted much attention because of their cheap raw materials, outstanding
soft magnetic properties and superior catalytic activity. Meanwhile, the fabrication of micro/nano-structures on
its surface could further improve its functional properties. In this study, it was attempted to fabricate micro/
nano-structures on a Fe-based MG (Fes2Cr13Mo012C15BgErs, in at. %) surface by nanosecond pulsed laser irradi-
ation technology. The surface characteristics and microstructural evolution of Fe-based MG were investigated.
The experimental results showed that under different laser fluences, the laser-irradiated areas exhibited distin-
guished microstructures, i.e., nanoparticles, the network nanostructures or a combination of these two micro-
structures. Furthermore, oxygen and erbium were enriched inside the network nanostructures. By analyzing the
microstructural evolution, formation mechanisms of the nanoparticles and the network nanostructures were
discussed. The nanoparticles were actually caused by laser-induced element enrichment (i.e. amorphous erbium
oxide) and the mismatch of its wettability with the substrate; the formation of the network nanostructures was
attributed to the diffusion and connection of nanoparticles under the combined influence of recoil pressure and

surface topography.

1. Introduction

With a long-range disordered atomic structure [1,2], metallic glasses
(MGs) exhibit many fascinating properties and functionalities, such as
high hardness [3-6], high elastic energy [7,8], outstanding resistance to
wear and corrosion [9,10] as well as excellent biocompatibility [11-15].
However, the size of MGs is relatively small due to the limitation of the
critical cooling rate required during the preparation process [16], which
has become a main obstacle in the practical engineering application of
MGs. To overcome this problem, multicomponent rule was proposed and
applied to prepare MGs with high glass forming ability (GFA) [17],
typically including Pd- [18], Zr- [19,20], Ti- [21], and Fe-based MGs
[22,23]. In particular, compared with other MGs, Fe-based MGs have
been attracted more attention in engineering applications because of
their cheap industrial raw materials [24] and outstanding soft magnetic
properties [25,26]. Moreover, the superior catalytic activity of Fe-based
MGs also inspired the exploration of chemical applications, including
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the wastewater and organic pollutant remediation [27,28], oxidative
degradation [29] and so on. On the other hand, it has been confirmed
that the fabrication of micro/nano-structures on the surface of materials
could further improve the catalytic activity owing to the increase of
effective surface area [30,31]. Furthermore, surface wettability [32,33]
and biofunctionality [34,35] could also be changed by introducing
micro/nano-structures on material surfaces. Therefore, the fabrication
of micro/nano-structures with tailored properties on the MG surface has
always fascinated researchers.

Typical processing technologies, including mechanical processing
[36,37] and chemical corrosion [38,39], are widely used to fabricate
micro/nano-structures on the surface of materials. However, these two
methods may be not ideal for Fe-based MGs. Due to inherent hard-brittle
features of Fe-based MGs, it is relatively difficult to generate surface
micro/nano-structures by mechanical processing; at the same time, the
wear of cutting tool will be quite serious because of its high hardness.
For chemical corrosion, the choice of corrosion solution is very limited
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Table 1
Experimental conditions.
Sample material Fes2Cr13M0;2C15B6Er,
Wavelength, nm 532
Pulse width, ns 15.4
Repetition frequency, kHz 1
Laser scanning speed, mm/s 1
Laser fluence, J/cm? 0.85, 1.39, 1.89

because of the excellent corrosion resistance of Fe-based MGs. Thus, it is
meaningful to develop some new methods for patterning the Fe-based
MGs.

In recent years, laser irradiation technology has been gradually
applied to pattern the MG surface by virtue of its non-contact and

0.85 J/cm?

1.39 J/em?
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versatility. After laser irradiation, various surface micro/nano structures
have been produced on the MGs surface, broadening their functional
applications [32,40-43]. For example, by nanosecond pulsed laser
processing, Jiao et al. successfully fabricated the dimple and groove
structures on a Vit 105 Zr-based MG, thereby modifying its surface
wettability [42]. By femtosecond laser irradiation, non-centrosymmetric
surface structures were formed on a Zr-based MG surface, realizing the
unidirectional water micro-diplacement [43]. However, the current
studies on laser surface patterning of MGs are mainly focused on special
types of MGs, i.e. Zr-based MG systems, and the investigations on the
response of Fe-based MGs to nanosecond pulsed laser irradiation are
relatively lacking.

Accordingly, in this study, a Fe-based MG was irradiated by a
nanosecond pulsed laser at ambient environment. The effects of laser
fluence on the surface morphology were systematically investigated. It
was found that nanoparticles and network nanostructures could be
induced on the Fe-based MG surface. Further, formation mechanisms of
the nanoparticles and the network nanostructures were discussed.
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Fig. 1. SEM morphologies of the Fe-based MG surface after laser irradiation under various laser fluences: (a-b) 0.85 J/cm?, (c-d) 1.39 J/cm?, and (e-f) 1.89 J/cm>.
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Fig. 2. 3D images and the corresponding height profiles of laser-irradiated Fe-based MG surfaces with different laser fluences: (a-b) 0.85 J/em?, (c-d) 1.39 J/cm?,

and (e-f) 1.89 J/cm?.
2. Materials and methods
2.1. Materials

FesoCr13Mo;2C15BgEr; (in at. %) alloy ingots were first prepared by
arc-melting the mixtures of pure constituent elements under argon at-
mosphere. The purities of the metals were 99.9 wt% for Fe, 99.99 wt%
for Cr, 99.9 wt% for Mo, 99.99 wt% for C, 99.9 wt% for B and 99.9 wt%
for Er. The alloy ingots were re-melted four times to improve composi-
tional homogeneity. Using these alloy ingots, rod samples of 7 mm in
diameter were made by water-chilled copper mold suction casting.

The Fe-based MG rod was attempted to cut into slices with a thick-
ness of 2 mm by wire electrical discharge machining (wire-EDM).
However, fracture occurred during the wire-EDM process because of the
concentrated thermal process, and only small pieces were obtained,
further demonstrating its hard-brittle feature and poor machinability.
Our previous studies [44,45] indicated that wire-EDM would induce
crystallization layer on the machined MG surface. To remove the crys-
tallization layer and obtain mirror sample surface, mechanical grinding
was performed on the obtained Fe-based MG samples using 400, 800,

and 1500 grit sand papers in sequence, followed by polishing using
diamond paste. The amorphous characteristic of the polished MG was
characterized by an X-ray diffractometer (XRD, D8 Discover, Bruker,
Germany).

2.2. Laser irradiation

A Nd:YAG nanosecond pulsed laser system (LR-SHG, MegaOpto Co.,
Ltd., Japan) was used to perform laser irradiation of the Fe-based MG
surface at ambient environment. It has a wavelength of 532 nm, a pulse
width of 15.4 ns, and a laser beam diameter of ~ 85 pm with an
approximate Gaussian intensity profile. The repetition frequency and
scanning speed were set to 1 kHz and 1 mm/s, respectively. Various
average laser powers, 0.048, 0.079, 0.107 W (corresponding to the laser
fluences of 0.85, 1.39, and 1.89 J/cmz, respectively) were used for
comparison. It should be mentioned that when the laser fluence was
further increased, remarkable micro-cracks appeared in the irradiated
regions because of the high thermal stress gradient as well as the
inherent brittleness of Fe-based MG. Table 1 presents the experimental
conditions mentioned above.
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Fig. 3. The AFM images of the nanoparticles in Fig
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. 1(a): (a) 3D topography, (b) 2D topography, and (c)-(f) the height profiles of the Line 1- Line 4 in Fig. 3(b),
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Fig. 4. The AFM images of the network nanostructures in Fig. 1(b): (a) 3D topography, (b) 2D topography, and (c)-(e) the height profiles of the Line 1- Line 3 in Fig. 4

(b), respectively.
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Fig. 5. (a) The position of SEM-EDS line measurement, and (b) the corresponding EDS line profiles along the marked line in Fig. 5(a).

2.3. Characterization

The laser-irradiated MG surfaces were observed by a field emission
scanning electron microscope (FE-SEM, JSM-7600F, JEOL, Japan) and
the surface topographies were further measured by a three-dimensional
(3D) laser scanning microscope (VK-9700, Keyence, Japan) and an
atomic force microscope (AFM, AFM 5100N, Hitachi, Japan). The
element distribution in the irradiated regions was characterized by an
energy dispersive X-ray spectroscopy (EDS, X-Max80, Oxford Instru-
ment, UK). The cross-sectional characteristics of the surface micro-
structure were characterized by a transmission electron microscope
(TEM, JEM-2100F, JEOL, Japan), and the TEM sample was prepared via
a focused ion beam (FIB, S9000G, TESCAN, Czech).

3. Results and discussion
3.1. Microstructures

Fig. 1 presents the SEM morphologies of laser-irradiated Fe-based
MG surface under various laser fluences. For a relatively low laser flu-
ence (0.85 J/cm?), a large number of discrete nanoparticles appear in
the irradiated area, as seen in Figs. 1(a) and (b). When increasing the
laser fluence to 1.39 J/cm? the irradiated area exhibits large-area
network nanostructures, except for the HAZ (see Fig. 1(c)). It is noted
that the network nanostructures are not always completely closed,
especially in the center of the irradiated area. As the laser fluence further
increases to 1.89 J/cm?, the whole irradiated area is featured by two
distinct microstructures, the network nanostructures around the HAZ
and the nanoparticles located in the center of the irradiated area. In
addition, from the surface morphologies in Figs. 1(a)-(f), it is assumed
that the network nanostructures may be formed by the connection of
nanoparticles.

M Cr Mo

M Er (0]

--

In order to further observe the surface characteristics of laser-
irradiated Fe-based MG, Figs. 2(a), (c) and (e) give the 3D images of
laser-irradiated areas in Figs. 1(a), (c) and (e), respectively, and Figs. 2
(b), (d) and (f) give the height profiles along the marked lines in Figs. 2
(a), (c) and (e), respectively. In Figs. 2(a) and (b), there is no obvious
height fluctuation in the entire irradiated area, which indicates that only
shallow melting occurred under the relatively low laser fluence (0.85 J/
cm?). However, when the laser fluence increases to 1.39 J/cm? or more,
the groove structures are generated on the MG surface. Furthermore, as
the laser fluence increases, the depth of the groove structure will
increase.

To capture more details on the nanoscale, the nanoparticles and
network nanostructures were further characterized topographically by
AFM. Figs. 3(a) and (b) present the details of the laser-irradiated area in
Fig. 1(a) where many nanoparticles with big difference in size are
visible. In addition, some nanoparticles are connected to each other,
resulting in the formation of line-shaped particles. In Figs. 3(c)-(f), it can
be seen that nanoparticles are about several hundred nanometers in
diameter, and they behave as spherical droplets sitting on a flat surface.
For the network nanostructures, the sizes of the polygonal junctions and
the open-end points are relatively large (see Figs. 4(a) and (b)), which
further indicates that they may originate from the connection of nano-
particles. In addition, as shown in Figs. 4(c)-(e), the dimensions of the
network nanostructures are similar to those of nanoparticles, i.e., several
hundred nanometers in diameter and less than 100 nm in height.

As seen in Fig. 1, compared to other areas, the nanoparticles and
network nanostructures have brighter contrast, which suggests that the
alloying element composition of the laser-irradiated area may be non-
uniformed. As an example, the elements distribution across the
network nanostructures was measured by EDS (see Fig. 5(a)), and the
corresponding results are shown in Fig. 5(b). From Fig. 5(b), it can be
qualitatively seen that the concentrations of Er and O elements in the

Fig. 6. SEM-EDS mapping results of the laser-irradiated area.
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Fig. 7. TEM bright field image showing the interface between the MG substrate and the network nanostructures as well as its STEM-EDS mapping results.

Fig. 8. HRTEM image showing the interface between the MG substrate and the
network nanostructures. The insets show the selected area electron diffraction
patterns taken from the MG substrate (SA1) and network nanostructures (SA2)
in Fig. 7, respectively.

network nanostructures are significantly higher than those in other re-
gions, while the other elements are just the opposite. This is further
verified by the SEM-EDS mapping results shown in Fig. 6. It is noted that
more Er and O elements are concentrated in the network nanostructures,
and the other elements (Fe, Cr, Mo, C) are uniformly distributed. In
Fig. 5(b) and Fig. 6, the distribution of oxygen and erbium elements is
very consistent, suggesting that the nanoparticles and network nano-
structures may be actually the erbium oxide.

To further confirm the chemical composition evolution induced by
laser irradiation, a small cross-section involving the MG substrate and
network nanostructures was extracted via FIB and then characterized by
TEM. Fig. 7 presents the results. The STEM-EDS mapping results clearly
reveal that the network nanostructures are mainly composed of Er and O
elements, which are consistent with the SEM-EDS analysis results. Fig. 8
shows the high-resolution TEM (HRTEM) image at the interface. It is
seen that both the MG substrate and the network nanostructures are
fully amorphous. To further confirm this result, the selected area elec-
tron diffraction (SAED) were performed on the MG substrate (SA1) and
network nanostructures (SA2) in Fig. 7, respectively, and the corre-
sponding diffraction patterns are shown in the insets of Fig. 8. Regard-
less of the MG substrate or the network nanostructures, the diffraction
pattern consists of only a halo ring, suggesting the amorphous

characteristics of the newly formed network nanostructures (i.e. erbium
oxide), which could be attributed to the fast heating and cooling pro-
cesses during the laser irradiation.

3.2. Discussion on the surface microstructure formation and evolution

The above results indicate that under different laser fluences, the
laser-irradiated surfaces exhibit different microstructures, i.e., nano-
particles, network nanostructures or a combination of these two mi-
crostructures. At the same time, since the network nanostructures are
connected by adjacent nanoparticles, the formation mechanism of the
nanoparticles should be investigated first. Fig. 9(a) presents a schematic
diagram for illustrating the possible formation process of the nano-
particles. During the laser irradiation, the surface layer of the MG ma-
terial would be heated and the surface temperature would rise sharply.
At high temperature, the Er element contained in the sample would
chemically react with the O element in the atmosphere, resulting in the
formation of erbium oxide. In this case, due to the difference in chemical
composition, the erbium oxides would be poorly wetted with other
molten materials, so after solidification, they behave as spherical
droplets sitting on the MG substrate, as shown in Fig. 9(a).

Next, the effects of laser fluence on the surface microstructures of
laser-irradiated area will be discussed, and Fig. 9(b) presents the cor-
responding schematic diagram. In fact, due to the relatively small size of
the nanoparticles, they are extremely unstable during the solidification
process, and their movement would be affected by both forces and solid
boundaries. For example, the recoil pressure, as a universal force in the
laser-material interaction, will significantly affect the melt flow in the
molten pool and further determine the surface topography of the laser-
irradiated area. In turn, the existence of recoil pressure is generally
confirmed by observing the surface topography of the laser-irradiated
area. Especially, the formation of the groove structure is the most
direct evidence to confirm the existence of recoil pressure. As shown in
Figs. 2(a) and (b), at a relatively low laser fluence of 0.85 J/cmz, the
whole irradiated area exhibits a flat topography except for the nano-
particles, indicating that only shallow melting occurs on the MG surface
under this laser fluence. Without the effect of recoil pressure, the alloy
melts were relatively stable. Therefore, the nanoparticles would remain
in their initial formation position rather than diffusion or connection.
When the laser fluence is increased to 1.39 J/cm? the grooves with
pileups around are formed on the MG surface as shown in Figs. 2(c)-(f),
suggesting the existence of strong recoil pressure. Accordingly, under
the effect of recoil pressure, the nanoparticles located in the center of the
scanning line have a tendency to diffuse to both sides, leading to the
interconnection of adjacent nanoparticles to form network nano-
structures. Since the solidification starts from both sides to the center
[46], the network nanostructures will firstly be formed on both sides of
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Fig. 9. (a) Schematic formation process of the nanoparticles on the Fe-based MG substrate. (b) The schematic diagram illustrating the effects of laser fluence on the

surface microstructures of laser-irradiated area.

the scanning line. At the same time, the high pileups might act as the
solid boundary that provides potential nucleation positions for the
network nanostructures. When the laser fluence is further increased to
1.89 J/cm?, more heat is delivered to the MG surface, resulting in an
increase in the recoil pressure and the depth of the grooves. The larger
recoil pressure will promote the movement of nanoparticles, and the
network nanostructures would still form around the pileups. However,
due to the relatively large depth of the grooves, the nanoparticles
located at the bottom of the groove structure cannot overcome their own
gravity to move sideways, thus remaining separate distribution without
forming network nanostructures. The above results indicate that under
these laser fluences, the formation of nanoparticles as well as their
diffusion and connection determine the final surface microstructure.

4. Conclusions

In summary, the surface characteristics and microstructural evolu-
tion of FesyCri3sMoi2CisBgEray MG under nanosecond pulsed laser
irradiation were systematically investigated. The results showed that
when increasing the laser fluence, the surface microstructures varied
from nanoparticles to the network nanostructures, and then to a com-
bination of these two microstructures. According to the EDS results, it
was found that the network nanostructures were characterized by high
oxygen and erbium enrichment. By analyzing the microstructural evo-
lution, the formation mechanisms of the nanoparticles and the network
nanostructures were discussed. The nanoparticles could be attributed to
laser-induced element enrichment (i.e. amorphous erbium oxide) and
the mismatch of its wettability with the substrate. In addition, the
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diffusion and connection of nanoparticles under the combined influence
of recoil pressure and surface topography would lead to the formation of
network nanostructures. This study would not only enhance the
fundamental understanding of laser-MG interaction, but also provides
an effective approach for patterning Fe-based MG, which can improve
their application potentials as functional materials.
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