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Abstract

This paper presents a tensor decomposition (TD) based reduced-order model of the hierarchical deep-learning neural
etworks (HiDeNN). The proposed HiDeNN-TD method keeps advantages of both HiDeNN and TD methods. The automatic
esh adaptivity makes the HiDeNN-TD more accurate than the finite element method (FEM) and conventional proper

eneralized decomposition (PGD) and TD, using a fraction of the FEM degrees of freedom. This work focuses on the theoretical
oundation of the method. Hence, the accuracy and convergence of the method have been studied theoretically and numerically,
ith a comparison to different methods, including FEM, PGD, TD, HiDeNN and Deep Neural Networks. In addition, we have

heoretically shown that the PGD/TD converges to FEM at increasing modes, and the PGD/TD solution error is a summation
f the mesh discretization error and the mode reduction error. The proposed HiDeNN-TD shows a high accuracy with orders
f magnitude fewer degrees of freedom than FEM, and hence a high potential to achieve fast computations with a high level
f accuracy for large-size engineering and scientific problems. As a trade-off between accuracy and efficiency, we propose a
ighly efficient solution strategy called HiDeNN-PGD. Although the solution is less accurate than HiDeNN-TD, HiDeNN-PGD
till provides a higher accuracy than PGD/TD and FEM with only a small amount of additional cost to PGD.

2021 Elsevier B.V. All rights reserved.

eywords: Hierarchical deep-learning neural networks; Proper generalized decomposition; Canonical tensor decomposition; Reduced order finite
lement method; Convergence study and error bound

1. Introduction

Despite the constantly increasing computer power, numerical simulations of physical systems with numerous
egrees of freedom (DoFs) remain computationally prohibitive. These kinds of problems arise usually in simulation-
ased engineering and scientific applications, and the repetitive manipulation (or modification) of the mesh system
as been identified as a key time-costly issue in standard finite element method (FEM) [1]. This has been a
otivation for developing the isogeometric approaches [2] and meshfree particle methods [3–6].
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In recent years, the deep neural network (DNN) has shown some interesting features in handling the solution
f physics constrained systems. The universal approximation theorem [7,8] and the natural scalability of DNN
ave been the foundation of its superior performance for large systems. This has thus motivated the use of DNN
o approximate the solution of partial differential equations (PDEs) [9–11]. A recently developed Hierarchical
eep-learning Neural Network (HiDeNN) method [12,13] falls within this perspective. The so-called HiDeNN is
eveloped by constraining the weights and biases of DNN to mesh coordinates to build multiple dimensions finite
lement, meshfree, isogeometric, B-spline, and NURBS interpolation functions. HiDeNN allowed the automatic
esh adaptivity and showed a good potential to prevent large mesh systems and the standard time-consuming
esh refinement procedure. In order to further enhance the efficiency of HiDeNN, this work proposed HiDeNN-
D, a reduced-order model of HiDeNN using the tensor decomposition (TD), in particular the canonical tensor
ecomposition which can give rise to the optimal proper generalized decomposition (PGD).

The PGD-based model reduction methods rely on the idea of separation of variables, and are usually written in
he format of canonical decomposition. We remark that Song discovered an equivalent form of PGD when being
sed to function approximation [14]. He actually constructed the optimal decomposition of any square integrable
unction into minimal number of modes, each to be the product of single variable functions, and proved exponential
onvergence rate for such construction. This kind of method was originally proposed in an a priori setting [15–18],

in which the separated functions are computed on-the-fly by solving the PDEs. It has gained increased popularity
in recent years. For overcoming the intrusiveness and extending the applicability of the method, a posteriori data-
driven PGD [19–22] has also been developed more recently. In contrast to a priori PGD, a posteriori method uses a
database to learn the separated functions and thus can be used as regression for constructing reduced order surrogate
models.

The conventional PGD methods usually use an incremental solution scheme to compute the separated functions
mode by mode. Hence, the optimality of decomposition cannot be guaranteed. Some attempts have been made to
improve the optimality of PGD [23]. The optimal PGD can be defined as a Galerkin projection with a fixed number
of modes [24], which requires solving all the PGD modes together. This type of solution scheme is also adopted in
the canonical tensor decomposition (see e.g. [25]). In order to clearly distinguish the two types of solution schemes,
we define the one with a fixed number of modes as the general TD in this paper.

In our work, we adopted the same idea of separation of variables and the solution scheme of TD for solving
PDEs in the HiDeNN framework, leading to the so-called HiDeNN-TD method, which is expected to have reduced
degrees of freedom with high accuracy compared with other traditional methods such as the FEM. Indeed, the space
separated PGD, leading to lower dimensional space functions, is usually considered for reducing the computational
complexity of 3D separable domains (see e.g. [26]). However, the convergence aspect with respect to the mesh
refinement and number of modes has been less studied.

We investigated the convergence aspect of the PGD/TD approach in this paper. Based on the approximation
function spaces, we analyzed the numerical error and convergence associated with different approaches and
compared their error bounds. It can be shown that the HiDeNN-TD is more accurate than both FEM and conventional
PGD/TD, thanks to the adaptivity achieved by HiDeNN. Furthermore, we suggested fixing the number of modes
firstly and solving them together. Hence, HiDeNN-TD can require fewer modes than PGD. This is advantageous
for high-dimensional problems where the optimality of modes is crucial. The numerical examples have confirmed
our theoretical analysis. In addition, we numerically investigated the relationship between the approximation error
and the modes, and proposed a strategy to select the prescribed mode number in HiDeNN-TD. The proposed
HiDeNN-TD has shown a high potential to achieve high performance computing with high accuracy.

We remark that this paper focuses on the theoretical foundation of various approximation methods based on
HiDeNN. Theoretically, HiDeNN can provide the most accurate solutions, but the computational cost is higher
than HiDeNN-TD. We seek to make a trade-off between accuracy and speed by combining HiDeNN and TD in
this work. We shall demonstrate out finding that HiDeNN-TD gives better results than PGD, TD, and FEM by
taking advantages of both HiDeNN and TD. The currently used gradient based optimization scheme can converge
quickly to a well-accepted tolerance with a better accuracy and more efficiency than that of the FEM. HiDeNN-TD
has slightly more degrees of freedom than TD/PGD but provides the capability to improve the accuracy of the
results. The added degrees of freedom compared to TD is controllable to achieve a high efficiency. For example,
one efficient way to solve HiDeNN-TD solution is to start from PGD to get a first estimate of the number of modes

then switch to HiDeNN-TD to gain more accurate results. The estimation of the number of modes can be based
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on low-accurate PGD solutions, rather than high-accurate PGD solutions which require a larger number of modes.
HiDeNN-TD provides a way to optimize the accuracy of the decomposition and sacrifices only slightly in speed.
Furthermore, our work uses gradient based optimization scheme with a tight tolerance to get the converged results
for demonstrating the theoretical proof. But in practical cases, a trade-off between accuracy and efficiency is usually
made. To further prove this point, we have provided a variant solution method called HiDeNN-PGD in this paper,
which combines directly the PGD type solution scheme with HiDeNN in the previously mentioned hybrid manner.
As expected, the HiDeNN-PGD is only slightly more costly than PGD and provides more accurate solutions. Based
on this scheme, a more efficient HiDeNN-TD solution method can be further developed to improve the accuracy
and is expected to give the highest accuracy for solutions. The HiDeNN-PGD can be seen as a more efficient variant
by making the trade-off between accuracy and efficiency.

The rest of the paper is organized as follows. Section 2 gives a brief overview of different numerical methods
or PDEs, in which the approximation function spaces are described. The error analysis based on a class of PDEs
s given in Section 3. Section 4 presents the proposed HiDeNN-TD method. Section 5 provides some numerical
xamples and discussions. Finally, the paper closes with some concluding remarks.

. DNN, HiDeNN, FEM and TD based function approximation

Function approximation is a key component in numerical solutions of PDEs. In this section, we briefly review how
uch an approximation can be performed in terms of FEM, DNN, HiDeNN and TD. We present their approximation
unction sets, which will be used in the theoretical analysis in Subsection 2.2. We restrict the discussion to a
calar-valued function u(x) : R3

→ R. The conclusions should be straightforwardly extended to vector functions.

2.1. Overview of the approximation function sets

Deep neural network-based method
According to the universal approximation theorem, a DNN can be designed to approximate any given continuous

function to desired accuracy [7,8,27]. Thus it can be a candidate to approximate solutions for solving PDEs [9,10,
28–33], i.e.,

uh(x) = F N N (x), (1)

where F N N represents the neural network with x as input and uh as output. Note that uh can be a multidimensional
vector. For instance, in a classical feedforward neural network (FFNN) [34–36] with NL layers, recursive relations
among neurons are as follows

al
j=1 = x, al

j=2 = y, al
j=3 = z, if l = 1 (input layer); (2)

al
j = A(

N l−1
N∑

i=1

W l
i j a

l−1
i + bl

j ), if l ∈ {2, . . . , NL − 1} (hidden layer). (3)

ence, the output layer can be defined as

F N N
j = aNL

j =

N
NL −1
N∑
i=1

W NL
i j aNL −1

i + bNL
j , if l = NL (output layer), (4)

ith the detailed definition of the notations in Table 1. Therefore, once the weights W , biases b and activation
unctions A have been chosen, F N N can serve as an approximation function with the input variable as x = (x, y, z).

The approximation function set forward by a general DNN is

N h
=
{
uh(x)

⏐⏐uh
= F N N (x; W , b,A),W l

i j ∈ R, bl
j ∈ R

}
, (5)

here F N N (x; W , b,A) denotes a DNN with the input x, and depends on weights W , biases b and activation
unctions A.
3
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Table 1
Notation table of variables used in the feed forward neural network.

x = (x, y, z) Space coordinates
l Counting index for number of layers
i Counting index for neurons in layer l − 1
j Counting index for neurons in layer l
NL Number of layers in the neural network
N l

N Number of neurons in layer l
W l

i j Weight connecting the i th neuron in layer l − 1 to the j th in layer l
bl

j Bias of the j th neuron in layer l
al

j Neuron value for j th neuron in lth layer
A Activation function
F N N Feedforward neural network function

Fig. 1. Illustration for the DNN interpolation functions with x = (x, y, z) as input and uh as output.

For interpretation, DNN can be somehow rewritten in the form of shape functions associated to nodal values of
h . In this way, the function approximation reads

uh
=

np∑
I=1

F N N
I (x; W , b,A)uI, (6)

s illustrated in Fig. 1, where np is the number of nodes. F N N
I represents the value of the I-th neuron in the last

idden layer, i.e., the output of the previous hidden layers. uI is the corresponding weight connecting the output
ayer with the last hidden layer. This interpolation form may provide a more interpretable structure for DNN.

In multidimensional cases, such as for 3D mechanical problems, the above equation can be straightforwardly
pplied to each component of displacement as follows

uh
x =

np∑
I=1

F N N
I (x; W , b,A)uxI, (7)

uh
y =

np∑
I=1

F N N
I (x; W , b,A)uyI, (8)

uh
z =

np∑
I=1

F N N
I (x; W , b,A)uzI . (9)

HiDeNN
The recently developed HiDeNN method [12] uses a similar DNN structure of (6) with additional constraints

to build a family of function approximations. Similar to the FEM, the domain Ω is discretized by a mesh with np

nodes x1, x2, . . . , xnp. Then the finite element shape functions NI can be constructed by the neural network block,
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Fig. 2. Illustration for the HiDeNN interpolation functions with x = (x, y, z) as input and uh as output. Weights and biases inside dashed
line-box are constrained. A0 is the identity activation function defined by A0(x) = x .

amely,

NI(x; W , b,A) (10)

here I = 1, 2, . . . , np. Different from F N N
I (x; W , b,A) in (6), NI(x; W , b,A) precisely equals the finite element

hape function NI(x) with inputs x and an output NI , satisfying the following constraints for shape functions
utomatically,

np∑
I=1

NI(x; W , b,A) = 1,NI(xJ ; W , b,A) = δIJ . (11)

ith Kronecker Delta constraints, we can apply Dirichlet boundary conditions directly similar to that of the finite
lement method, so that all the weights W and biases b are functions of nodal coordinates x I . Thus we can rewrite
he shape function explicitly in terms of x I as

NI(x; x∗

I,A) = NI(x; W , b,A), (12)

here x∗

I denotes the support of NI(x), e.g. in linear 1D cases x∗

I = {xI−1, xI, xI+1}.
Combining such neural network blocks for the entire mesh gives the final form of HiDeNN, as shown in Fig. 2.

his results in the approximation function set

Hh
=

{
uh(x)

⏐⏐⏐⏐uh
=

np∑
I=1

NI(x; x∗

I,A)uI, uI ∈ R

}
. (13)

The parametric expression with nodal positions x∗

I allows automatic r-adaptivity, and accordingly improves the
ocal and global accuracy of the interpolant. Remark that there are two different solution schemes for HiDeNN
hown in Appendix B. In the following numerical examples, we adopt Scheme 1, i.e., optimize nodal values and
odal positions by Adam algorithm simultaneously.

For regular mesh, we propose a constrained version of HiDeNN, which requires that the nodes merely move along
ach direction. The shape function at the node xI = (x I , yJ , zK ) is the product of 1D HiDeNN shape functions

I (x; x∗

I ,A),NJ (y; y∗

J ,A),NK (z; z∗

K ,A). The approximation function set of the regulated HiDeNN reads

HRh
=

{
uh(x)

⏐⏐⏐⏐uh
=

n1∑
I=1

n2∑
J=1

n3∑
K=1

NI (x; x∗

I ,A)NJ (y; y∗

J ,A)NK (z; z∗

K ,A)u(I,J,K ), u(I,J,K ) ∈ R

}
. (14)

ere, n1, n2, n3 are the number of nodes in x, y, z directions, respectively. This might lose accuracy but avoids

esh distortion and reduces DoFs.

5
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Finite element method
The approximation function set Hh degenerates to the FE approximation function set Vh [1] when the nodal

position is fixed, which reads

Vh
=

{
uh(x)

⏐⏐⏐⏐uh
=

np∑
I=1

NI(x)uI, uI ∈ R

}
. (15)

From the DNN viewpoint, this corresponds to fixing the weights and biases that are functions of x∗

I , as shown
in Fig. 3.

Tensor decomposition
Under the assumption of separation of variables, the function u may be approximated by the sum of the products

of multiple 1D functions, i.e.,

uh(x) = uh(x, y, z) =

Q∑
q=1

X (q)(x)Y (q)(y)Z (q)(z), (16)

where Q is the number of modes, and the product of X (q), Y (q), Z (q) provides a mode for the interpolation function.
This form or concept is known as canonical tensor decomposition [25]. The so-called PGD method has adopted
this concept for solving PDEs [15,37] and for data learning [19,20,38].

Thanks to the separation of variables, only shape functions of reduced dimension are needed. In (16), 1D FE
shape functions can be used for a 3D problem, namely,

X (q)(x) =

n1∑
I=1

NI (x)β (q)
I , (17)

Y (q)(y) =

n2∑
J=1

NJ (y)γ (q)
J , (18)

Z (q)(z) =

n3∑
K=1

NK (z)θ (q)
K . (19)

ere, n1, n2, n3 are the number of nodes in x, y, z directions, respectively. Thus the corresponding approximation
unction set for Q modes with a prescribed Q is

Mh
Q =

{
uh(x)

⏐⏐⏐⏐uh
=

Q∑
q=1

( n1∑
I=1

NI (x)β (q)
I

)( n2∑
J=1

NJ (y)γ (q)
J

)( n3∑
K=1

NK (z)θ (q)
K

)
, (20)

β
(q)
I , γ

(q)
J , θ

(q)
K ∈ R

}
.

ig. 4 illustrates a DNN format of the TD interpolation function with Q modes. The symbol M in the figure is
sed to represent the multiplication in a DNN format and is given in [12]. When a few modes may represent the
unction uh(x, y, z), this method is advantageous in terms of lower integration complexity and less DoFs [15,39].
he DoFs are of the order O((n1 + n2 + n3)Q), which are linear with the spatial dimension and far smaller than

raditional methods (e.g., FEM).
Note that the interpolation function in (16) can be rearranged as

uh(x, y, z) =

n1∑
I=1

n2∑
J=1

n3∑
K=1

NI (x)NJ (y)NK (z)

⎛⎝ Q∑
q=1

β
(q)
I γ

(q)
J θ

(q)
K

⎞⎠ , (21)

hich is regarded as a finite element interpolation function with NI (x)NJ (y)NK (z) as shape functions and∑Q
q=1 β

(q)
I γ

(q)
J θ

(q)
K

)
as coefficients. Eq. (21) is the equivalent form of PGD/TD interpolation function in (20). We

ewrite it in the FEM form to show the relationship with FEM, but the nodal value is in the form of separation of
ariables, so DoFs are still linear with dimensions. Fig. 5 illustrates a DNN format of (21), which will be the basis

or the proposed HiDeNN-TD method.

6
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Fig. 3. Illustration for the FEM interpolation functions in the form of DNN with x = (x, y, z) as input and uh as output. Weights and
biases inside red solid line-box are fixed. A0 is the identity activation function defined by A0(x) = x .

Fig. 4. Illustration for the TD interpolation function with Q modes in the form of DNN. The symbol M is used to represent the
multiplication in a DNN format.

Multidimensional shape functions of TD, i.e., the products of 1D shape functions, are fixed and determined by

nodal positions along each direction. In addition, the nodal values in the last layer are constraint in the form of the

7
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Fig. 5. Illustration for the expansion (21) of TD interpolation function with Q modes in the form of DNN. The symbol M is used to
epresent the multiplication in a DNN format.

ensor product, i.e.,

u(I,J,K ) =

Q∑
q=1

β
(q)
I γ

(q)
J θ

(q)
K . (22)

.2. HiDeNN-TD: reduced order HiDeNN via TD

HiDeNN gets better accuracy compared with classical FEM due to the adaptivity of nodal positions. More DoFs
ight result in heavier cost. On the other hand, representation of separated variables provides a reduced order
odel to improve the efficiency but might lose accuracy. Here, we propose HiDeNN-TD, a reduced-order model

f HiDeNN via TD, which seeks to leverage accuracy and computational cost.
In HiDeNN-TD, the shape functions in each direction are written in the DNN format, namely, (17)–(19) are

eplaced by 1D HiDeNN interpolants (refer to Appendix A),

X (q)(x) =

n1∑
I=1

NI (x; x∗

I ,A)β (q)
I , (23)

Y (q)(y) =

n2∑
J=1

NJ (y; y∗

J ,A)γ (q)
J , (24)

Z (q)(z) =

n3∑
K=1

NK (z; z∗

K ,A)θ (q)
K . (25)

hus the interpolation function set is defined by

Gh
Q = (26){
uh
⏐⏐⏐⏐uh

=

Q∑
q=1

( n1∑
I=1

NI (x; x∗

I ,A)β (q)
I

)( n2∑
J=1

NJ (y; y∗

J ,A)γ (q)
J

)( n3∑
K=1

NK (z; z∗

K ,A)θ (q)
K

) }
.

he corresponding DNN format of the HiDeNN-TD interpolation function with Q modes is shown in Fig. 6. Since
daptivity occurs only in each direction, the mesh is always regular.

.3. Relationship among the DNN, HiDeNN, FEM, TD and HiDeNN-TD approximation function sets
In this subsection, we explore the relationship among FEM, DNN, HiDeNN, TD, and HiDeNN-TD.

8
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Fig. 6. Illustration for the HiDeNN-TD interpolation function with Q modes in the form of DNN.

Assume that TD and FEM are based on the same regular mesh with n1, n2, n3 nodes along x, y, z directions. This
esh also serves as an initial guess of x∗

I , y∗

J , z∗

K in HiDeNN and HiDeNN-TD. The shape functions of FEM are the
roduct of 1D shape functions, i.e., the shape function associated with the node (x I , yJ , zK ) is N(I,J,K )(x, y, z) =

NI (x)NJ (y)NK (z). DNN has a more general structure than HiDeNN, and might be fully-connected.
By definition, we have the following relationship among approximation function sets of DNN, HiDeNN,

constrained HiDeNN with regular mesh, FEM and TD:

Mh
Q ⊂ Vh

⊂ HRh
⊂ Hh

⊂ N h . (27)

Especially when Q is big enough (Q ≥ min{n1, n2} for 2D and Q ≥ min{n1n2, n2n3, n3n1} for 3D), we have

Mh
Q = Vh

⊂ Gh
Q = HRh

⊂ Hh
⊂ N h, (28)

s illustrated in Fig. 7.
The above conclusions (27)–(28) are based on the following observations:

According to (21), the TD interpolation functions can be regarded as finite element interpolation functions,
which belong to Vh , so Mh

Q ⊂ Vh . Especially, when Q is big enough (Q ≥ min{n1, n2} for 2D and
Q ≥ min{n1n2, n2n3, n3n1} for 3D), Mh

Q approaches to Vh , i.e., Mh
Q = Vh . Detailed numerical results

will be shown in Section 5. Proofs can be found in Appendix D.

In HiDeNN, an optimization of the nodal positions is performed. Thus FEM may be regarded as a specific case

in HiDeNN with nodal coordinates fixed.

9
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Fig. 7. Illustration for relationship among interpolation function sets of TD, FEM, HiDeNN-TD, HiDeNN and DNN. Especially, when Q
tends to infinity, Mh

Q approaches to Vh . When Q is big enough, FEM interpolation set Vh is the subset of HiDeNN-TD one Gh
Q .

Table 2
Comparison of DoFs for different methods on a 3D mesh.

FEM PGD/TD HiDeNN-TD HiDeNN (see Remark)

DoFs n1 × n2 × n3 (n1 + n2 + n3) × Q (n1 + n2 + n3) × Q + (n1 + n2 + n3) n1 × n2 × n3 + n1 × n2 × n3 × 3

• HiDeNN is a class of structured DNN with weights and biases as functions of nodal values and nodal positions.

• HiDeNN-TD requires the nodal values in the form of tensor product, which is a reduced-order model of the
constrained HiDeNN with regular mesh, so Gh

Q ⊂ HRh,∀Q ∈ N. Especially, when Q is big enough, Gh
Q

approaches to HRh , i.e., Gh
Q = HRh . For details please refer to Appendix E. On the other hand, HiDeNN-

TD has slightly more DoFs than TD under the same number of modes, so Mh
Q ⊂ Gh

Q,∀Q ∈ N. When Q is
small, Mh

Q is the subset of the intersection of Gh
Q and Vh .

We can also summarize the DoFs for different methods in Table 2. It is shown that HiDeNN-TD and TD have
only a linear growth in terms of DoFs, whereas the DoFs of FEM and HiDeNN may grow in a polynomial manner.

Remark: In HiDeNN, the efficiency depends on how the x∗ are computed. For most situation, the optimization
loop of x∗ can be set outside the solution iteration loop that the usual finite element solution schemes such as those
available in commercial software can be employed for the solution uh . In this paper, we solve all DoFs together.

3. Error analysis of FEM, TD, HiDeNN, DNN-based solutions and HiDeNN-TD for PDEs

We consider a partial differential equation with homogeneous boundary conditions{
Lu(x) + b(x) = 0 in Ω ⊂ Rd ,

u|∂Ω = 0, (29)

where u denotes an m-dimensional vector-valued function in a certain Hilbert space H (Rd ,Rm), b the source term,
x ∈ Rd the d-dimensional space coordinates, and L a second-order differential operator.

We assume that an energy potential Π [u] exists, formulated in the following form

Π [u] =
1
2

a(u, u) − (b, u), (30)

where a(·, ·) is the symmetric bilinear form corresponding to the second-order differential operator L, and ( f , g) =∫
Ω f · gdx denotes the inner product. For example, let a( f , g) =

∫
Ω ∇ f · ∇ gdx for Poisson equation. The

minimization of Π [u] gives the solution to (29), which reads

u = arg min Π [u∗]. (31)

u∗∈H (Rd ,Rm )

10
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Such a weak form is commonly adopted in interpolation theory based numerical approaches, such as the methods
hown in Section 2. Denoted by Sh

⊂ H (Rd ,Rm) the discretized approximation solution set with a characteristic
mesh size h, the approximate solution based on this given interpolation function set is then

uh
= arg min

uh∗∈Sh
Π [uh∗]. (32)

In the following, we shall take Sh to be Mh
0,Q,Vh

0 ,HRh
0,Hh

0 ,N h
0 ,Gh

0,Q , which are the subsets of Mh
Q,Vh,HRh,

Hh,N h,Gh
Q under homogeneous boundary conditions, respectively.

3.1. Error analysis

For simplicity, we confine ourselves with scalar u ∈ H (Rd ,R). We assert the following relations among error
ounds for FEM, DNN, HiDeNN, constrained HiDeNN with regular mesh and TDuT D

− uexact


E ≥
uF E M

− uexact


E ≥
uHi DeN N−Regular

− uexact


E (33)

≥
u Hi DeN N

− uexact


E ≥
uDN N

− uexact


E .

ere, ∥·∥E =
√

a(·, ·) is called as the energy norm, and uexact is the exact solution of the problem, i.e.,

uexact
= arg min

u∗∈H (Rd ,R)
Π [u∗]. (34)

n the numerical tests, it can be analytical or a very fine mesh FEM solution.
Especially when Q is big enough (Q ≥ min{n1, n2} for 2D and Q ≥ min{n1n2, n2n3, n3n1} for 3D), the error

ounds for six methods becomeuT D
− uexact


E ≥

uF E M
− uexact


E ≥

u Hi DeN N−T D
− uexact


E (35)

≥
u Hi DeN N−Regular

− uexact


E ≥
u Hi DeN N

− uexact


E ≥
uDN N

− uexact


E .

(33) and (35) can be derived theoretically as below. The relationship (27) is inherited by Mh
0,Q,Vh

0 ,HRh
0,Hh

0 ,
h
0 , i.e.,

Mh
0,Q ⊂ Vh

0 ⊂ HRh
0 ⊂ Hh

0 ⊂ N h
0 . (36)

These five methods are all based on the minimal energy principle,

u = arg min
uh∗∈Sh

Π [uh∗], (37)

here Sh is selected as Mh
0,Q,Vh

0 ,HRh
0,Hh

0 ,N h
0 for TD, FEM, constrained HiDeNN with regular mesh, HiDeNN,

nd DNN, respectively. Thus due to the relationship (36) among them, we have

Π [uT D] ≥ Π [uF E M ] ≥ Π [uHi DeN N−Regular ] ≥ Π [uHi DeN N ] ≥ Π [uDN N ]. (38)

his leads to the error bounds (33). In the same manner, the relationship (28) leads to the error bounds (35).
35) shows that HiDeNN-TD might reach better accuracy than FEM with regular mesh at increasing number of
odes. Especially, considering the known proof of the convergence of FEM, HiDeNN-TD is able to reach the same

onvergence with enough number of modes, i.e., converges to the exact solution with refining mesh.
We remark that the above theoretical analysis does not account for numerical aspects, such as solution schemes

o determine the global minimizer of the energy potential. Some methods such as DNN, HiDeNN, and HiDeNN-TD
ight lose some accuracy due to optimization algorithms. For practical numerical verifications in Section 5, we use
very tight tolerance to ensure the accuracy of the results, and confirm our theoretical analysis inequalities.

.2. Proof of the error decomposition in the TD method
The TD based model reduction induces two kinds of errors: mesh discretization error and mode reduction error.

11
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Theorem 1. Let uexact , uT D and uF E M be the exact solution, the numerical solution of TD and FEM, respectively.
D and FEM take the same regular mesh, and FEM takes the shape functions as the product of 1D shape functions
f TD in each dimension. Then the following error decomposition holds:(

∥uT D
− uexact

∥E
)2

=
(
∥uF E M

− uexact
∥E
)2

+
(
∥uT D

− uF E M
∥E
)2
. (39)

roof. We calculate(
∥uT D

− uexact
∥E
)2

(40)

=
(
∥uT D

− uF E M
+ uF E M

− uexact
∥E
)2

(41)

=
(
∥uF E M

− uexact
∥E
)2

+
(
∥uT D

− uF E M
∥E
)2

+ 2a
(
uT D

− uF E M , uF E M
− uexact) .

y the Gauss theorem, we obtain

a
(
uT D

− uF E M , uF E M
− uexact) (42)

= a
(
uT D

− uF E M , uF E M)
− a

(
uT D

− uF E M , uexact)
= a

(
uT D

− uF E M , uF E M)
+
(
uT D

− uF E M ,Luexact)
= a

(
uT D

− uF E M , uF E M)
−
(
uT D

− uF E M , b
)
.

ince TD and FEM share the same mesh and shape functions, v = uT D
− uF E M belongs to the test function space

of FEM. By the weak form of the FEM problem, we have

a
(
v, uF E M)

− (v, b) = 0. (43)

That is to say, (42) vanishes and hence (39) holds. □

This theorem asserts that the TD error is a direct sum of the mesh discretization error (the FEM error) and the
mode reduction error (the difference between FEM and TD). The same conclusion also applies to PGD.

4. The formulation of HiDeNN-TD: the 2D Poisson problem as illustration

In Subsection 2.2, we defined HiDeNN-TD in terms of the approximation function space. Here, we give the
detailed formulation of the method.

For the sake of simplicity and without loss of generality, we consider 2D Poisson problem,{
∆u(x, y) + b(x, y) = 0 in Ω(x,y) ⊂ R2,

u|∂Ω = 0. (44)

(44) is solved in the regular domain Ω(x,y) = [a, b] × [c, d] with homogeneous boundary conditions. Note that if
inhomogeneous boundary conditions are under consideration, we can separate the solution into two parts,

u = u0
+ ũ, (45)

where u0 is an arbitrary function satisfying boundary conditions, and ũ is the solution to the new equation with
homogeneous boundary condition.

The variational form of (44) is

Π [u] =
1
2

∫
Ω(x,y)

|∇u|
2 dxdy −

∫
Ω(x,y)

u(x, y)b(x, y)dxdy. (46)

Substituting HiDeNN-TD interpolation function into (46), we obtain

Π [uh] =
1
2

Q∑
p=1

Q∑
q=1

(∫ xn1

x1

d
dx

X (p)(x)
d

dx
X (q)(x)dx

)(∫ yn2

y1

Y (p)(y)Y (q)(y)dy
)

(47)

+
1
2

Q∑ Q∑(∫ xn1

x
X (p)(x)X (q)(x)dx

)(∫ yn2

y

d
dy

Y (p)(y)
d

dy
Y (q)(y)dy

)

p=1 q=1 1 1

12
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−

Q∑
q=1

∫
Ω(x,y)

X (q)(x)Y (q)(y)b(x, y)dxdy,

ith the discrete mesh [x1 = a, x2, . . . , xn1 = b] × [y1 = c, y2, . . . , yn2 = d]. Notice that there exist cross terms in
47). For convenience and considering the difficulties to do exact integration between different discrete meshes, all
he modes share the same mesh [x1, x2, . . . , xn1 ] × [y1, y2, . . . , yn2 ] and the same shape functions. We use Gauss
uadrature for the source term.

Once the interpolation function set (26) is obtained, variational principle gives the approximate solution. The
rocess in HiDeNN-TD is formulated as

find β (1)
I , γ

(1)
J , . . . , β

(Q)
I , γ

(Q)
J , x I , yJ , I = 1, . . . , n1, J = 1, . . . , n2 (48)

min Π [uh] =
1
2

∫
Ω(x,y)

⏐⏐∇uh
⏐⏐2 dxdy −

∫
Ω(x,y)

uh(x, y)b(x, y)dxdy

uh
=

Q∑
q=1

( n1∑
I=1

NI (x; x∗

I ,A)β (q)
I

)( n2∑
J=1

NJ (y; y∗

J ,A)γ (q)
J

)

and
n1∑

I=1

NI (x; x∗

I ,A) = 1,
n2∑

J=1

NJ (y; y∗

J ,A) = 1.

he gradient descent method is applied to iteratively minimize Π [uh] and solve for all parameters together. In the
ollowing numerical examples, we choose Adam algorithm [40], i.e.,

1. Initialization: Set number of modes Q, initial nodal positions x I , yJ , I = 1, 2, . . . , n1, J = 1, 2, . . . , n2,
initial coefficients β (q)

I , γ
(q)
J , q = 1, 2, . . . , Q and maximal iteration step M

2. Algorithm:
While k ≤ M do

(a) Compute gradient
∂

∂x I
,
∂

∂yJ
,
∂

∂β
(q)
I

,
∂

∂γ
(q)
J

, I = 1, . . . , n1, J = 1, . . . , n2, q = 1, . . . , Q;

(b) Update x I , yJ , β
(q)
I , γ

(q)
J , I = 1, . . . , n1, J = 1, . . . , n2, q = 1, . . . , Q by using Adam algorithm

(keep the order of the nodal coordinates in each dimension, i.e., a = x1 < x2 < · · · < xn1 =

b, c = y1 < y2 < · · · < yn2 = d , in the updating process);

End while.

Remark that the solution scheme to solve (48) is flexible. HiDeNN-TD reduces to TD with fixed nodal
oordinates. The nodal coordinates do not need to be optimized at all times during the computations. In most
ases, the coordinates converge more quickly than the nodal solutions. Hence, depending on the problem and the
ccuracy we need, we can design the most efficient algorithm by switching between HiDeNN-TD and TD/PGD
uring the solution steps.

. Numerical examples

In this section, we study the performance of HiDeNN-TD with comparison to FEM, HiDeNN and PGD/TD
ethods. This study mainly focuses on the accuracy comparison and the convergence behavior, as the computational

ost can be strongly affected by the under-optimized implementation. Remark that in the following numerical
xamples, we set a very tight tolerance 10−11 to ensure the convergence of these methods to verify our theoretical
tudies, which might result in the increase in numerical costs. In practice, this tolerance can be relaxed for better
erformance. The computational efficiency of the proposed HiDeNN-TD method will be investigated more in our

uture work on the basis of GPU-computing.

13
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Fig. 8. FE solution versus HiDeNN-TD solution.

5.1. 2D case

The HiDeNN-TD is applied to the Poisson problem with a concentrated load

b(x, y) = exp
(
−10(x − 5)2

− 10(y − 5)2) (49)

n the domain Ω = [0, 10]×[0, 10]. To demonstrate the capability of the method, the domain analyzed by HiDeNN-
D is initialized with a uniform mesh of 40 by 40 elements. As shown in Fig. 8, the final solution agrees with the

eference FE solution. This reference solution is obtained with a very fine mesh containing 4, 000×4, 000 elements.
To measure the accuracy, we define the relative energy norm error for Poisson problem,

error =
∥uh

− ure f
∥E

∥ure f ∥E
=

√∫
Ω |∇(uh − ure f )|2dx√∫

Ω |∇ure f |
2dx

(50)

Table 3 illustrates the evolution of accuracy with an increasing number of modes. For comparison purposes, we also
applied the PGD, TD, FEM and HiDeNN for the same problem on the uniform mesh of 40 by 40. As expected,
HiDeNN is the most accurate one but leads to a larger number of DoFs. The proposed HiDeNN-TD method can have
the same level of accuracy and only requires a small number of modes. Compared to PGD and TD, the HiDeNN-TD
is much more accurate at a limited number of modes. Taking a closer look at PGD and TD, these two methods
converge overall to the FEM on the coarse mesh. HiDeNN-TD and HiDeNN can overcome this limitation imposed
14
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Fig. 9. Mesh optimization in HiDeNN.

Table 3
Accuracy comparison for different methods on the coarse 40 by 40 mesh.

Mode number PGD TD FEM HiDeNN-TD HiDeNN (Regular mesh) HiDeNN

DoFs Error DoFs Error DoFs Error DoFs Error DoFs Error DoFs Error

1 78 38.167% 78 38.167% 1521 11.659% 156 37.357% 1599 3.660% 4719 2.102%
2 156 16.500% 156 14.422% – 234 9.293% – –
3 234 13.188% 234 11.789% – 312 3.674% – –
4 312 11.811% 312 11.664% – 390 3.662% – –
5 390 11.685% 390 11.659% – 468 3.661% – –
6 468 11.666% 468 11.659% – 546 3.661% – –
8 624 11.659% – – – – –
20 1560 11.659% – – – – –

by the mesh size with the adaptivity. This observation is consistent with our theoretical analysis. HiDeNN-TD and
TD take fewer modes than PGD to converge. When number of modes is bigger than 4, the error of HiDeNN-TD
reduces less than 0.002% with an external mode added. Meanwhile, the difference of the errors of PGD with 5
and 6 modes is 0.019%. This is due to different solution schemes of PGD, TD and HiDeNN-TD. PGD adopts a
greedy manner to solve modes, while TD and HiDeNN-TD realize the global optimization with a given number
of modes. Moreover, it should be noticed that, unlike HiDeNN, the HiDeNN-TD only increases slightly the DoFs
when compared with PGD and TD. This attributes to the separation of variables. Indeed, the mesh adaptation is
performed only in the two separated axes, as shown in Fig. 8(d). For comparison purposes, the final optimized
mesh of HiDeNN is illustrated in Fig. 9. It is shown that the HiDeNN enables a full adaptivity for the entire mesh,
which leads to a significantly different and more accurate final result. Note that we use Jacobian to control the mesh
quality. Nevertheless, the HiDeNN-TD shows attractive advantages in terms of DoFs.

Fig. 10 illustrates the first four modes of HiDeNN-TD, PGD, and TD after scaling. The PGD modes remain
imilar to TD in this example. However, the modes of HiDeNN-TD seem to be more concentrated in the region of
nterest. This difference mainly comes from the mesh adaptivity.

To further confirm the performance of HiDeNN-TD, we compare the accuracy of different methods on different
eshes. In Table 4, the PGD, TD and HiDeNN-TD results are obtained from the final converged mode. It is shown

hat the HiDeNN-TD always gives more accurate results with fewer degrees of freedom. This confirms the previous
bservation. From the point of view of mesh refinement, the error of all methods decreases. We shall discuss the
onvergence rates of different methods with respect to mesh size in the following subsubsection.
15
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Fig. 10. Mode comparison for HiDeNN-TD, PGD and TD.

Table 4
Accuracy comparison for different methods with different meshes.

Mesh PGD TD FEM HiDeNN-TD HiDeNN (Regular Mesh) HiDeNN

DoFs Error DoFs Error DoFs Error DoFs Error DoFs Error DoFs Error

40 × 40 624(8) 11.659% 390(5) 11.659% 1,521 11.659% 468(5) 3.661% 1,599 3.660% 4,719 2.102%
80 × 80 1,422(9) 5.887% 790(5) 5.887% 6,241 5.887% 1,106(6) 1.851% 6,399 1.847% 19,039 1.406%
160 × 160 2,862(9) 2.948% 1,908(6) 2.948% 25,281 2.948% 2,226(6) 1.174% 25,599 1.173% 76,479 1.081%
320 × 320 7,018(11) 1.469% 5,104(8) 1.469% 101,761 1.469% 3,828(5) 0.896% 102,399 0.894% 306,559 0.889%
640 × 640 11,502(9) 0.724% 7,668(6) 0.724% 408,321 0.724% 10,224(7) 0.606% 409,599 0.606% 1,227,519 0.597%

Note that the number in the parentheses indicates the number of modes.

5.1.1. Convergence studies
In the HiDeNN-TD method, the mode number has to be prescribed. In general, this is unknown for a given

roblem and can vary significantly from one to another. Thus, we want to study the convergence property of this
ethod and the PGD to get a general idea about how to choose the mode number.
As a first attempt, we restrict ourselves to a one-mode solution problem. Let the body force

b(x, y) =
(
20 − 400(x − 5)2) exp

(
−10(x − 5)2) (exp

(
−10(y − 5)2)

− exp(−250)
)

(51)

+
(
exp

(
−10(x − 5)2)

− exp(−250)
) (

20 − 400(y − 5)2) exp
(
−10(y − 5)2) ,

nd the analytical solution

u(x, y) =
(
exp

(
−10(x − 5)2)

− exp(−250)
) (

exp
(
−10(y − 5)2)

− exp(−250)
)
. (52)

his eliminates the effect of the number of modes, and allows us to study the convergence rate of the methods with
espect to mesh refinement. This kind of error is usually known as discretization error in FEM. To do so, the body

orce term is manufactured so that the final solution is analytically known in a separated form. As shown in Fig. 11,

16
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Fig. 11. Convergence rate of FEM, PGD, HiDeNN-TD with respect to mesh refinement.

the PGD and HiDeNN-TD results converge with respect to the element size at a rate similar to FEM. However, if
we consider the DoFs or number of nodal points, the convergence is much faster for PGD and HiDeNN-TD. This
confirms that doing separation of variables for PGD and HiDeNN-TD does not degrade the convergence rate in
terms of mesh refinement.

The PGD based model reduction induces two kinds of errors: mesh discretization error and mode reduction error.
In particular, we have theoretically showed this decomposition in Subsection 3.2 and numerically observed that the
latter one seems independent of the mesh. In order to show this numerically, we use a manufactured load (49) to
compute the multi-modes PGD solution illustrated in the previous examples in different meshes. The results are
shown in Fig. 12. The convergence rates on the number of modes remain similar regardless of the mesh size. It
seems that the log error is linearly proportional to the mode number, consistent with the exponential convergence
rate proof in [14]. The decreasing slope remained unchanged from the very coarse mesh to the fine one. This implies
the coarse mesh has the same mode reduction error as a fine mesh. Furthermore, we studied this by curve fitting,
and obtained the following formulas,

ePG D−F E M
=

∥u PG D
− uF E M

∥E

∥ure f ∥E
≈ c1 exp (−Q/τ) , eF E M

=
∥uF E M

− ure f
∥E

∥ure f ∥E
≈ c2h, (53)

where h is the element size, and parameters c1 ≈ 0.6893, c2 ≈ 0.4714, τ ≈ 1.1793 are obtained by fitting.
Combining with error decomposition equation (39), we have

ePG D
=

∥u PG D
− ure f

∥E
=

√
(ePG D−F E M )2 + (eF E M )2 ≈

√
(c1 exp (−Q/τ))2 + (c2h)2 (54)
∥ure f ∥E

17
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a

Fig. 12. Convergence of PGD with respect to the increasing number of modes for different meshes.

This can be used to choose the mode number. Note that this formula is obtained by curve fitting rather than any
theoretical proof, and might be problem-dependent. We are exploring a general function relating the error to the
number of modes and mesh size, and seeking for the theoretical support.

From the above observation, we may consider using a coarse mesh PGD, which is very cheap, to study the mode
reduction error and choose an appropriate mode number for HiDeNN-TD. Since the HiDeNN-TD is always more
accurate than the usual PGD, the selected prescribed number should be large enough.

5.2. 3D Case

The proposed HiDeNN-TD method has been tested in three dimensional cases. We take the body force as

b(x, y, z) (55)

=
(
20 − 400(x − 5)2) exp

(
−10(x − 5)2) (exp

(
−10(y − 5)2)

− exp(−250)
)

×
(
exp

(
−10(z − 5)2)

− exp(−250)
)

+
(
exp

(
−10(x − 5)2)

− exp(−250)
) (

20 − 400(y − 5)2)
× exp

(
−10(y − 5)2) (exp

(
−10(z − 5)2)

− exp(−250)
)

+
(
exp

(
−10(x − 5)2)

− exp(−250)
) (

exp
(
−10(y − 5)2)

− exp(−250)
)

×
(
20 − 400(z − 5)2) exp

(
−10(z − 5)2)

+
3π2

1000
sin(

πx
10

) sin(
πy
10

) sin(
π z
10

) −
1

3125
x(x − 10) sin(

π z
10

) −
1

3125
y(y − 10) sin(

π z
10

)

+
π2

625000
x(x − 10)y(y − 10) sin(

π z
10

)

nd the analytical solution as

u(x, y, z) (56)

=
(
exp

(
−10(x − 5)2)

− exp(−250)
) (

exp
(
−10(y − 5)2)

− exp(−250)
) (

exp
(
−10(z − 5)2)

− exp(−250)
)

+
1

10
sin(

πx
10

) sin(
πy
10

) sin(
π z
10

) +
1

6250
x(x − 10)y(y − 10) sin(

π z
10

).

Fig. 13 presents the final optimized mesh with 40 × 40 × 40 elements and solution for HiDeNN-TD. Similar to
the previous two-dimensional example, Table 5 reports the evolution of error at an increasing mode number for
18
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Fig. 13. Final optimized mesh and solution for HiDeNN-TD in one-eighth part of the 3D computational domain.

able 5
ccuracy comparison for different methods on the coarse 40 × 40 × 40 mesh.

Mode number PGD TD FEM HiDeNN-TD HiDeNN (Regular Mesh)

DoFs Error DoFs Error DoFs Error DoFs Error DoFs Error

1 117 72.474% 117 72.474% 59,319 27.870% 234 72.349% 59,436 10.780%
2 234 29.883% 234 27.927% – 351 10.797% –
3 351 28.026% 351 27.923% – 468 10.797% –
4 468 27.931% 468 27.920% – 585 10.797% –
5 585 27.895% 585 27.872% – 702 10.796% –
6 702 27.881% 702 27.871% – – – –
7 819 27.877% 819 27.871% – – – –
8 936 27.874% 936 27.870% – – – –
17 1,989 27.870% – – – –
20 2,340 27.870% – – – – –

Table 6
Accuracy comparison for different methods with different meshes for 3D problem.

Mesh PGD TD FEM HiDeNN-TD HiDeNN (Regular Mesh)

DoFs Error DoFs Error DoFs Error DoFs Error DoFs Error

40 × 40 × 40 1,989(17) 27.870% 936(8) 27.870% 59,319 27.870% 702(5) 10.796% 59,436 10.780%
80 × 80 × 80 2,607(11) 14.416% 1,185(5) 14.416% 493,039 14.416% 1,422(5) 6.770% 493,276 6.770%
160 × 160 × 160 4,770(10) 7.247% 2,385(5) 7.247% 4,019,679 7.247% 2,862(5) 4.036% 4,020,156 3.984%
320 × 320 × 320 9,570(10) 3.628% 5,742(6) 3.628% 32,461,759 3.628% 5,742(5) 1.831% 32,462,716 1.830%

different methods on a coarse mesh. Again, the HiDeNN-TD outperforms the other methods in terms of accuracy
and DoFs. The same conclusion can be drawn on finer meshes, as reported in Table 6.

5.3. Discussions

This paper focuses on the theoretical aspect of HiDeNN-TD. We set a very small tolerance (10−11) to get the
onverged solutions in previous examples (see Tables 3 to 6), and thus the solution time may not be optimal. In
ractical cases, a trade-off between accuracy and efficiency is usually made.

Table 7 shows the computational time of different methods, including HiDeNN-PGD. The basic idea is to start
rom PGD solutions and then use HiDeNN to further improve the solution accuracy by optimizing the mesh
oordinates. The details will be explained below. The computations are performed in Matlab on an Intel Xeon

5-2650 v2 processor. We use 6 Gaussian points in each dimension of elements to ensure the quadrature accuracy.
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Table 7
Computational cost comparison for different methods with different meshes for 3D problem (for PGD and TD, the number of modes
(converged modes) needed to get the same accuracy of the FEM is reported next to the CPU time). Here, HiDeNN-PGD adopts a PGD and
Newton–Raphson method hybrid strategy.

Mesh PGD TD FEM HiDeNN-PGD (Hybrid)

(ADS, Tol 10−3 ) (ADS, Tol 10−3 ) (PCG solver) ϵ = 10−1 ϵ = 10−2

Time (s) Error Time (s) Error Time (s) Error Time (s) Error Time (s) Error

40 × 40 × 40 1.7346(17) 27.870% 0.65338(8) 27.870% 444.15 27.870% 1.5210(5) 12.263% 4.8016(5) 11.425%
80 × 80 × 80 0.57950(11) 14.416% 0.40189(5) 14.417% 3,542.3 14.416% 1.0106(5) 10.997% 9.2530(5) 7.336%
160 × 160 × 160 0.55331(10) 7.247% 0.47499(5) 7.247% 36,503 7.247% 1.8125(5) 6.512% 36.063(5) 4.425%
320 × 320 × 320 1.2607(10) 3.628% 5.9524(6) 3.628% 223,607 3.628% 6.1171(5) 3.492% 6.2287(5) 3.492%

As for solution schemes, both PGD and TD adopt a standard alternating direction strategy (ADS) that computes
ne coefficient at a time while fixing the others. The difference between PGD and TD is that PGD solves one mode
t a time whereas TD solves all the modes simultaneously with a given number of modes, and the PGD solutions
s the initial guess. The convergence criterion for each mode of PGD is⎛⎝ 1

n1 − 2

n1−1∑
I=2

(β(q)(k)
I − β

(q)(k−1)
I )2

+
1

n2 − 2

n2−1∑
J=2

(γ (q)(k)
J − γ

(q)(k−1)
J )2

+
1

n3 − 2

n3−1∑
K=2

(θ (q)(k)
K − θ

(q)(k−1)
K )2

⎞⎠ 1
2

< 10−3 (57)

ith q counting index for modes and k the iteration step, and that for TD is( 1
(n1 − 2)Q

Q∑
q=1

n1−1∑
I=2

(β (q)(k)
I − β

(q)(k−1)
I )2

+
1

(n2 − 2)Q

Q∑
q=1

n2−1∑
J=2

(γ (q)(k)
J − γ

(q)(k−1)
J )2 (58)

+
1

(n3 − 2)Q

Q∑
q=1

n3−1∑
K=2

(θ (q)(k)
K − θ

(q)(k−1)
K )2

)
1
2 < 10−3.

EM solutions are obtained by the preconditioned conjugate gradients method (PCG) as it is not possible to solve
very large problem with a direct matrix solver with limited computational memory.
For improving the efficiency of HiDeNN-TD, we developed a specific solution strategy, called HiDeNN-PGD,

hich can be seen as a further trade-off between PGD and HiDeNN-TD. The key idea is to separately solve the
odes using PGD and then optimize the mesh coordinates using Newton–Raphson method. This hybrid strategy

hows good performance in terms of accuracy and efficiency. We set the following convergence criterion for
iDeNN-PGD strategy,(n1−1∑

I=2

(
∂Π (k)

∂x I

)2

+

n2−1∑
J=2

(
∂Π (k)

∂yJ

)2

+

n3−1∑
K=2

(
∂Π (k)

∂zK

)2
) 1

2

< ϵ, (59)

where the superscript k is the iteration step, and ϵ is the tolerance.
The computational cost of HiDeNN-TD/HiDeNN-PGD is influenced by several factors including the optimization

scheme, initial guess and required accuracy. Note that we present two results with different tolerances for HiDeNN-
PGD in the table. As shown in Table 7, when taking a large tolerance (ϵ = 10−1), HiDeNN-PGD strategy helps to
achieve a good accuracy with a comparable efficiency to PGD/TD, faster and a lot more accurate than FEM. Note
that Table 7 reports also the results with the converged modes for PGD, TD and HiDeNN-PGD. As we can see,
PGD takes more modes than TD and HiDeNN-PGD. When taking a tighter tolerance (ϵ = 10−2) for HiDeNN-PGD,

e further improve the accuracy with additional computational cost. All the computations are under the framework
f serial algorithms.

Based on the HiDeNN-PGD solution, we can add an additional loop to optimize the solution using TD while
xing the mode number, i.e., HiDeNN-TD in Table 8. From a theoretical point of view, as expected, the HiDeNN-TD
urther improves the solution accuracy as shown in Table 8. It turns out that the current solution accuracy is improved
y HiDeNN-TD in the first or second significant digit with 5 modes. When considering fewer modes (2 modes),

iDeNN-TD shows a much better accuracy compared to HiDeNN-PGD, due to the fact that TD requires fewer
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Table 8
Computational cost comparison for HiDeNN-PGD and HiDeNN-TD with different meshes and modes for 3D problem. Here, HiDeNN-PGD
adopts a PGD and Newton–Raphson method hybrid strategy, and HiDeNN-TD refines the HiDeNN-PGD results by a TD step.

Mesh HiDeNN-PGD (Hybrid) HiDeNN-TD (Hybrid)

ϵ = 10−1 ϵ = 10−1 ϵ = 10−1 ϵ = 10−1

Time (s) Error Time (s) Error Time (s) Error Time (s) Error

40 × 40 × 40 0.58879(2) 17.139% 1.5210(5) 12.263% 0.60405(2) 12.784% 1.7562(5) 12.256%
80 × 80 × 80 0.35486(2) 16.709% 1.0106(5) 10.997% 0.37804(2) 12.189% 1.3804(5) 10.988%
160 × 160 × 160 0.68524(2) 13.772% 1.8125(5) 6.512% 0.73674(2) 7.523% 3.3137(5) 6.468%
320 × 320 × 320 0.66899(2) 4.046% 6.1171(5) 3.492% 0.80433(2) 3.532% 8.8504(5) 3.476%

Table 9
Accuracy and computational cost for HiDeNN-TD with PSO method for 3D problem.

Mesh HiDeNN-TD (PSO)

Time (s) Error

40 × 40 × 40 4,242.1(5) 6.026%
80 × 80 × 80 4,562.8(5) 3.404%
160 × 160 × 160 5,548.0(5) 2.100%
320 × 320 × 320 12,145(5) 1.102%

Table 10
Accuracy comparison for different methods with different meshes for 3D problem.

Mesh HiDeNN-TD (Adam) HiDeNN (Regular Mesh, Adam) HiDeNN-TD (PSO)
Error Error Error

40 × 40 × 40 10.796% 10.780% 6.026%
80 × 80 × 80 6.770% 6.770% 3.404%
160 × 160 × 160 4.036% 3.984% 2.100%
320 × 320 × 320 1.831% 1.830% 1.102%

modes than PGD for a given accuracy. This is consistent with our theoretical analysis. In addition, since this is a
high-dimensional optimization problem, looking for a globally optimal solution requires more computational effort.
Remark that the above gradient based algorithms cannot guarantee the global minimum when facing nonconvex
optimization problems. Seeking a good solution scheme to further improve the efficiency of HiDeNN-TD will be
our future work. Some other global optimization methods such as particle swarm optimization (PSO) [41] can be
considered. Our experience showed that the PSO can help us to achieve accurate results, since PSO is designed to
search for the global minima from many different starting points. As shown in Table 10, the PSO can consistently
achieve a higher accuracy for all the meshes compared to Adam method. For example, we can achieve about 6%
error for the 40 × 40 × 40 mesh, whereas the solution obtained with Adam is about 11% in error. Yet this method
might not be as efficient as the HiDeNN-PGD strategy, as shown in Tables 7 and 9.

The HiDeNN-TD needs a priori assumption on the number of modes. The alternative hybrid solution scheme can
help estimate the number of modes using PGD and improve the computational speed while providing solutions more
accurate than those by PGD/TD and FEM (see Tables 7 and 8). This confirms our theoretical analysis. Another
way is to estimate the necessary number of modes (numerically or mathematically). For this reason, we explored
the error of TD method. We decompose the error into mode reduction error and discretization error theoretically,
and obtain (39) (the proof is given in Subsection 3.2). Based on this, we have tested by establishing a function by
curve fitting, relating the error to the number of modes and mesh size.

Concerning potential applications, the proposed HiDeNN-TD straightforwardly applies to problems with regular
shapes and meshes. For problems with irregular shapes or meshes, a mesh transformation is required. This point
21
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may limit the application of the method to arbitrary domains, although some techniques have been proposed to
overcome this issue. We proposed one mapping strategy in Appendix F.

6. Conclusion

A reduced-order hierarchical deep learning network has been proposed. The so-called HiDeNN-TD is a
ombination of HiDeNN and TD with separated spatial variables. This combined method presents several advantages
ver HiDeNN and TD methods. First, it allows leveraging the automatic mesh adaptivity of the HiDeNN method
or reducing the number of modes in TD approximation. Second, combining TD with HiDeNN reduces significantly
he number of degrees of freedom for HiDeNN and potentially leads to a much higher computational efficiency.
urthermore, we have demonstrated that both HiDeNN and HiDeNN-TD can provide more accurate solutions than
EM and PGD, through an error analysis with the help of analyzing the approximation function sets.

The numerical results have confirmed the mathematical analysis. These examples have been performed based on
D and 3D Poisson problems. It is shown that the proposed HiDeNN-TD method can provide accurate solutions
ith the least degrees of freedom. In order to have an idea for the prescribed number of modes in HiDeNN-TD,
e have studied numerically the convergence rate on PGD approximation. It has been found that the convergence

ate on the mode number is insensitive to the mesh size. Therefore, we can expect to use PGD and a very coarse
esh to compute the necessary number of modes for HiDeNN-TD. This finding is interesting and provides a useful

uideline on the choice of the number of modes for HiDeNN-TD or other PGD-based methods that may require a
etter optimality in terms of basis.

Theoretical results of convergence studies need to be derived through a rigorous mathematical analysis. The
umerical results provided in this paper can serve as the first evidence for demonstrating the capabilities of the
ethod.
In addition, we proposed an efficient variant of the method, called HiDeNN-PGD. The method leverages the

GD type solution scheme for computing the modes and the HiDeNN method for optimizing the mesh coordinates.
onsequently, this method makes the solution time comparable to PGD method and results more accurate than
GD/TD and FEM. The method has made a trade-off between the solution accuracy and efficiency, compared to
iDeNN-TD. Further improvement of the method can be employing some global optimization algorithms, such as
SO, as discussed previously. The key point of the future development is to find a good solution scheme that is
ble to achieve the global optimum while maintaining a high efficiency.

The proposed HiDeNN-TD and its variant HiDeNN-PGD have shown good potentials to achieve the high
ccuracy and efficiency for solving PDEs. They can provide a powerful tool for problems that require very large
esh systems such as the additive manufacturing simulations and topology optimization problems.
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ppendix A. 1D HiDeNN formulation

In standard 1D FEM, the computational domain Ω is discretized by a grid with np nodes and the shape function
associated with an internal node x I is

NI (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x − x I−1

x I − x I−1
, x I−1 ≤ x ≤ x I ,

x I+1 − x
x I+1 − x I

, x I ≤ x ≤ x I+1,
(A.1)
0, elsewhere,
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Fig. A.14. Deep neural network (DNN) representation of the 1D global shape function and interpolation function.

where x I−1 and x I+1 are the two neighbor points of the node x I from the left side and right side, respectively.
We rewrite NI (x) in a DNN format consisting of weights, biases, and activation functions. Considering the shape

unction in a piecewise linear form, we choose the ReLU function, A1 = max(0, x), as the activation function.
ig. A.14(a) shows the DNN representation of the linear shape function. The corresponding formula is

NI (x; W , b, A) = W l=4
11 A1

(
W l=3

11 A1
(
W l=2

11 x + bl=2
1

)
+ bl=3

1

)
(A.2)

+W l=4
21 A1

(
W l=3

22 A1
(
W l=2

12 x + bl=2
2

)
+ bl=3

2

)
+ bl=4

1

= A1

(
−1

x I − x I−1
A1 (−x + x I )+ 1

)
+ A1

(
−1

x I+1 − x I
A1 (x − x I )+ 1

)
− 1,

here W = [W l=2
11 ,W l=2

12 ,W l=3
11 ,W l=3

22 ,W l=4
11 ,W l=4

21 ], and b = [bl=2
1 , bl=2

2 , bl=3
1 , bl=3

2 , bl=4
1 ] are the weights and

iases of the connected neurons. Detailed definitions of the notations are provided in Table 1. Note that all the
eights and biases are functions of nodal coordinates. The formula can be rewritten as the form of

NI (x; x∗

I ,A), (A.3)

here x∗

I denotes the vector that represents the neighbor nodes of node x I involved in NI (x). For 1D linear shape
unction, it should be x∗

I = {x I−1, x I , x I+1}. For the sake of clarity, one more layer is added to introduce the nodal
alue u I , i.e., the formula becomes

uh
I = NI (x; W , b, A)uI = NI (x; x∗

I , A)uI ; no summation on I (A.4)

= A0

(
A1

(
−1

x I − x I−1
A1 (−x + x I )+ 1

)
− 0.5

)
uI

+A0

(
A1

(
−1

x I+1 − x I
A1 (x − x I )+ 1

)
− 0.5

)
uI ,

here uh
I and uI are the interpolated displacement and nodal displacement at node x I , A = [A0, A1] are the

ctivation functions used for the construction of the DNN approximation. A0(x) = x is an identical function.
ig. A.14(b) gives the DNN representation of the interpolation of the nodal displacement at node x I .

Once the shape function with nodal value for an arbitrary node x I is constructed, the interpolation is obtained
y assembling all DNNs, i.e.,

uh(x) =

np∑
I=1

NI (x; x∗

I , A)uI . (A.5)

ompared with classical FEM, nodal positions are introduced as additional DoFs in the optimization for HiDeNN,
hich increases both the local and global accuracy of the interpolants.
Ref. [12] also presented the DNN representation of various rational functions including Lagrange polyno-

ials, B-spline, Reproducing Kernel Particle Method (RKPM), NURBS, Isogeometric analysis (IGA), etc., and

ultidimensional shape functions.
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Fig. B.15. Two different solution schemes for HiDeNN.

Appendix B. Solution schemes for HiDeNN

We present two different solution schemes for HiDeNN as illustrated in Fig. B.15. The first way is the classical
optimization process, i.e., to optimize nodal values and nodal positions by gradient descent algorithm such as Adam
algorithm simultaneously. The second way is to split the updating process into two parts: a FEM solver to update
nodal values with fixed nodal positions; and then a gradient descent step to update nodal positions with fixed nodal
values. Although this may be more expensive than the previous scheme, the latter one can be programmed as a
post-processor for an existing finite element algorithm.

Appendix C. Convergence for tensor decomposition method at increasing number of modes

In this section, we discuss the convergence of the canonical decomposition method at increasing Q (number of
odes). In Section 2, we have shown that Mh

Q ⊂ Vh , provided that their interpolations are based on the same basis
unctions. Here, we make some further discussions.

For 2D case, we compare

Mh
Q =

⎧⎨⎩uh
⏐⏐⏐⏐uh

=

Q∑
q=1

( n1∑
I=1

NI (x)β (q)
I

)( n2∑
J=1

NJ (y)γ (q)
J

)
, β

(q)
I , γ

(q)
J ∈ R, I = 1, . . . , n1, J = 1, . . . , n2

⎫⎬⎭
(C.1)

ith

Vh
=

{
uh
⏐⏐⏐⏐uh

=

n1∑
I=1

n2∑
J=1

NI (x)NJ (y)u(I,J ), u(I,J ) ∈ R, I = 1, . . . , n1, J = 1, . . . , n2

}
. (C.2)

s the same basis functions are used, it follows that:

. ∀Q ∈ N,Mh
Q ⊂ Vh ;

. If Q1 ≤ Q2, Q1, Q2 ∈ N, Mh
Q1

⊂ Mh
Q2

;

h h
. ∀Q ≥ min{n1, n2}, Q ∈ N,MQ = V .
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The first two statements are straightforward. The last property is proved in Appendix D.
We then conclude the following relationship:

Mh
Q=1 ⊂ Mh

Q=2 ⊂ · · · ⊂ Mh
Q=min{n1,n2}

= Mh
Q=min{n1,n2}+1 = · · · = Vh . (C.3)

In other words, Mh
Q is always a subset of Vh , and it approaches to Vh when Q increases. Consequently, when

enough number of modes are taken, the canonical decomposition result reaches the same accuracy as the FEM
solution. We remark that min{n1, n2} is precisely the minimal number of modes to ensure Mh

Q = Vh .
The above discussions extend to 3D readily.

1. ∀Q ∈ N,Mh
Q ⊂ Vh ;

2. If Q1 ≤ Q2, Q1, Q2 ∈ N,Mh
Q1

⊂ Mh
Q2

;

3. ∀Q ≥ min{n1n2, n2n3, n1n3}, Q ∈ N,Mh
Q = Vh .

We note that the minimal number of modes to ensure Mh
Q = Vh in 3D is essentially to find a best rank-r

approximation to order-3 tensor, which is an open mathematical problem. An upper bound is given in property 3.

Appendix D. Convergence for 2D tensor decomposition method at increasing number of modes

Theorem 2. For 2D case, Mh
Q and Vh are defined in (C.1) and (C.2), respectively. We have

∀Q ≥ min(n1, n2), Q ∈ N,Mh
Q = Vh . (D.1)

Proof. For any interpolation function

uh,F E M
=

n1∑
I=1

n2∑
J=1

NI (x)NJ (y)u(I,J ) (D.2)

in the set Vh , we write the nodal values in the form of matrix,

U =

⎡⎢⎢⎢⎣
u(1,1) u(1,2) · · · u(1,n2)
u(2,1) u(2,2) · · · u(2,n2)
...

...
...

u(n1,1) u(n1,2) · · · u(n1,n2)

⎤⎥⎥⎥⎦ . (D.3)

According to the singular value decomposition (SVD), U is represented by

U =

rank(U)∑
q=1

σ (q)w(q)
⊗ v(q), σ (1)

≥ σ (2)
≥ · · · ≥ σ (rank(U)) > 0, (D.4)

here w(q) is the n1-dimensional vector, and v(q) is the n2-dimensional vector. Thus uh,F E M is rewritten in the form
f the separation of variables, i.e.,

uh,F E M
=

n1∑
I=1

n2∑
J=1

NI (x)NJ (y)

⎛⎝rank(U)∑
q=1

σ (q)w
(q)
I v

(q)
J

⎞⎠ . (D.5)

o we have uh,F E M
∈ Mh

Q , if Q ≥ min{n1, n2} ≥ rank(U). Combining with Mh
Q ⊂ Vh , we obtain (D.1). □

We remark that SVD tells us the minimal number of modes to reproduce the FE solution, i.e. min{n1, n2}.

ppendix E. Convergence for HiDeNN-TD at increasing number of modes

FEM and TD can be regarded as specific cases in the regulated HiDeNN and HiDeNN-TD with nodal coordinates
xed, respectively, i.e.,

HRh
=

⋃
∗ ∗ ∗

Vh(x∗

I , y∗

J , z∗

K ), Gh
Q =

⋃
∗ ∗ ∗

Mh
Q(x∗

I , y∗

J , z∗

K ). (E.1)

x I ,yJ ,zK x I ,yJ ,zK
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Fig. F.16. A quarter of ring is transformed in to a rectangular by the polar coordinates transformation.

n Appendices C and D, we show that Mh
Q approaches to Vh when Q is big enough. When Q ≥ min{n1, n2} for

D and Q ≥ min{n1n2, n2n3, n3n1} for 3D, we have Mh
Q = Vh , so Gh

Q = HRh .

ppendix F. Space separated PGD

When the domain is not intrinsically separable, fully separated representation cannot be applied directly. [37]
mmersed the non-separable domain onto a fully separable one. [42] used geometrical mapping to deal with layered
omain, where interfaces are not planar. Now we combine representation of separated variables with FE mapping
o deal with more complex geometrical cases.

.1. Mesh mapping and recovering for irregular domains

The main idea is to map original irregular domain Ω(x) to a regular one Ω̃(x̃), and then apply the separated
representation. Fig. F.16 illustrates a simple example. A quarter of ring becomes a rectangular through polar
transformation. Then the new representation of separated variables is

uh
=

Q∑
q=1

X̃ (q)(θ )Ỹ (q)(r ), (F.1)

where θ and r are the functions of space coordinates x, y. By virtue of parametric transformation in FEM, we
propose a general way to define this mapping as illustrated in Fig. F.17. We present a FE mesh over the 2D irregular
computational domain Ωx first with nodes xi, j , i = 1, 2, . . . , n1, j = 1, 2, . . . , n2. Then we define a mapping to its
corresponding lattice (i, j). x̃ is the coordinates of the transformed domain Ω̃x̃ . The mapping consists of two steps:

1. Mapping each element to a square/cubic
The first mapping is the classical parametric mapping in FEM. We make a change of coordinates which maps

he 4-node element into a square [−1, 1]2 for 2D or maps the 8-node element into a cubic [−1, 1]3 for 3D. The
coordinates of a point ξ in the square are related to the physical coordinates of a point x in the element by mappings
of the form

x =

ne∑
a=1

N e
a (ξ )xe

a (F.2)

where ne is the number of nodes of the element (ne = 4 for 2D and ne = 8 for 3D), xe
a is the coordinates of the

th node of the element, and N e
a (ξ ) is the corresponding shape function. ξ is called as natural coordinates.

2. Mapping the square/cubic to a lattice
For the sake of separated representation, we define the second mapping to assemble the square/cubic into a

lattice. The transformed formula is

x̃ =

ne∑
N e

a (ξ )x̃e
a (F.3)
a=1
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Fig. F.17. Illustration for the geometrical mapping. The irregular domain with irregular mesh is related to a regular domain with regular
esh by a 2-step mapping.

nd the inverse transformation is

ξ =
2x̃ − x̃e

1 − x̃e
2

x̃e
2 − x̃e

1
(F.4)

η =
2ỹ − ỹe

1 − ỹe
2

ỹe
2 − ỹe

1
(F.5)

ζ =
2z̃ − z̃e

1 − z̃e
2

z̃e
2 − z̃e

1
. (F.6)

The final transformed domain Ω̃x̃ is called as reference domain, which is a regular domain with a regular mesh
[x̃1, x̃2, . . . , x̃n1 ] × [ỹ1, ỹ2, . . . , ỹn2 ] × [z̃1, z̃2, . . . , z̃n3 ]. x̃e

1, x̃e
2, ỹe

1, ỹe
2, z̃e

1, z̃e
2 are the coordinates of the element

[x̃e
1, x̃e

2] × [ỹe
1, ỹe

2] × [z̃e
1, z̃e

2] in the reference domain. For convenience, we might take the mesh in the reference
domain as a lattice corresponding to the index of the nodes in the physical domain, i.e., x̃i = i, i = 1, 2, . . . , n1, ỹ j =

j, j = 1, 2, . . . , n2, z̃k = k, k = 1, 2, . . . , n3.
The whole mapping is defined as below,

x =

ne∑
a=1

N e
a (ξ (x̃))xe

a . (F.7)

hen separation of spatial variables is applicable to the reference domain, i.e., the interpolation function set is

M̃h
Q =

⎧⎨⎩uh
⏐⏐⏐⏐uh

=

Q∑
q=1

X̃ (x̃)Ỹ (ỹ)Z̃ (z̃) =

Q∑
q=1

( n1∑
i=1

Ni (x̃)β (q)
i

)⎛⎝ n2∑
j=1

N j (ỹ)γ (q)
j

⎞⎠( n3∑
k=1

Nk(z̃)θ (q)
k

)⎫⎬⎭ , (F.8)

here Ni (x̃), N j (ỹ), Ni (z̃) are shape functions, and β (q)
i , γ

(q)
j , θ

(q)
k are the corresponding coefficients of the qth mode.

Note that x̃, ỹ, z̃ are the functions of physical coordinates x, y, z.
27
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F.2. Solution schemes

There are different solution schemes to solve the problem. A straight way is to find the solution by minimizing
he variational formula with the given number of modes Q∗ directly, i.e.,

uh
= arg min

uh∈M̃h
Q=Q∗

Π [uh(x; β (q), γ (q), θ (q))]. (F.9)

ll the parameters are solved at the same time.
Yet this global optimization might be expensive, so we might borrow the idea from PGD [15,39], i.e., incremental

olution scheme. More precisely, the solution scheme is

The first mode: u PG D,(1)
= arg min

ũ∈M̃h
Q=1

Π [u0
+ ũ];

For m > 1, the mth mode: ũ(m)
= arg min

ũ∈M̃h
Q=1

Π [u PG D,(m−1)
+ ũ],

The PGD solution with m modes: u PG D,(m)
= u PG D,(m−1)

+ ũ(m),

(F.10)

e remarked that it is also possible to solve several modes simultaneously in one incremental step.
In general, the initial guess u0 is set to be zero. When dealing with the boundary conditions, u0 can be arbitrary

ontinuous functions satisfying boundary conditions. We can also set an appropriate initial guess to improve the
fficiency.

These two solution schemes have their advantages and disadvantages. With the same number of modes Q∗, we
olve the modes one by one using the latter solution scheme (PGD) (F.10) while optimize all the modes together
sing the previous one (TD) (F.9). Thus, we have Π [uT D] < Π [u PG D] and then obtain

∥uT D
− uexact

∥E ≤ ∥u PG D
− uexact

∥E . (F.11)

his indicates the solution of the previous solution scheme (F.9) might be better than that of the incremental way.
owever, this TD solution scheme (F.9) might cost more.

.3. Illustrating the solution procedure: the 2D Poisson problem

For the sake of simplicity and without loss of generality, we consider 2D Poisson problem with incremental
olution scheme for illustration,{

∆u(x, y) + b(x, y) = 0 in Ω(x,y) ⊂ R2,

u|∂Ω = 0. (F.12)

F.12) is solved in the irregular domain Ω(x,y) with homogeneous boundary conditions.
After mapping, the solution is represented in the form of (F.8). Then we solve it with incremental solution

cheme. Let previous q − 1 modes solved. The qth mode is obtained by

ũ(q)
= arg min

ũ∈M̃h
Q=1

Π [u PG D,(q−1)
+ ũ], (F.13)

here u PG D,(q−1) is the sum of the previous q − 1 modes. We rewrite the interpolation function in the following
atrix form

u PG D,(q)
= u PG D,(q−1)

+ ũ(q), ũ(q)
=
(
(β (q))T Nβ(x̃)

) (
(γ (q))T Nγ (ỹ)

)
, (F.14)

here β (q), γ (q) are the coefficient vectors, and Nβ(x̃), Nγ (ỹ) denotes the vector containing shape functions.
Substituting (F.14) into the variational formula (46), we have

Π [u PG D,(q)] =
1
2

∫
Ω(x,y)

(
∇(ũ(q))

)2
dxdy +

∫
Ω(x,y)

(
∇(ũ(q))

)
·
(
∇(u PG D,(q−1))

)
dxdy (F.15)

−

∫
ũ(q)(x, y)b(x, y)dxdy + Π [u PG D,(q−1)].
Ω(x,y)

28
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The quadratic term with respect to β (q), γ (q) in the variational formula is given by∫
Ω(x,y)

(
∇(ũ(q))

)2
dxdy =

∫
Ω̃(x̃,ỹ)

(
∇(x̃,ỹ)(ũ(q))

)T J−T J−1
∇(x̃,ỹ)(ũ(q))det( J)dx̃dỹ. (F.16)

with the Jacobi matrix

J =
∂(x, y)
∂(x̃, ỹ)

. (F.17)

The gradient of ũ(q) with respect to (x̃, ỹ) is

∇(x̃,ỹ)ũ(q)
=

⎡⎢⎣
∂

∂ x̃
∂

∂ ỹ

⎤⎥⎦ ũ(q)
=

⎡⎢⎣ (β (q))T d Nβ(x̃)
dx̃

(Nγ (ỹ))T γ (q)

(β (q))T Nβ(x̃)(
d Nγ (ỹ)

d ỹ
)T γ (q)

⎤⎥⎦ . (F.18)

Note that the expression is a nonlinear algebraic system. It is hard to solve it directly, so we use the alternating
direction strategy as below:

In each iteration step,
1. Fix γ and solve β
The quadratic term becomes∫

Ω(x,y)

(
∇(ũ(q))

)2
dxdy =

∫
Ω̃(x̃,ỹ)

β (q),T Bβ,T (x̃, ỹ)Bβ(x̃, ỹ)β (q)det( J)dx̃dỹ (F.19)

with

Bβ(x̃, ỹ) = J−1

⎡⎢⎣ (γ (q))T Nγ (ỹ)(
d Nβ(x̃)

dx̃
)T

(γ (q))T d Nγ (ỹ)
d ỹ

(Nβ(x̃))T

⎤⎥⎦ . (F.20)

The stiffness matrix for β (q) is

Kβ
=

∫
Ω̃(x̃,ỹ)

Bβ,T (x̃, ỹ)Bβ(x̃, ỹ)det( J)dx̃dỹ. (F.21)

2. Fix β and solve γ
The quadratic term becomes∫

Ω(x,y)

(
∇(ũ(q))

)2
dxdy =

∫
Ω̃(x̃,ỹ)

γ (q),T Bγ,T (x̃, ỹ)Bγ (x̃, ỹ)γ (q)det( J)dx̃dỹ (F.22)

ith

Bγ (x̃, ỹ) = J−1

⎡⎢⎣ (β (q))T d Nβ(x̃)
dx̃

(Nγ (ỹ))T

(β (q))T Nβ(x̃)(
d Nγ (ỹ)

d ỹ
)T

⎤⎥⎦ . (F.23)

The stiffness matrix for γ (q) is

K γ
=

∫
Ω̃(x̃,ỹ)

Bγ,T (x̃, ỹ)Bγ (x̃, ỹ)det( J)dx̃dỹ. (F.24)

If we present a regular mesh over a regular domain Ω(x,y), the mapping is a linear transformation for coordinates.
Let one element of the regular mesh [xe

1, xe
2] × [ye

1, ye
2]. The mapping (F.7) reduces to

x =
xe

2 − xe
1

e e (x̃ − x̃e
1) + xe

1, y =
ye

2 − ye
1

e e (ỹ − ỹe
1) + ye

1 . (F.25)

x̃2 − x̃1 ỹ2 − ỹ1

29
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Fig. F.18. Geometry and mesh for the plate. (a) Model of the plate. (b) 100 elements mesh as an illustration. (c) FEM solution with
4.90 × 107 elements.

J reduces to a diagonal matrix diag(
xe

2 − xe
1

x̃e
2 − x̃e

1
,

ye
2 − ye

1

ỹe
2 − ỹe

1
). Thus we have

J−T J−1det( J) =
xe

2 − xe
1

x̃e
2 − x̃e

1

ye
2 − ye

1

ỹe
2 − ỹe

1
, (F.26)

which is constant in each element and separated representation. Thus this method degenerates to the classical PGD.
For irregular mesh, J−T J−1det( J) in (F.16) is the function of x and mostly non-separated representation. In the
numerical implementation, we usually approximate it by a separated form using SVD technique, i.e.,

J−T J−1det( J) ≈

[ ∑
a φ

(a)
11 (x̃)ψ (a)

11 (ỹ)
∑

a φ
(a)
12 (x̃)ψ (a)

12 (ỹ)∑
a φ

(a)
12 (x̃)ψ (a)

12 (ỹ)
∑

a φ
(a)
22 (x̃)ψ (a)

22 (ỹ)

]
. (F.27)

his converts the 2D integral (F.16) to the product of 1D integrals along different directions (x̃ and ỹ directions in
he reference domain), which might reduce the computational cost.

.4. Numerical examples

In this section, we study the performance of PGD using the above mapping technique with comparison to FEM.
The first problem is the Poisson problem with a body force

b(x, y) = sin
(

(x − 50)(y − 50)
100

+
π

2

)
(F.28)

in an irregular plate as shown in Fig. F.18(a). We present a FE mesh with 7000 × 7000 elements first. Note that
the meshing is not unique, and we adopt a simple way for convenience, as illustrated in Fig. F.18(b). Based on the
same mesh, FEM and PGD with mapping technique are adopted to solve this problem. To study the performance
of PGD, we define the relative H 1 norm error

di f f erencePG D−F E M
H1 =

∥u PG D
− uF E M

∥H1

∥uF E M∥H1
=

√∫
Ω (u PG D − uF E M )2 + (∇u PG D − ∇uF E M )2dxdy√∫

Ω (uF E M )2 + (∇uF E M )2dxdy
(F.29)

o measure the difference between FEM and PGD. The di f f erencePG D−F E M
H1 vs. Q curve is plotted in Fig. F.19,

where Q is the number of modes. It is clearly shown that the difference decreases to zero with increasing number
of modes. When Q > 34, PGD reaches a good accuracy with less than a 3.00% difference from the FEM. The
DoFs of FEM are 4.90 × 107, while those of PGD are merely 4.76 × 105 with Q = 34 modes.

The geometry of the second problem is a square plate with one hole, as shown in Fig. F.20(a). The body force
s

b(x, y) = sin
(

(x − 5)(x − 10)
+
π
)
. (F.30)
100 2
30
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t

(

Fig. F.19. The di f f erencePG D−F E M
H1 vs. Q curve. di f f erencePG D−F E M

H1 denotes the difference between FEM and PGD with mapping
echnique. Q is the number of modes.

Fig. F.20. Geometry and mesh for the plate with one hole. (a) Model of the plate with one hole. (b) 84 elements mesh as an illustration.
c) FEM mesh corresponding to 84 elements.. (d) FEM solution with 4.116 × 107 elements.
31
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Fig. F.21. The di f f erencePG D−F E M
H1 vs. Q curve. di f f erencePG D−F E M

H1 denotes the difference between FEM and PGD with mapping
echnique. Q is the number of modes.

ig. F.20(b) illustrates a FE meshing with 84 elements, and the transformed reference domain is a square plate with
square hole as shown in Fig. F.20(c). A fine mesh with 4.116 × 107 elements is used to solve this problem. The
EM solution is shown in Fig. F.20(d), and the difference between PGD and FEM is illustrated in Fig. F.21. The
GD result converges to FEM one when increasing number of modes. The difference maintains less than 5% when

Q > 41.
These two examples verify the effectiveness of the mapping technique for space separated PGD to deal with the

rregular domain.
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