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Abstract
Background  Biaxial tests are important for complex mechanical behaviours of materials such as rubbers, soft materials, 
polymers and bio-materials, and commercial biaxial testing machines are usually expensive.
Objective  For convenience and cost control, an equal-biaxial device for soft materials, with a load capacity up to 100 N and 
a maximum displacement of 50 mm, is designed and manufactured.
Methods  A novel rope and pulley load system is applied in the designed biaxial device, and the device ensures automatically 
equal stress in two directions and minimizes possible installation deviation. The biaxial strain is measured from the central 
zone of the cruciform samples by a set of non-contact laser extensometer.
Results  The device is calibrated through an array of tests for three different types of soft materials, silicon rubber, polyimide 
(PI) and polyethylene terephthalate (PET). The repeatability of equal-biaxial strain–stress curves of the three materials is 
excellent. Possible error sources of the device are examined and their respective contributions are quantified.
Conclusions  Such a device offers a convenient way to carry out biaxial tests for many materials such as rubbers, polymers, 
and biomaterials.
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Introduction

The mechanical properties of soft materials are of para-
mount importance for their usage in advanced devices, 
which are commonly acquired by uniaxial tensile test, 
biaxial tensile test, compression test, and so on. Uniaxial 
test can only obtain parameters associated with one stress 
component. For rubber like polymers where deformation 
is highly nonlinear, and very likely hydrostatic stress 
plays an important role, uniaxial tension is not sufficient. 
More complex tests are needed, such as shear test, pres-
sured uniaxial test or biaxial test. Biaxial tests extend 
the stress analysis domain into planes of the principal 

stress space, and are widely developed and adapted in the 
analysis of many complex deformation mechanisms of 
material. Makinde in 1992 [1] reviewed the development 
of apparatus for biaxial tests using cruciform specimens. 
Kuwabara in 2007 [2], Hannon in 2008 [3], Merklein in 
2013 [4], and Xiao in 2019 [5] reviewed the biaxial ten-
sile test systems and cruciform samples for sheet metal. 
Collins et al. in 2015 [6] reported synchrotron X-ray dif-
fraction studies of in situ biaxial deformation of steel 
sheet. Kiriyama et al. in 2019 [7] developed a biaxial 
tensile testing machine for pulsed neutron experiments. 
Biaxial tests of biomaterials [8, 9], rubbers polymers 
[10], composites [11] and rock material [12, 13] had also 
been widely adopted. Yamanaka et al. [14] recently even 
applied deep neural network approach to estimate biaxial 
stress–strain curves of sheet metals.

Biaxial testing systems are mainly divided into two cat-
egories: machines with two to four hydraulic actuators [1, 
15–17] or screw driven [18] actuators. It should be noted 
that loading machines with two actuators can only be named 
as quasi-biaxial, as their service basing on a premise that 
the installation and the deformation of the samples are 
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symmetric always. However, this is not usually true. When 
asymmetric errors occur, a closed-loop control system with 
two actuators cannot adjust the asymmetric force mathe-
matically. Therefore, a closed-loop control system with at 
least three actuators under stress control mode is the ideal 
state for biaxial tests. At present, closed-loop control biaxial 
machines with four actuators have already been commer-
cially available (Zwich/Roell, Instron and MTS etc.). The 
other categories are devices that mounted on an existing uni-
versal testing machine to transfer the uniaxial load to obtain 
a simultaneous displacement of the four clamped ends of a 
cruciform specimen, thus applying a multiaxial loading in its 
center [19–23]. In addition to the two main categories intro-
duced above, bulge tests [24, 25], round bar under torsion 
tension/compression [26] and thin-wall tubes subjected to a 
combination of tension/compression and torsion or internal/
external pressure [27] are also applied to generate biaxial 
stress states. The development of biaxial testing machines, 
devices and the optimal design of the cruciform samples 
have been well reviewed by Hannon and Tiernan [3] and 
many others [4, 5, 28–30].

In this paper, we present an economic yet powerful design 
of equal-biaxial testing device with a rope-pulley system, 
which ensures symmetric load and minimizes installation 

deviation. The latter is a common issue for soft materials 
undergoing large deformation. When mounted on a com-
mercial universal testing machine with non-contact laser 
extensometer, the device can realize stress–strain curves of 
soft materials with excellent repeatability and high fidelity.

Method

Design and Manufacturing of the Biaxial Device

The layout of the designed device is shown in Fig. 1(a). It 
is composed of a moveable end that imposes loads, and a 
fixed part where test pieces may be mounted; it also ensures 
the biaxial constraint during deformation. The moveable 
end and the fixed part are installed on the loading and fixed 
end of the universal testing machine with pins. High-density 
polyethylene (HDPE) line of high strength is selected as the 
loading rope. The revolve path of the rope through the fixed 
and movable pulleys is guided by the arrows in Fig. 1(a). 
Since the force along a rope is equal, we realize equal-stress 
loading when a displacement control boundary is applied. 
All components of the device are shown in Fig. 1(b). Cru-
ciform samples (top of Fig.  1(b)) with a dimension of 

Fig. 1   The layout of an equal-stress biaxial device. (a) The device includes both moveable and fixed joints, bottom plate, guides, grips, pulleys, 
rope. A cruciform sample is placed in the center. (b) The dimensions of a cruciform sample and all other components; (c) Mounting the biaxial 
device on a universal testing machine with a non-contact extensometer
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50mm × 50mm × 2mm are used, and the central part subject 
to biaxial loading is 12mm × 12mm . Commercially available 
V-groove bearings (inner diameter of 3 mm, outer diameter 
of 12 mm and thickness of 4 mm) and guides are selected as 
the pulleys and guides of the device. The grips are designed 
with grooves of 12 mm in width (which matches with the 
width of cruciform samples). During mounting, disk springs 

are used to prevent slippage of samples undergoing large 
deformation. The bottom plate and the grips are made of 
Ti6Al4V alloy and the weight of the whole device is about 
2 kg. The lay out of the device, the mounting process of the 
cruciform sample, and the location of the Instron AVE non-
contacting video extensometer are shown in Fig. 1(c). The 
strain at the center zone of the cruciform sample is gauged 

Fig. 2   Stress–strain curves obtained by using the equal-biaxial device. (a) Three types of rubbers with different hardness ( 50◦ , 60◦ , 70◦ ). For 
each type, we carry out three independent tests to examine their repeatability; (b) The stress–strain curves of polyimide (PI) and polyethylene 
terephthalate (PET). In both cases (a) and (b), the loading speed is 6 mm/min. The subscript EB stands for the equal-biaxial; (c) The failure 
samples with crack across the center region; (d) and (e) Stress–strain curves under three different loading speeds of 3 mm/min, 6 mm/min and 
12 mm/min for three types of rubbers, PI, and PET respectively

679Experimental Mechanics (2022) 62:677–683



by the Instron AVE non-contacting video extensometer. 
With isotropic elasticity assumption, we use this gauged 
Y-axis strain to represent the equibiaxial strain of the test 
materials.

Results and Discussion

Equal‑biaxial Test

The equal-biaxial stress–strain curves of rubber materials 
with three international rubber hardness degrees (IRHD) 
of 50◦, 60◦ and 70◦ are shown in Fig. 2(a). For rubber, it is 
general to use nominal stress and nominal strain [31]: the 

former represents the nominal equi-biaxial stress in the cen-
tral region of the cruciform sample, and the latter is obtained 
from the Instron AVE non-contacting video extensometer. 
We perform three independent tests for each type of rub-
ber. Except the slight difference in failure strains, each type 
of rubber exhibits the same stress–strain response. To fur-
ther verify the applicability of the device, we test two more 
different soft materials, polyimide (PI) and polyethylene 
terephthalate (PET).The stress–strain curves are shown in 
Fig. 2(b) and it can also be seen that the stress–strain curves 
are repeatable. In Fig. 2(c) the failure samples are shown and 
the cracks pass through the central region of the cruciform 
samples. In above cases, the loading speed is keeping at 
6 mm/min. We also tried different loading speeds of 3 mm/

Fig. 3   Equivalence verification between equibiaxial strain and the Y-axis gauged by AVE non-contacting extensometer using digital image cor-
relation (DIC) method. (a) and (b) strain contours for nominal X-axis strain εxx and nominal X-axis strain εyy in the center zone (a 5mm × 5mm 
square) during our test for 50◦ rubber; (c) The evolution of the average nominal X-axis strain �

xx
 , the average nominal Y-axis strain �

yy
 , and the 

equibiaxial strain εEB gauged by the non-contact laser extensometer

Fig. 4   A comparison of uniaxial tension with commercial testing machine. (a) The commercial testing machine (Instron 5942); (b) Realizing 
uniaxial tension using our device by keep the two horizontal slides fixed; (c) A comparison of the stress–strain curves of rubbers with three dif-
ferent hardness, the solid line from Instron 5942, and the dashed line from our biaxial device
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min and 12 mm/min to verify the reliability of the device. As 
shown in Fig. 2(d) and (e), the stress–strain curves obtained 
at 3 mm/min and 12 mm/min match well with that of 6 mm/
min, indicating the rate-insensitive nature of the materials.

In order to verify the rationality to use the AVE gauged 
Y-axis strain to represent the equibiaxial strain of the tests, 
we further employ digital image correlation (DIC) method 
to evaluate the equivalence between the Y-axis strain 
(Fig. 1(a)), X-axis strain (Fig. 1(a)), and the non-contacting 
extensometer gauged strain (similar verification had also 
been done by Brieu et al. [22]). The strain at the center 
region of the cruciform samples is relatively uniform as 
observed in literature [11, 30, 31]. We choose a 5mm × 5mm 
center region of the cruciform sample to calculate the strain 

fields. The nominal X-axis strain �xx and nominal Y-axis 
strain �yy contours are shown in Fig. 3(a) and (b), respec-
tively. The standard deviations of the two strains are lower 
than 1%. The comparison between the average nominal 
X-axis strain �

xx
 , average nominal Y-axis strain �

yy
 , and the 

gauged strain �EB from the non-contacting extensometer is 
shown in Fig. 3(c). It can be seen that �

xx
 , �

yy
 and �EB agree 

well with each other during the whole tensile process.
To further evaluate the effectiveness of the device, 

we compare the stress–strain curves of rubber materials 
from direct uniaxial tension tests using Instron 5942 (see 
Fig. 4(a)) with those from the biaxial device. By keeping 
two horizontal sliders of the designed device fixed and the 
two vertical sliders free to move, we realize uniaxial tensile 

Fig. 5   Error calibration of the equal-biaxial tensile device. (a) equibiaxial tension of the four cross springs; (b) Close-up view of the four freely 
pinned springs; (c) uniaxial tension of a pair of pinned springs to obtain the its stiffness; (d) uniaxial tension of the rope to extract its stiffness kR 
and kR ≈ 48N∕mm ; (e) the device can be equivalent to a series combination of spring and rope, at same time in parallel with an error, which has 
a total stiffness kEB . (f) The force–displacement curves of the equibiaxial tension (black solid) with spring stiffness of 0.09 N/mm (black dashed). 
The guide friction (red solid) is found to be 0.25 N within the displacement range of 50 mm
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tests in the biaxial device as well, as shown in Fig. 4(b). We 
show in Fig. 4(c) the stress–strain curves of rubber of differ-
ent hardness, with solid lines from the direct tensile machine 
and dashed ones from the biaxial device.

Error Analysis

We design a four-spring tensile method to analyze the errors 
in the biaxial device. As shown in Fig. 5(a), four springs are 
used to replace the cruciform samples, and the four springs 
are cross pinned with a bolt to keep the symmetry of the 
equibiaxial tension (close-up view in Fig. 5(b)). The device 
with an equivalent stiffness kEB can be modeled as a series 
combination of the rope and the calibration spring, at the 
same time parallel with an error, which include the spring 
stiffness kS (Fig. 5(c)), rope stiffness kR (Fig. 5(d)), and an 
artificial stiffness kE accounting for the error of the device. 
Note the error mainly originates from guide friction and pul-
ley rolling resistance, as seen in Fig. 5(e). By approximation, 
we may write kE =

kRkS

kS+kR
− kEB . We then employ cross 

springs with stiffness kS ≈ 1.80N∕mm (Fig.  5(e) black 
dashed, rope stiffness kR ≈ 48N∕mm black dotted) to con-
duct the equibiaxial tensile calibration tests (Fig. 5(e) black 
solid); the error stiffness kE can be obtained from the approx-
imation. Relative error is then derived from the ratio of kE 
over kEB , as shown in Fig. 5(e) (red bold dashed). While it 
keeps increasing with continuing equibiaxial load, the error 
is lower than 2% at an equibiaxial load of 100 N and a dis-
placement of 50 mm. In order to further understand fric-
tional resistance of the guide to the device, we use low stiff-
ness springs ( kS ≈ 0.09N∕mm , as shown in Fig. 5(f) black 
dashed) to conduct the calibration (as Fig. 5(f) black solid). 
With the stiffness approximation, we obtain an error stiffness 
kE on the order of 0.005N∕mm (Fig. 5(f) red bold dashed). 
The friction at each guide is estimated to be 0.25 N at a 
displacement of 50 mm.

Conclusions

Soft materials with multi-scale structure have been widely 
utilized in many fields for their compliant nature, including 
flexible sensors [32] soft robots [33], biological materials 
[34], biomedical engineering [35, 36], and new material 
development [37, 38] and so on. Their mechanical response, 
in particularly under multiaxial stresses, plays a key role and 
should be known as a prior in engineering practice. Multi-
axial testing machines for soft materials are much more 
expensive than their uniaxial counterparts. This is the rea-
son why multiple options for biaxial loading are available 
in literature [20–23, 39, 40]. In this work, we design a rope 
and pulley equipped equal-biaxial device. In combination 

with a universal testing machine, the device can implement 
equal-stress constraint and thus overcomes possible devia-
tion from installation and/or due to large deformation. In the 
rope-pulley device, we apply displacement-controlled load-
ing and overcome those potential deviations often seen in 
rigid arm devices. We demonstrate, through biaxial tests for 
rubbers of different hardness, as well as PI and PET, that the 
device can supply highly repeatable and accurate equal-axial 
strain–stress curve for such types of soft materials. Given its 
low cost and high accuracy, it may be applied, with extended 
loading and displacement range, for many other soft materi-
als including rubbers, polymers, and biomaterials.
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