
J. Mech. Phys. Solids 156 (2021) 104604

Available online 8 August 2021
0022-5096/© 2021 Elsevier Ltd. All rights reserved.

Elastic impact of sphere on large plate 

Qing Peng a,b, Xiaoming Liu a,b,*, Yueguang Wei c 

a LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 
b School of Engineering Science, UCAS, Beijing 100049, China 
c College of Engineering, Peking University, Beijing 100871, China   

A R T I C L E  I N F O   

Keywords: 
Elastic impact 
Homotopy analysis method 
Sphere on plate 
Coefficient of restitution 

A B S T R A C T   

Different from the Hertz impact, a sphere impacting on a plate has an extra dissipation by the 
flexural wave propagating on the plate. This wave dissipation has been noticed by Zener (1941), 
who introduced this dissipation term into the governing equation. Because of this extra dissipa
tion term by the flexural wave, the Zener equation cannot be treated as the same way as in the 
Hertz impact problem. As a result, in the past 80 years, except few numerical tries for Zener 
equation, no analytical solution has been provided for the evolution of compressive displacement 
or contact force during the Zener impact. In this paper, by using homotopy analysis method, we 
analytically solved the Zener impact problem. After constructing an auxiliary linear operator, we 
derived an analytical solution for the evolution of contact force up to the first order of the 
embedding homotopy parameter. Present model can take full account of the elongation of contact 
time by plate compliance, which is impossible by using Hertz impact model. Comparisons with 
finite element simulation show that the prediction of the contact force history is of high accuracy. 
With the solution of force history, we derived an explicit expression for the energy loss of Zener 
type, this Zener loss has a different dependence on the impact velocity as the Hunter loss does. 
Also, both the motions of the sphere and the plate are able to be predicted with high accuracy. In 
addition, with the zeroth-order solution, we derived explicit expressions for both the coefficient of 
restitution and the contact duration.   

1. Introduction 

The impact of an elastic sphere to a half-space was first studied by Hertz (1882). In his approach, the system was conservative so 
that the general form of controlling equation was written as 

d2δ
dt2 + kcδ

3
2 = 0 (1)  

where δ is the displacement of sphere, t the time, and kc a coefficient depending on the material properties and geometry. By inte
grating the controlling equation, Hertz obtained an explicit expression for the contact duration given by 
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Nomenclature 

FEM finite element method 
e coefficient of restitution 
E1 Young’s modulus of sphere 
E2 Young’s modulus of plate 
Eh Young’s modulus of half-space 
E∗ effective modulus 
F contact force 
F dimensionless contact force 
Fm maximum dimensionless contact force 
G(⋅) hypergeometric function 
H thickness of plate 
I impulse 
I dimensionless impulse 
k coefficient in auxiliary linear operator 
kc coefficient in Hertz’s equation of impact 
kHunter Hunter’s coefficient 
kReed Reed’s coefficient 
L (⋅) auxiliary linear operator 
m1 mass of sphere 
m2 mass of plate 
mh mass of half-space 
m∗ reduced mass 
N (⋅) nonlinear operator 
p embedding homotopy parameter 
R radius of sphere 
t time 
T characteristic time 
THertz Hertz’s contact duration 
V velocity of sphere 
V dimensionless velocity of sphere 
V0 impact velocity 
VW propagation velocity of quasi-longitudinal waves in plates 
w deflection of plate at center 
w dimensionless deflection of plate at center 
W energy loss of sphere 
α coefficient in Zener’s equation 
β coefficient β = kλ/2 
Γ(⋅) gamma function 
η index of asymmetry 
δ compressive relative displacement of sphere and plate 
δm maximum compressive relative displacement of sphere and plate 
δ dimensionless compressive displacement of sphere and plate 
δi coefficients in expansion of δ with respect to p 
δm maximum dimensionless compressive displacement of sphere and plate 
ν1 Poisson’s ratio of sphere 
ν2 Poisson’s ratio of plate 
νh Poisson’s ratio of half-space 
ξ ratio of energy loss of sphere 
λ inelasticity parameter 
ρ1 density of sphere 
ρ2 density of plate 
τ dimensionless time 
τd dimensionless contact duration 
τdc dimensionless duration of compression 
τdr dimensionless duration of recovery 
τHertz dimensionless Hertz’s contact duration 
χ material-dependent coefficient 
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THertz = 2.94
(

15
16

m1mh

m1 + mh

1
E∗

)2
5

R− 1
5

1 V − 1
5

0 (2)  

where E∗ is the effective modules given by 1/E∗ = (1 − ν2
1)/E1 + (1 − ν2

h)/Eh, m1 the mass of the sphere, mh the mass of the half-space, 
R the radius of the sphere, E1 the Young’s modulus of the sphere, Eh the Young’s modulus of the half-space, ν1 the Poisson’s ratio of the 
sphere, νh the Poisson’s ratio of the half-space, and V0 the initial velocity. 

Although Eq. (1) neglected the energy dissipation by plasticity or viscosity, Hertz’s impact model was widely used to study the 
energy loss of impact. However, Hertz was not able to give an explicit solution of displacement to Eq. (1). What is more, to authors’ 
knowledge, no explicit solution has been derived so far. Based on Hertz’s numerical solution of impact, Hunter studied the energy loss 
by stress wave in the half-space (often cited as Hunter loss) during the impact. In his approach, he assumed that the history of contact 
force pulse obeyed the Hertzian impact, and the energy loss was determined by the force pulse over the free surface (Hunter, 1957). 
Thus, the history of contact force must be known a priori. 

In lack of explicit expression for the contact force history, Hunter first assumed a history profile for the force pulse by numerically 
integrating Eq. (1), and then formulated the energy loss by the dynamic response of the half-space due to the assumed force profile on 
the surface. To complete this formulation, he adopted from Hertz impact solution both the amplitude and the contact period, cor
responding to the maximum compressive relative displacement and the contact duration, respectively. The maximum compressive 
displacement, δm, was expressed as: 

δm =

(
15
16

m1mh

m1 + mh

1
E∗

)2
5

R− 1
5V

4
5
0 (3) 

By comparing with numerical results of Eq. (1), Hunter found out that sinusoidal profile could provide enough accuracy for the 
displacement history, expressed as: 

δ = δmsin
(

1.068
V0

δm
t
)

(4) 

As a result, the profile of impact force history, F(t), was determined by Newton’s law: 

F(t) = m1δ̈ = − m1δm

(

1.068
V0

δm

)2

sin
(

1.068
V0

δm
t
)

(5) 

Using this assumption of force history, the Hunter loss, due to stress wave effect as a result of the force pulse on the impact surface of 
a half-space, was presented explicitly. The predicted coefficient of restitution was compared with experiments by Tillett (1954); 
agreement for the cases with energy loss less than 5% is well, however, large deviations was found for cases with energy loss more than 
5%. 

Noticing these deviations, Reed improved Hunter’s assumption of the force history. Instead of Newton’s law of motion, he used the 
Hertzian contact law to produce the force history, which in consequence has a sinusoidal profile with a fractional power (Reed, 1985): 

F(t) = −
4
3
R1

2E∗δ
3
2
msin

3
2

(

1.068
V0

δm
t
)

(6) 

With Eq. (6), Reed could provide a more accurate prediction for the impact experiment (Tillett, 1954) than Hunter’s model did. 
The sinusoidal profile or sinusoidal profile with fractional powers were also summarized in the study of the impact of two spheres 

ω0 coefficient ω0 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4k − k2λ2

√
/2  

Fig. 1. Schematic diagram for sphere impacting on plate resulting flexural wave as energy loss.  
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(Johnson, 1985), and in the study of the impact between a sphere and a slender beam (Stronge, 2019). Their work showed this 
approximation was acceptable if only a small fraction of kinetic energy was converted into elastic wave. 

These sinusoidal profiles share a common characteristic: symmetry with respect to the time line t = 1.471δm/V0, which means the 
history of contact force are identical for both compressing stage and recovering stage. In general, the compliance of the structure 
prolongs the contact duration and reduces the maximum force in any impact (Stronge, 2019). As a result, when the compliance of the 
structure plays an important part during the impact, the symmetry feature of previous assumption for force profiles (Hunter, 1957; 
Reed, 1985) cannot hold any more. This viewpoint has been noticed by Lee in the study the impact of a sphere on a very slender beam 
(Lee, 1940), the compliance of the beam elongates the contact duration, and thus the sinusoidal profile is obviously no longer correct. 
Such symmetry break by compliance was also noticed in the classic book on impact dynamics (Stronge, 2019). However, till now, there 
is still no analytical solution to consider the structure compliance. 

The Hunter’s treatment is more like a one-way coupling approach: the contact pulse determines the energy loss by stress wave 
propagating in the half-space, but the contact pulse is not affected by the stiffness of the half-space. This assumption can be accepted for 
a half-space in some cases, but for the structure with high compliance such as a beam or a plate, large deviation may appear and thus a 
correct model considering the compliance of structure is required. 

For the elastic impact of a sphere on a flexible structure, for example, a plate, the energy loss comprises of not only the Hunter loss 
but also a secondary loss due to the flexural oscillations on the plate, illustrated by Fig. 1. When the diameter-to-thickness ratio exceeds 
0.2, Koller showed that the prediction by Hunter’s model deviates from experiments (Koller and Kolsky, 1987). In such case, the 
flexural wave must be considered and the compliance of the plate, similar to the compliance of a beam, can significantly elongate the 
duration of recovery and break the symmetrical sinusoidal assumption (Zener, 1941). As a result, such process can hardly be explained 
with the theories by Hunter (1957), Aboudi (1978), Hutchings (1979), or Reed (1985). 

To model the impact on a flexible plate, Zener derived a coupled controlling equation depending on an inelasticity parameter λ. In 
his model, the plate was sufficiently large such that the impacting process was not affected by the reflected flexural wave from the 
boundary. With numerical solution, Zener obtained a relationship of the COR e with λ; the result showed good agreement with Raman’s 
experiments (Raman, 1920) and later confirmed by another experiments (Tillett, 1954). However, until now, we have not found any 
analytical solution for Zener’s equation except for some linearization approaches in the literature. For example, Mueller et al. (2015) 
replaced the nonlinear contact law with a linear one and hence obtained an approximated solution, which can agree well for λ < 0.85 
and e > 0.2. Such linearization method was used to study the contact time (Muller et al., 2016) and the energy dissipation (Boettcher 
et al., 2017b). 

For the Hertz impact of a sphere on a half space, Hunter has proposed a sinusoidal profile to fit Eq. (1). Recently, for the Zener 
impact of a sphere on a thick plate, Boettcher et al. recalculated the model of Hunter using Reed’s more accurate force-time 
approximation, obtaining more accurate results (Boettcher et al., 2017a). For general cases, which includes the cases with large λ, 
similar to Hunter’s approach, we tried to seek a force profile which fits Zener’s numerical solution. Unlike the treatment by Hunter 
(1957) and Reed (1985), as λ varies, the breaking of symmetry leads to that no universal representative function could represent the 
history of Zener’s impact force so far. 

The symmetry of contact force history will also break due to contact plasticity (Lifshitz and Kolsky, 1964; Patil and Higgs, 2017; 
Stronge, 2000; Thornton, 1997; Wu et al., 2003, 2005), contact adhesion (Ciavarella et al., 2019; Feng et al., 2009; Peng et al., 2020; 
Thornton et al., 2017), and contact viscosity (Flores et al., 2011; Hunter, 1960; Lankarani and Nikravesh, 1990; Maier and Tsai, 1974). 
For example, on the study of high-speed elastoplastic impact of a sphere on a half-space, Hutchings showed that asymmetrical force 
history was evident; Hutchings combined sinusoidal and cosinusoidal profiles with different periods for the loading and unloading of 
contact force, respectively (Hutchings, 1979). In addition, plasticity-induced asymmetry was also noticed in our previous study (Peng 
et al., 2021). These plastic or viscous situations often imply high-speed impacts or viscous materials, and thus the Hertzian contact law 
can hardly be used to establish the controlling equation. 

In sum, the breaking of symmetry by compliance has been noticed for almost 80 years, but either the profile of contact force history 
has not been provided universally, or the assumed profiles lack of theoretical foundation. In this paper, we analytically solved Zener’s 
equation using homotopy analysis method. After constructing an auxiliary linear operator, we derived an analytical solution for the 
contact force history up to the first order of the embedding homotopy parameter. With the force solution, we studied the energy loss of 
Zener type impact theoretically and proposed a semi-analytical model. Further, the motion of sphere, the deflection of plate, and the 
coefficient of restitution were also investigated; finite element simulations were also carried out to verify the proposed solution. 

2. Solving Zener’s equation via homotopy analysis method 

2.1. Zener’s equation 

Considering the flexural vibration of plate due to a point load, Zener derived the controlling equation to model the elastic impact 
between a sphere and a plate. Assuming the plate is sufficiently large, he thus ignored the effect of reflected flexural wave from the 
boundary. The controlling equation was: 

d2δ
dt2 +

F(δ)
m∗

+ α d
dt

F(δ) = 0 (7)  

with initial conditions: 
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{
δ|t=0 = 0
δ̇|t=0 = V0  

where V0 is the initial velocity of the sphere, δ the compressive displacement during contact, δ̇ the time derivative of δ, m∗ the reduced 
mass determined by m∗− 1 = m− 1

1 + m− 1
2 , m1 the mass of the sphere, m2 the mass of the plate, t the time, α a constant expressed by 

α =
1

4ρ2H2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3ρ2(1 − ν2
2)

E2

√

ρ2 the density of the plate, E2 the Young’s modulus of the plate, ν2 the Poisson’s ratio of the plate, H the thickness of the plate, and F 
the contact force between the two objects that uniquely determined by the compressive displacement δ. For an impact with small 
compressive displacement, the Hertzian contact model was adopted: 

F(δ) =
4
3
E∗R1

2δ3
2 (8)  

where E∗ is the effective modulus given by 1/E∗ = (1 − ν2
1)/E1 + (1 − ν2

2)/E2, ν1 the Poisson’s ratio of the sphere, E1 the Young’s 
modulus of the sphere. By introducing dimensionless compressive displacement δ and dimensionless time τ as follows 

⎧
⎪⎨

⎪⎩

δ =
δ

TV0

τ =
t
T

(9)  

where T is a characteristic time given by 

T =

⎛

⎜
⎝

m∗

4
3E∗

̅̅̅̅̅̅̅̅
RV0

√

⎞

⎟
⎠

2
5 

In this manner, the dimensionless Hertz’s contact duration can be calculated by substituting Eq. (9) to Eq. (2): τHertz ≈ 3.214. Eq. (7) 
can be transformed to the following dimensionless form 

d2δ
dτ2 +

(

1+ λ
d
dτ

)

δ
3
2 = 0 (10)  

with initial conditions 
{

δ|τ=0 = 0
δ̇|τ=0 = 1  

where λ is the inelasticity parameter or relative compliance given by 

λ=
π3

5

31
2

(
R
H

〈

ce:textref >LalanneM.,BerthierP.,DerHagopianJ.,(1983).<ce:inter− refid=˝interref 0002˝xlink:href =˝https://cel.archives 

− ouvertes.fr/cel− 00315803˝>https://cel.archives− ouvertes.fr/cel− 00315803</ce:inter− ref >.</ce:textref ></ce:other− ref >

</ce:bib− reference>)
2
(

V0

VW

)1
5
(

ρ1

ρ2

)3
5
(

E1
/(

1− ν2
1

)

E1/(1− ν2
1)+E2/(1− ν2

2)

)2
5

(11)  

and VW =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E2/ρ2(1 − ν2
2)

√

is the propagation velocity of quasi-longitudinal waves in thin plates (Landau et al., 1986). 

2.2. The homotopy analysis method 

Because of the fractional ordered term δ
3
2, the Zener equation, Eq. (10), cannot be solved in a traditional way. As a result, till now, 

we have not found any theoretical solution to the Zener model. In this section, we use homotopy analysis method to solve Eq. (10). 
Unlike traditional perturbation method (Nayfeh, 2000), homotopy analysis method does not depend on small parameter and thus can 
provide an effective way to solve a wide range of nonlinear problems (Liao, 2012, 2014); Liao’s group is pioneer group in this field, 
they proposed this method in 1990s, and further extended by researchers in other fields. For example, Abbasbandy used homotopy 
analysis method to solve the problem of cooling of a lumped system with variable specific heat (Abbasbandy, 2006), and nonlinear 
problems concerning solitary waves (Abbasbandy, 2007, 2008). Yabushita et al. (2007) obtained an analytical solution of projectile 
motion with the quadratic resistance law using the homotopy analysis method; the equations of motion for this case with a general 
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projectile angle had been considered unsolvable. 
By introducing the maximal dimensionless compressive displacement δm that determined by Eq. (10) and using the homotopy 

analysis approach, we define the following linear and nonlinear operators: 

L (δ) =
d2δ
dτ2 +

(

1+ λ
d
dτ

)

kδ (12)  

N (δ) =
d2δ
dτ2 +

(

1+ λ
d
dτ

)

δ
3
2 (13)  

where k =
̅̅̅̅̅̅
δm

√
. We construct the zero-order deformation equation 

(1 − p)L (δ) + pN (δ) = 0 (14)  

or identically, 

(1 − p)(δ̈+ kλδ̇+ kδ) + p
(

δ̈+
3
2

λ
̅̅̅
δ

√
δ̇+ δ

3
2

)

= 0 (15)  

where p ∈ [0,1] is the embedding homotopy parameter, ̈δ = d2δ
dτ2, and δ̇ = dδ

dτ. Particularly, from p = 0 to p = 1, the term of contact force 

continuously deforms from the linear pattern kδ to the desired nonlinear pattern δ3/2, shown in Fig. 2. For Eq. (14), we assume that the 
solution can be written as 

δ = δ0 +
∑∞

i=1
δipi (16)  

so that the solution δ can deform continuously from the solution of L (δ) = 0 to that of N (δ) = 0 as p varies from 0 to 1. 

2.3. Construction of the auxiliary linear operator 

To complete the auxiliary operator L (δ), we have to determine the relationship between δm and λ. First of all, we transform Eq. (10) 
into a first-order differential equation by setting y = δ̇: 

y
dy
dδ

+
3
2

λ
̅̅̅
δ

√
y + δ

3
2 = 0 (17) 

Then, δm can be solved by finding the root of y(δ) = 0, where y(δ) is the solution to Eq. (17). Although Eq. (17) is unsolvable 
directly, we can adopt an asymptote approach to check the solution y(δ) for the cases of λ → ∞ and λ → 0. 

Fig. 2. Geometric view of continuous deformation for present differential equation.  
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• As λ → ∞, Eq. (17) can be approximated by 

dy
dδ

+
3
2

λ
̅̅̅
δ

√
= 0 (18)   

Solution to Eq. (18) can be obtained by direct integration 

y = 1 − λδ
3
2 (19) 

As a result, we have the relationship between δm and λ for λ → ∞ as follows: 

δ−
3
2

m = λ, as λ → ∞ (20)    

• As λ → 0, Eq. (17) becomes 

y
dy
dδ

+ δ
3
2 = 0 (21)   

Solution to Eq. (21) can be expressed by 

y =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
4
5

δ
5
2

√

(22) 

Hence, we obtain the maximum of δ for λ → 0 

δm =

(
5
4

)2
5

, as λ → 0 (23) 

Combining Eqs. (20) and (23), we construct the following expression for δm with respect to λ as a first-order approximation: 

δ−
3
2

m = λ +
(

5
4

)− 3
5

(24) 

Next, we exam the validity of Eq. (24). By solving Eq. (10) numerically with Runge-Kutta method (Dormand and Prince, 1980; 

Shampine, 1986), a numerical relationship between δ−
3
2

m and λ can be obtained, shown in Fig. 3(A). For λ ∈ [0, 100] (λ ≤ 2 in most cases 

(Mueller et al., 2015; Zener, 1941), the present first-order relationship Eq. (24) can be used for the estimation of δ−
3
2

m , with a maximum 
error less than 5%. 

In sum, we construct the following expression for the coefficient k in L (δ) = 0. 

k =

̅̅̅̅̅

δm

√

=

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

− 1
3

(25) 

Fig. 3. A) δm as a function of λ. B) Relative error of Eq. (24) to results of numerical solution of Eq. (10).  
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2.4. Solution to Zener’s equation 

We seek a solution up to the first order of p in Eq. (16). Using Taylor’s expansion for 
̅̅̅
δ

√
and δ

3
2 at δ = δ0, i.e. 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ0 + pδ1

√

=

̅̅̅̅̅

δ0

√

+
1
2

δ1
̅̅̅̅̅
δ0

√ p −
1
8

δ2
1

δ1.5
0

p2 + … (26)  

and 
(

δ0 + pδ1

)3
2

= δ
3
2
0 +

3
2

̅̅̅̅̅

δ0

√

p +
3
8

δ2
1̅̅ ̅̅̅
δ0

√ p2 + … (27)  

substituting Eqs. (16), (26) and (27) into Eq. (14), and collecting terms respect to pn, we have the following equation for δ0 

δ̈0 + kλδ̇0 + kδ0 = 0 (28)  

with initial conditions: 
{

δ0(0) = 0
δ̇0

(0) = 1 (29)  

and the following equation for δ1 

δ̈1 + kλδ̇1 + kδ1 = −

(

δ̈0 +
3
2

λ
̅̅̅̅̅

δ0

√

δ̇0 + δ
3
2
0

)

(30)  

with initial conditions: 
{

δ1(0) = 0
δ̇1(0) = 0

(31) 

The characteristic equation of Eq. (28) is: 

x2 + kλx + k = 0  

and has the following solution 

x1,2 = −
kλ
2
±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4k − k2λ2

√

2
i 

Here, we only interested in the range λ ≤ 2/
̅̅̅
k

√
such that the coefficient of restitution is larger than 0 (Mueller et al., 2015). 

Introducing 

β =
kλ
2
=

λ
2

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

− 1
3

(32)  

and 

ω0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4k − k2λ2

√

2
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

− 1
3

− λ2

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

− 2
3

√
√
√
√
√
√

2
(33)  

the general solution has the following form. 

δ0 = exp(− βτ)(c1sin(ω0τ)+ c2cos(ω0τ)) (34)  

where c1 and c2 are constant coefficient to be determined. Substituting the initial condition Eq (29) to Eq. (34), we obtain c1 = ω− 1
0 and 

c2 = 0. Hence the solution can be expressed as follows. 

δ0(τ) =
1

ω0
exp(− βτ)sin(ω0τ) (35) 
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Substituting Eq. (35) into Eq. (30), we obtain the equation for δ1 

δ̈1 + kλδ̇1 + kδ1 =
ω2

0 − β2

ω0
exp( − βτ)sin(ω0τ) + 2βexp( − βτ)cos(ω0τ)

−
3
2

λ

̅̅̅̅̅̅
1

ω0

√

exp
(

−
3βτ
2

)

sin
1
2(ω0τ)cos(ω0τ)

+

(
3
2

λβ − 1
)(

1
ω0

)3
2

exp
(

−
3βτ
2

)

sin
3
2(ω0τ)

(36) 

Eq. (36) can be solved by the method of constant variation (Hille, 1968). We assume the solution to Eq. (36) can be expressed as 
follows 

δ1 = exp(− βτ)(C11(τ)sin(ω0τ)+C12(τ)cos(ω0τ)) (37)  

where C11(τ) and C12(τ) are coefficients to be determined. Substituting Eq. (37) to Eq. (36) and employing the procedures of the 
method of constant variation, we obtain the following equations to determine C11(τ) and C12(τ). 

⎧
⎪⎨

⎪⎩

C
′

11(τ)sin(ω0τ) + C
′

12(τ)cos(ω0τ) = 0

C′

11(τ)cos(ω0τ) − C
′

12(τ)sin(ω0τ) = 1
ω0

eβτf (τ)
(38)  

where f(τ) is the right-hand side of Eq. (36). Solving Eq. (38), we have 
⎧
⎪⎪⎨

⎪⎪⎩

C′

11(τ) =
cos(ω0τ)

ω0
eβτf (τ)

C
′

12(τ) = −
sin(ω0τ)

ω0
eβτf (τ)

(39) 

Integrating Eq. (39) term by term, we obtain 

C11(τ) =
ω2

0 − β2

ω2
0

C111 +
2β
ω0

C112 −
3λ

2ω
3
2
0

C113 +
(3λβ − 2)

2ω
5
2
0

C114 (40)  

where 

C111=−
cos2(ω0τ)

2ω0

C112=
τ
2
+

sin(2ω0τ)
4ω0

C113=
1

2
(
β2+25ω2

0

)

⎛

⎜
⎜
⎝2e− 1

2βτ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin(ω0τ)

√
(βcos(2ω0τ)− 5ω0sin(2ω0τ))− (1+i)e−

1
2τ(β+iω0)

(β+iω0)(β− 3iω0)

(
(
β3 − 4iβ2ω0+17βω2

0 − 60iω3
0

)
G
(

1
2
,

iβ
4ω0

−
1
4
;

iβ
4ω0

+
3
4
;e2iω0τ

)

−
(
β3+2iβ2ω0+19βω2+20iω3

0

)
e2iω0τ G

(
1
2
,

iβ
4ω0

+
3
4
;

iβ
4ω0

+
7
4
;e2iω0τ

)))

C114=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin(ω0τ)

√

β2+25ω2
0

ω0e−
β
2τ

(β+iω0)(β− 3iω0)

(
(
− β2+8iβω0+15ω2

0

)
G
(

1,
iβ

4ω0
+

1
4
;

iβ
4ω0

+
3
4
;e2iω0τ

)

+e2iω0τ( β2+6iβω0 − 5ω2
0

)

G
(

1,
iβ

4ω0
+

5
4
;

iβ
4ω0

+
7
4
;e2iω0τ

))

βe−
β
2τsin(2ω0τ)− 5ω0e−

β
2τcos(2ω0τ)

⎞

⎠

G(⋅) is the hypergeometric function (Arfken et al., 2013) (here we use notion G(⋅) instead of the commonly used 2F1(⋅) to avoid 
ambiguity) and 

C12(τ) = −
ω2

0 − β2

ω2
0

C121 −
2β
ω0

C122 +
3λ

2ω
3
2
0

C123 −
(3λβ − 2)

2ω
5
2
0

C124 (41)  

where 

Q. Peng et al.                                                                                                                                                                                                           



Journal of the Mechanics and Physics of Solids 156 (2021) 104604

10

C121 =
τ
2
−

sin(2ω0τ)
4ω0  

C122 = C111  

C123 = C114  

C124 =
2e−

β
2 τ(e2iω0τ − 1)
β + 5iω0

sin
5
2(ω0τ)G

(

1,
iβ

4ω0
+

9
4
;

iβ
4ω0

−
1
4
; e2iω0τ

)

Finally, we obtain the solution to Eq. (10) up to the first order of the embedding homotopy parameter p as follows. 

δ& = δ0 + δ1 =
1

ω0
exp(− βτ)sin(ω0τ) + (C11(τ) − C11(0))e− βtsin(ω0τ) + (C12(τ) − C12(0))e− βtcos(ω0τ) (42)  

where, explicitly, 

C11(0) =
(
β2 − ω2

0

)

2ω3
0

+

3(1 − i)λ
̅̅̅
π

√ (
β2 + 10ω2

0

)
Γ
(

iβ
4ω0

− 5
4

)

256ω
9
2
0Γ
(

iβ
4ω0

+ 9
4

)

C12(0) =
β

ω2
0  

and Γ(⋅) is the gamma function (Arfken et al., 2013). 

3. Results and discussion 

Using the explicit expressions, Eqs. (35) and (42), we can obtain the contact force history, with which the feature of asymmetry will 
be checked in the section. Further, the contact force history can be used to calculate the motions of sphere and plate, and in turn the 
energy loss of Zener type. This section is organized as follows: first, we formulate the contact forces based on the displacement 
variation during the impact; second, we compare the present contact force history with the one in Hertz’s impact theory when the 
compliance of plate is very small (thick plate); third, we check the effect of compliance on the contact force, the motions of sphere and 
plate, and the energy loss; last, based on the zeroth-order solution, we derive an explicit expression for the coefficient of restitution. 

3.1. Formulation of force and impulse 

In this section, we formulate the contact force based on the present solutions Eqs. (35) and (42). With Eqs. (8) and (9), we can write 
the contact force as a function of δ: 

F =

(
4
3
E∗R1

2

)2
5

m∗3
5V

6
5
0δ

3
2 (43) 

We introduce a dimensionless force, F, as follows, 

F =
F

(
4
3E∗R1

2

)2
5

m∗
3
5V

6
5
0

(44)  

so that 

F = δ
3
2 (45)  

or explicitly, for zeroth-order solution 

F =

(
1

ω0
exp(− βτ)sin(ω0τ)

)3
2  

and for first-order solution 

F =

(
1

ω0
exp(− βτ)sin(ω0τ) + (C11(τ) − C11(0))e− βtsin(ω0τ) + (C12(τ) − C12(0))e− βtcos(ω0τ)

)3
2 

The impulse by F during a time interval can be expressed as 
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I =
∫t

0

F(t′ )dt
′ (46) 

The dimensionless form of Eq. (46) is then 

I =
∫τ

0

F(τ′

)dτ′ (47)  

so that 

I =
I

m∗V0
(48) 

With Eqs. (43)–(45), we present the history of contact force. Further, considering the accumulated effect of the contact force over 
time, we present the expression of impulse as in Eqs. (46)–(48). 

3.2. Comparing present solution to Hertz’s impact theory for a thick plate 

In particular, the value of λ approaches to zero for a thick plate. In this case, the contact force history should be consistent with the 
analysis of Hertz (1882) and Love (1944). The dimensionless compressive displacement can be written as 

δ =
sin(ω0τ)

ω0⏟̅̅̅̅⏞⏞̅̅̅̅⏟
δ0

+
sin(ω0τ)

2ω0
+ Cd

11(τ)sin(ω0τ) + Cd
12(τ)cos(ω0τ)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
δ1

(49)  

where ω0 =

(
5
4

) 1
10

≈ 1.023 and 

Cd
11(τ) = −

cos2(ω0τ)
2ω0

−
2

5ω0

(
sin(ω0τ)

ω0

)5
2  

Cd
12(τ) =

sin(2ω0τ) − 2ω0τ
4ω0

−
4
5
eiω0τG

(

1,
9
4
; −

1
4
; e2iω0τ

)(
sin(ω0τ)

ω0

)7
2 

As a result, the expressions for F for λ = 0 are as follows. 
For the zeroth-order solution: 

F =

(
sin(1.023τ)

1.023

)3
2

= 0.966sin
3
2(1.023τ) (50)  

and for the first-order solution: 

F =
(
1.467sin(1.023τ) + Cd

11(τ)sin(1.023τ) + Cd
12(τ)cos(1.023τ)

)3
2 (51) 

Fig. 4. Comparison of present solutions to various models for Hertzian impact (λ = 0).  
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For comparison, Hunter’s expression for the contact force can be obtained by substituting Eqs. (3) and (44) to Eq. (5): 

FHunter = 1.043sin(0.977τ) (52) 

Similarly, Reed’s expression can also be obtained: 

FReed = 1.143sin
3
2(0.977τ) (53) 

On one hand, compared with the numerical solution of Hertz, among Eqs. (50)–(53), the present first-order solution and Reed’s 
solution show little deviation, as shown in Fig. 4. The first-order solution can be degraded to Hertz’s solution as λ → 0. On the other 
hand, all solutions are strictly symmetrical in the case of λ = 0, but only the present solutions can account for the effect of the 
compliance of plate. In the following section, we show how the compliance affects the contact force history. 

3.3. Effects of compliance on the contact force history 

To study the effect of the compliance on the history of contact force, we check how λ affects the present solutions. We also verified 
present solution with finite element simulations, where we took an elastic sphere (γAl2O3) impacting a sufficiently large elastic plate 
(glass) as an example. Details are provided in Appendix. 

The comparison between the present solutions and the FEM simulations is shown by Fig. 5, in which we also plot Mueller’s 
linearized solution (Mueller et al., 2015). Mueller’s model can provide high accuracy for λ < 0.85; In this range, the present 0th so
lution agree well with Mueller’s solution. Mueller’s solution can not be used for λ > 0.85. Compared with the FEM results, on one hand, 
the present first-order solution agrees very well as shown in Fig. 5. Also, the present zeroth-order solution approximates to the FEM 
results when λ increases to larger than one. For a small λ, for example λ = 0.11, the contact force history is almost symmetrical, shown 
by Fig. 5(A). As λ increases, the symmetry of contact force breaks, shown by Fig. 5(B–D), rendering the profiles by Hunter and Reed 

invalid. The reason for such symmetry break is the exponential term in Eq. (35), which originates from the compliance term λ d
dτδ

3
2 in 

Zener’s equation Eq. (10). Compared with Hertz’s impact as shown in Fig. 4, the compliance of plate accounts for an additional drag to 
the relative motion of contact, which leads to a shortened compression and a prolonged recovery; the larger the compliance is, the 
longer the recovery process will take. From above, we can conclude that the compliance of plate is the sole reason for breaking the 
symmetric feature of the contact force history. 

To show how much the compliance affects the contact force history, we investigate the maximum force, the contact duration as an 
indicator of the contact force asymmetry, and the impulse as an accumulated effect over time. 

Fig. 5. History of contact force for the case of A) λ = 0.11, B) λ = 1.01, C) λ = 1.51, and D) λ = 1.99.  
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The dependency of the maximum contact force on λ is shown in Fig. 6, in which we also plot the relationship by Mueller’s, Hunter’s, 
and Reed’s models for comparison. First of all, larger compliance of the plate (thinner plate) leads to more energy dissipated by the 
flexural wave, resulting in less compressive force. Second, Mueller’s model always underestimates Fm, with the relative error up to 
38.72%; while the present first-order solution can predict the maximum contact force with a relative error less than 2.90%. The present 
zeroth-order solution can provide an estimation of Fm with relative error less than 5.11%, but only for the case of λ > 1.5. 

Also, we check the effect of compliance on the contact duration. By equating the first-order solution Eq. (42) to zero, we can derive 
an implicit equation for the contact duration; with numerical procedure, we can obtain the relationship between the contact duration 
and λ. Fig. 7 shows the contact duration as a function of λ according to the present solutions. In addition, the zeroth-order solution can 
provide an explicit expression for the contact duration, as follows. 

τd =
π

ω0
=

2π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

− 1
3

−

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

− 2
3

λ2

√
√
√
√
√
√

(54) 

For λ = 0, we can calculate that τd ≈ 3.072, which is close to the dimensionless Hertz’s contact duration τHertz ≈ 3.214. The 
predictions by first-order and zero-order solutions are confirmed by the FEM simulation, showing that the compliance of plate prolongs 
contact process: a greater value of λ leads to a longer contact duration. 

In lack of explicit expression based on the first-order solution, we can alternatively use an exponential function to fit the results, 
which has the form: 

Fig. 6. Maximum dimensionless contact force as function of inelasticity parameter λ  

Fig. 7. Dimensionless contact duration as function of inelasticity parameter λ.
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τd = τHertzexp
(
0.23λ1.80) (55)  

shown by Fig. 7, or equivalently, 

td = 2.865
(

m∗

E∗

)2
5

R− 1
5V − 1

5
0 exp

(
0.23λ1.80)

Because λ1.8 emerges in the exponential function, given a certain thickness H, the contact duration is not necessarily monotone 
decreasing with increasing impact velocity, different from the relationship tHertz∝V− 0.2

0 in Hertz’s impact theory. 
In order to study the contact force asymmetry, we divide the impact process to two stages: compression and recovery, and use the 

ratio of recovery to compression duration as an indicator for the asymmetry. It is not possible to obtain an explicit expression for the 
first-order solution. However, we can obtain the duration of compression based on the zeroth-order solution. Differentiating Eq. (35) to 
obtain the compressive velocity: 

δ̇0(τ) = −
β

ω0
exp(− βτ)sin(ω0τ) + exp(− βτ)cos(ω0τ) (56)  

the duration of compression, τdc, is determined by: 

−
β

ω0
exp(− βτdc)sin(ω0τdc) + exp(− βτdc)cos(ω0τdc) = 0 (57) 

Simplifying Eq. (57), we have 

τdc =
1

ω0
arctan

(
ω0

β

)

(58) 

Substituting Eqs. (32) and (33) to Eq. (58), we obtain the expression of τdc with respect to λ only: 

τdc =

2arctan

⎛

⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4
λ2

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

1
3

− 1

√
√
√
√
√
√

⎞

⎟
⎟
⎠

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

− 1
3

−

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

− 2
3

λ2

√
√
√
√
√
√

(59) 

Further, the duration of recovery, τdr, can be obtained by subtracting the duration of compression from the total contact duration: 

Fig. 8. Dimensionless compressive duration and recovery duration as functions of inelasticity parameter λ.  
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τdr = τd − τdc =

2π − 2arctan

⎛

⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4
λ2

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

1
3

− 1

√
√
√
√
√
√

⎞

⎟
⎟
⎠

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

− 1
3

−

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

− 2
3

λ2

√
√
√
√
√
√

(60) 

Particularly, for λ = 0, we have τdc = τdr = τd/2. 
The asymmetry of contact force history can be quantified by the ratio of the duration of recovery to the duration of compression. We 

introduce an index of asymmetry, η, defined by: 

η =
τdr

τdc
=

π

arctan

⎛

⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4
λ2

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

1
3

− 1

√
√
√
√
√
√

⎞

⎟
⎟
⎠

− 1 (61) 

To determine η based on the present first-order solution, we can first differentiate Eq. (42) and then find the root using numerical 
procedures to obtain the duration for compression. Fig. 8 shows the durations of compression and recovery as functions of λ. 
Particularly, as λ → 0, the durations of compression and recovery are identical, i.e., η = 1 (symmetrical profile). As λ increases, the 
duration of compression decreases whereas the duration of recovery increases, and hence η increases. 

We check the effect of compliance on the impulse, which is a substantial quantity determining the motions of sphere and plate 
(Zener, 1941). As shown by Fig. 9, the value of impulse by our prediction Eq. (47) decreases as λ increases. This trend is compared with 
Mueller’s solution, showing a relative error between 12.60% and 52.63%. On the other hand, the relative error of the present 
first-order solution is less than 3.95%. 

In sum, the present solutions can accurately predict the contact force history of an elastic impact between a sphere and a plate. The 
discussion above can provide a theoretical interpretation for the symmetry breaking by the plate compliance: the plate compliance, as 
a dissipative term, shortens the compression and prolongs the recovery. 

3.4. Motions of sphere and plate 

In this section, we use the impulse to formulate the motions of sphere and plate. The motion of sphere is governed by 

m1V(t) = m1V0 − I(t) (62) 

Substituting Eq. (48) to Eq. (62), we have 

m1V(τ) = m1V0 − m∗V0I(τ) (63) 

Because m∗ ≈ m1, by introducing V = V/V0, the dimensionless form of the motion of sphere is obtained. 

V(τ) = 1 − I(τ) (64) 

Fig. 9. Dimensionless impulse as function of inelasticity parameter λ.  
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Fig. 10. History of dimensionless velocity of sphere for various inelasticity parameter λ: A) λ = 0.11, B) λ = 1.01, C) λ = 1.51, and D) λ = 1.99.  

Fig. 11. History of dimensionless deflection of center of plate for various inelasticity parameter λ: A) λ = 0.11, B) λ = 1.01, C) λ = 1.51, and D) λ 
= 1.99. 
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Fig. 10 plots the histories of dimensionless velocity of the sphere for various λ. It is evident that the present first-order solution can 
predict very well the motion history of the sphere, for both small and large λ, while the present zeroth-order solution can only be used 
when λ is small. 

To check the motion of sphere, we adopt Zener’s formulation (Zener, 1941). Zener proposed a solution for the center deflection of 
the plate as follows. 

w =
1

4ρ2H2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3ρ2(1 − ν2
2)

E2

√

I(t) (65)  

where w is the center deflection of the plate. Substituting Eq. (48) in Eq. (65), we can introduce the following dimensionless deflection 
for the plate: 

w =
w

m∗V0
4ρ2H2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3ρ2(1− ν2

2)
E2

√ = I(τ) (66) 

Fig. 11 shows the histories of dimensionless deflection of the center of the plate for various λ. Similar results can be found: the 
present first-order solution can best predict the motion of the plate, and the present zeroth-order solution will lead to large deviations 
when λ is large. 

3.5. Semi-analytical model of the energy loss (Zener loss) 
As in literature, one way for calculating energy loss is to use the terminal relative velocity δ̇(τd). By this relative velocity, both the 

coefficient of restitution (Stronge, 1990) and the energy loss can be obtained. However, this approach is only valid for the case in which 
the velocity of plate center is much smaller than the velocity of the sphere, otherwise the energy loss of the sphere should be calculated 
by its own terminal velocity. 

Instead of using the method above, we adopt the two other direct ways to calculate the energy loss for the Zener type impact: 
calculating kinetic energy loss using the motion of sphere, and integrating the work done using the contact force on the plate.  

• As the first approach, because the velocity of the sphere evolves according to Eqs. (62) or (64), the loss of kinetic energy can be 
expressed by 

W(t) =
1
2
m1

(
V2

0 − V2(t)
)

(67)   

We can introduce the ratio of energy loss as follows 

ξ =
W

1
2m1V2

0
(68) 

With Eqs. (63), (64), (67) and (68), we have the following identity. 

Fig. 12. Zener loss as function of inelasticity parameter λ.  
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ξ = 2I − I2 (69) 

Mathematically, the energy loss ξ depends on the dissipative term λ d
dτδ

3
2; lager λ implies greater energy loss, as verified by both the 

present solutions and the FEM simulations in Fig. 12. Based on the present first-order solution, we can use the following semi-analytical 
approach to derive a simple identity for ξ. Given that ξ → 0 as λ → 0, and ξ → 1 as λ → ∞, we obtained the following expression for the 
Zener loss by fitting on the basis of the present first-order solution. 

ξ = 1 − exp(− 2.755λ) (70) 

Comparison between Eq. (70) and the FEM results shows that the relative error of Eq. (70) is less than 10% for most of the cases and 
less than 1% for λ ≥ 1.61. 

Expanding Eq. (70), we find 

ξ = 2.755λ − 3.795λ2 + 3.485λ3 − 2.400λ4 + … (71) 

For a small λ, we have approximately ξ ≈ 2.755λ, and, in turn, 

ξ∝
(

R
H

)2

V0.2
0 (72)    

• As the second approach, the work done to the plate can be expressed as 

W =

∫

Fdw (73)   

Substituting Eq. (65) to Eq. (73), we have 

W =
1

4ρ2H2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3ρ2
(
1 − ν2

2

)

E2

√
∫

FdI

=
1

4ρ2H2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3ρ2
(
1 − ν2

2

)

E2

√
∫

F2dt

(74) 

Using dimensionless form of F and t, we have the expression for W: 

W =
1
2

χm∗V
11
5

0

(
R
H

)2 ∫

F2dτ (75)  

where χ is an introduced coefficient only depending on the material: 

χ =
2π3

5

31
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ2(1 − ν2
2)

E2

√
(

E∗

ρ2

)2
5
(

ρ1

ρ2

)3
5 

Fig. 13. Integration term in Eq. (76) as function of inelasticity parameter λ  
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Hence, by m∗ ≈ m1, we can obtain the ratio of energy loss as follows. 

ξ =
W

1
2m1V2

0
= χV

1
5
0

(
R
H

)2 ∫τd

0

F2dτ (76) 

The integrand in Eq. (76) is only depending on λ, shown in Fig. 13. Further, we can use a representative polynomial function to 

replace 
∫τd

0

F2dτ in the shown domain, i.e. 

∫τd

0

F2dτ ≈ 1.78 − 2.79λ + 2.36λ2 + …  

so that 

ξ ≈ χV
1
5
0

(
R1

H

)2(
1.78 − 2.79λ+ 2.36λ2 +…

)

For a small λ, we have 

ξ ≈ 1.78χV
1
5
0

(
R
H

)2

(77)  

which shows an identical relationship with Eq. (72) 
With Eqs. (70) and (77), we can plot the relationship of the energy loss with the impact velocity, shown by Fig. 14. First of all, the 

present semi-analytical model Eq. (70) shows good agreement with the FEM simulation. Second, for small λ, we find that the Zener loss 
is proportional to V0.2

0 , different from what Hunter and Reed suggested (ξ∝V0.6
0 for a sphere impacting on a half-space). Using the 

material properties in the present FEM simulation, we calculated Hunter’s coefficient is kHunter ≈ 0.0013 and Reed’s coefficient is 
kReed ≈ 0.0058, shown by Fig. 14. Obviously, their suggested relation ξ∝V0.6

0 cannot apply to the sphere-plate impact. The reason traces 
back to that Hunter formulated the symmetrical contact force history on the basis of uncoupled equation, which is substantially 
different from the case of Zener type impact. Third, we can use Eq. (77) for the cases with a thick plate such as H = 1.7R under a wide 
range of impact velocity, and the cases with a thin plate under a small impact velocity which, for example, is less than 0.5 m/s for the 
case with H = 0.4R. 

From the view of energy dissipation, the energy loss of Hunter type and Reed type are the result of stress wave traveling in the half- 
space. When a sphere impacts a large plate, compared with the Hunter loss or Reed loss, the flexural wave might take a large fraction of 

energy dissipation. In the Zener equation, mathematically, the energy loss originates from the dissipative term λ d
dτδ

3
2, leading to that the 

energy dissipation by flexural wave is a function of λ. While λ is proportional to V0.2
0 by definition, the energy loss ξ is also proportional 

to V0.2
0 when λ is small. 

In sum, on one hand, for a small energy loss, we can use the relationship Eq. (77) for simplicity to estimate the energy loss of a 
sphere impacting on a plate. Different from the relationship ξ∝V0.6

0 suggested by Hunter and Reed for the case of a sphere impacting on 
a half-space, the ratio of energy loss of Zener type is proportional to V0.2

0 . On the other hand, for a large energy dissipation, we can use 

Fig. 14. Energy loss of sphere impacting plate as function of impact velocity  
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Eq. (70) to predict the energy loss of Zener type. 

3.6. Coefficient of restitution 
Based on Zener’s equation, the coefficient of restitution, e, is defined by the terminal relative velocity, δ̇(τd), which is different from 

the residual velocity of the sphere. For the zeroth-order solution, the sphere detaches from the plate at time τd = 2π /
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4k − k2λ2

√
, so 

we have 

dδ
dτ = exp

(

−
kλ
2

τ
)

(78)  

and the coefficient of restitution can be expressed by 

e = exp
(

−
πλ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4k− 1 − λ2

√

)

(79) 

Substituting Eq. (25) into Eq. (79), we obtain expression for e with respect to the inelasticity parameter λ only: 

e = exp

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
πλ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

1
3

− λ2

√
√
√
√
√
√

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(80) 

The validity of Eq. (80) locates in the region of λ ≤ 2/
̅̅̅
k

√
, namely 

4

⎛

⎜
⎝λ +

(
5
4

)− 3
5

⎞

⎟
⎠

1
3

> λ2 (81) 

Simplifying Inequation (81) reveals that Eq. (80) can be used for λ ∈ [0, 2.442). Compared with the restriction that λ < 2 suggested 
by Mueller’s solution (Mueller et al., 2015), Eq. (80) imposes a weaker restriction. 

In the sense of the coefficient of restitution defined by terminal relative velocity, we also numerically computed e by substituting τd 
into the derivative of Eq. (42), shown by Fig. 15. For comparison, we also plots Raman’s model (Raman, 1920; Zener, 1941) and the 
numerically integrated results with Zener’s equation (Zener, 1941). On one hand, Raman’s model is valid only for very small λ (λ 
< 0.4), Mueller’s model extended the range to λ ≤ 0.85, while the present model Eq. (80) derived from the zeroth-order solution 
extends the applicable region to λ ≤ 1.8. On the other hand, the present first-order solution can predict the coefficient of restitution for 
a large range of λ, but for 1.0 ≤ λ ≤ 1.8, the prediction is not better than that of the present zeroth-order solution. Considering both 
engineering conveniency and accuracy, we suggest that Eq. (80) may be the preferred model for the estimation of the coefficient of 
restitution for the elastic impact of a sphere on a plate. 

Fig. 15. Coefficient of restitution as function of inelasticity parameter λ.  
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4. Conclusion 

Using homotopy analysis method, we proposed an analytical solution to Zener’s equation to predict the elastic impact between a 
sphere and a large plate. Using the obtained contact force history, we studied the energy loss due to the flexural wave, as well as the 
motion of the sphere and plate during the impact. The conclusions are as follows:  

1 By solving Zener’s equation, we obtained the contact force history up to the first order of the homotopy embedding parameter (Eqs. 
(35) and (42)). These analytical solutions provided a theoretical foundation for understanding the elongation of contact duration by 
structural compliance and in turn the break of contact force symmetry.  

2 Energy loss of Zener type can be predicted by the present first-order solution accurately; also, we provided a semi-analytical model 
(Eq. 70) for this type of energy loss. For small plate compliance, Eq. (77) can be used to determine Zener loss for simplicity, 
revealing that the energy loss is proportional to V0.2

0 , which is different from the energy loss relationship (ξ∝V0.6
0 ) suggested by 

Hunter and Reed.  
3 The present first-order solution can accurately predict the motion of sphere, the deflection of the plate, and energy loss by flexural 

wave. With the present zeroth-order solution, we also obtained an explicit expression Eq. (80) for the coefficient of restitution, 
which can predict well in the range of λ ≤ 1.8. 
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Appendix: FEM simulation 

FEM simulations were conducted using ABAQUS commercial software (Dassualt Systèmes, Vélizy-Villacoublay, France) with an 
explicit solver. Due to the symmetry, only an axisymmetric model was necessary, shown in Fig. 16. The radius of the sphere R was set to 
0.9 mm. The radius of the plate was set to 150 mm, sufficiently large to eliminate boundary effects (possible wave reflection). A contact 
pair was established between the sphere and the plate: the penalty method of constraint enforcement was applied on the normal 
direction for the pressure-overclosure relationship (‘Hard’ contact in ABAQUS), and the friction coefficient was set to 0.1. The ma
terials for the elastic sphere and the elastic plate are γAl2O3 and glass, respectively. Detailed material parameters are listed in Table 1. 
After a mesh dependency check, the element (CAX4R) count in this model was about 23,000, with the finest element size at the contact 
region being 1%R. To study the compliance of plate on the impact process, we set the impact speed ranging from 1 m/s to 20 m/s and 
the thickness of plate ranging from 0.18 mm to 0.75 mm to enable a wide range of λ. 

Fig. 16. FEM model for an elastoplastic sphere impacting an elastic plate.  
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Table 1 
Material properties for FEM model.   

Sphere Plate 

Material γAl2O3 glass 
Young’s Modules (GPa) 12.23 73 
Poisson Ratio 0.21 0.21 
Density (kg/m3) 879 2500  
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