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Abstract
In the present paper, the spatio-temporal evolution of the vorticity field in the
second wake instability, i.e. (pure) mode B is investigated to understand the
wake vortex dynamics and sign relationships among the three vorticity com-
ponents. Direct numerical simulation of the flow past a circular cylinder in the
three-dimensional (3D) wake transition is performed, typically at a Reynolds
number of 300. According to the time histories of fluid forces and frequency
analysis, three different stages are identified. In the fully developed wake
(FDW), the spanwise vortex core is almost two-dimensional, while the vortex
braid is 3D due to the dominant streamwise interaction. However, streamwise
and vertical vorticities owing to the intrinsic 3D instability are already gener-
ated first on cylinder surfaces early in the computational transition (CT). The
evolution of additional vorticities with the same features as mode B shows that
(pure) mode B could already be formed in the late CT. In the FDW, a special
sign symmetry of these additional vorticities on the rear surface is observed,
which is exactly opposite to that in (pure) mode B. Similarly, the two sign laws
found in (pure) mode A are also verified in three typical regions, independent
of the Reynolds number, for (pure) mode B. Particularly, the mechanism for
the physical origin of streamwise and vertical vortices in the shear layers is
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the vortex generation on the wall first and then dominant vortex induction just
near the wall. The entire process of the formation and shedding of vortices
with three components of vorticity is first and completely illustrated. Other
characteristics of the evolution of mode B are presented in detail.

Keywords: wake transition, circular cylinder, vorticity, mode B, sign law

1. Introduction

Abluff body is widely used inmany engineering applications, such as suspension bridges, high
architectures, flexible risers and pipelines in offshore oil platforms and heat exchangers. Flow
past a bluff body is a classical and basic subject in fluid mechanics. One physical reason is the
appearance of unsteady wake associated with vortices alternately shed behind a body. Result-
antly, the strong unsteady fluid forces acting on a body could potentially lead to fatigue damage
and even violently destroy the structural integrity. With the aim of understanding and con-
trolling the wake vortex dynamics, a great number of studies (Karniadakis and Triantafyllou
1992, Wu and Ling 1993, Barkley and Henderson 1996, Brede et al 1996, Williamson 1996a,
1996b, Henderson 1997, Leweke and Williamson 1998, Persillon and Braza 1998, Ling and
Chang 1999, Barkley et al 2000, Posdziech and Grundmann 2001, Thompson et al 2001,
Sheard et al 2003, Rao et al 2013, Jiang et al 2016, 2017, Agbaglah and Mavriplis 2019, Jiang
and Cheng 2019) applying many methods, including physical model testing, direct numer-
ical simulation (DNS), and linear or non-linear stability analysis, have been published in
recently decades. Comprehensive reviews on such subjects can be found in previous refer-
ences (Williamson 1996a, Posdziech and Grundmann 2001).

In the three-dimensional (3D) laminar wake transition of a flow past a circular cylinder
(Williamson 1996a, Leweke and Williamson 1998, Ling and Chang 1999, Thompson et al
2001, Jiang et al 2016), there are two laminar wake instabilities, i.e. modes A and B, observed
at Reynolds numbers in the range from 190 to 260. The Reynolds number Re is defined based
on the approaching flow velocity U∞, the cylinder diameter D and the kinematic viscosity ν
of the fluid, i.e. Re= U∞D/ν.

These two different wake instabilities, typically manifested by the variation of Strouhal
number St (non-dimensional vortex-shedding frequency) as Re increases, appear successively
with their specific mechanisms and features. At the first discontinuity which is hysteretic near
Re= 180− 194, the first wake instability, i.e. (pure) mode A, occurs with the inception of
vortex loops due to the spanwise wavy deformation of primary vortices as they are shed. Such
deformation is caused by an elliptic instability of the primary vortex cores and the formation
of streamwise vortex pairs (with streamwise vorticity ωx) at a spanwise wavelength of around
3–4 diameters are resulted from Biot–Savart induction. At the second discontinuous change in
the St−Re relation over a range of Re from 230 to 250, the second wake instability, i.e. (pure)
mode B, gradually appears due to a gradual transfer of energy from mode A shedding. Such
mode B comprises finer-scale streamwise vortices, with a spanwise length scale of around one
diameter. It is mainly due to a hyperbolic instability of the braid shear layer region. This mode
then exists when the Reynolds number reaches approximately 260. Beyond such a Reynolds
number, the particularly ordered 3D streamwise vortex structure in the near wake becomes
increasingly disordered. Such instability of mode B does appear to be related to the waviness
of the primary vortex as in mode A, because these vortices also deform but much more uni-
formly along their length. Moreover, mode A comprises streamwise vortices of one sign that
are in a staggered arrangement from one braid region to the next, while mode B has an in-line
arrangement of streamwise vortices of the same sign.
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In addition to the two pure modes A and B, there are large intermittent low-frequency
wake velocity fluctuations due to the presence of large-scale spot-like vortex dislocations in
the wake transition with mode A, i.e. mode A∗ (mode A + vortex dislocations) (Williamson
1996a). The mode A∗ instability destabilizes mode B in the nonlinear interaction between
the two modes (Henderson 1997). Moreover, an experimental study has revealed that the
wake transition from mode A∗ to mode B is a gradual process with intermittent swapping
between the two modes (Williamson 1996b). Therefore, the appearance of mode A∗ or vor-
tex dislocations will seriously interfere with both the pure modes A and B in the 3D wake
transition.

It is noted that in most of the above studies, the role of streamwise vorticity is always
stressed, such as in explaining the physical origin of streamwise vortices in mode A
(Williamson 1996b), the complex interaction in the vortex pattern-like mode A (Meiburg and
Lasheras 1988) and the complete suppression of alternately sheddingKármán vortices by intro-
ducing geometric disturbances in the square-section cylinder (Darekar and Sherwin 2001).

On the other hand, once the wake flow, as well as the vorticity field, evolves to be 3D, not
only streamwise vorticity but also vertical vorticity appear. According to careful investigations
of the total suppression of Kármán vortices in the wavy square cylinder’s and conical cylinder’s
wakes at Re= 100 (Lin et al 2010, 2018), and the physical mechanism for the generation of
streamwise vortices in (pure) mode A appearing in the square cylinder’s and circular cylinder’s
wakes (Lin et al 2019a, 2019b), the vertical vortices (with vertical vorticity ωy) actually play
the key role.

Additionally, an interesting physical phenomenon, two sign relationships among the three
components of vorticity, in the wake of a conical cylinder has been reported (Lin et al 2018).
These relationships also exist in the first laminar wake transition, i.e. (pure) mode A, in the
flow past a circular cylinder (Lin et al 2019b). From the viewpoint of the vorticity sign, such
a phenomenon indicates that the vortical structure in mode A is specific or prescribed, i.e. Π−
and Π+ vortices in the upper and lower shear layers, respectively, first form synchronously
along the spanwise direction in the shear layers and then shed with the spanwise vortices in
the near wake. It should be explained here that in theΠ vortex, the head line, ‘—’, denotes the
spanwise vortex alternatively shed from the upper or lower shear layer, while two legs, ‘| |’,
denote the ‘rib’-like vortex tubes, just associated with streamwise and vertical vortex pairs with
opposite signs. Then, theΠ− vortex in the upper shear layer is defined by (+|ωx|,+|ωy|,−|ωz|)
at z= 1

4λ and (−|ωx|,−|ωy|,−|ωz|) at z= 3
4λ, and the Π+ vortex in the lower shear layer

is defined by (−|ωx|,+|ωy|,+|ωz|) at z= 1
4λ and (+|ωx|,−|ωy|,+|ωz|) at z= 3

4λ, where λ
is the spanwise wavelength of Π-type vortex. These specific relationships are referred to as
vorticity sign laws. In particular, the first sign law shows the intrinsic relationship between the
streamwise and vertical components of vorticity.

Recently, similar vorticity sign laws are also revealed by the theory of vortex-induced vortex
in an external flow past a bluff body under a geometrical disturbance (Lin et al 2019) and an
internal flow through a pipe when a secondary flow appears (Lin and Wu 2020) at low and
laminar Reynolds numbers. In these works, it is further theoretically confirmed that the wall-
normal vorticity, which is always zero at the wall based on the vorticity definition, away from
the wall is actually induced by the wall-tangent vorticity in which the rotational direction is
aligned with the local flow direction. Therefore, such vortex-induced vortex mechanism is
regarded as the indirect effect of viscous forces (Lin and Wu 2020), from the viewpoint of the
vorticity generation mechanism. Moreover, this vortex induction mechanism is successfully
used in explaining the physical origin of streamwise vortices in the shear layers and near wake
for (pure) mode A (Lin et al 2019a, 2019b).
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Figure 1. (a) Schematics of flow past a straight cylinder with a circular cross-section,
and computational domain in the (x, y) plane and mesh distributions in (b) the whole
flow region and (c) near the cylinder with a closer view.

In light of these earlier works, the primary aim of the present study, as a second part, is to
investigate the spatial-temporal evolution of the vorticity, particularly including the role of the
vertical vorticity or the vortex-induced vortex mechanism, and the sign relationships in (pure)
mode B for a flow past a circular cylinder by means of DNS. To avoid the contamination
of (pure) mode A and vortex dislocation in mode A∗, (pure) mode B is investigated mainly
at Re⩾ 300 with the spanwise periodicity wavelength of one diameter (Williamson 1996a,
Henderson 1997) and evolves from the uniform inflow as an initial flow field, rather than (pure)
mode A at lower Reynolds number. The rest of this paper is organized as followings. The
governing equations, boundary conditions and numerical methods are first presented. Then,
based on the time histories of fluid forces, the characteristics of the spatio-temporal evolution
of vorticity in different stages are mainly investigated and discussed in detail. Finally, major
conclusions are given.

2. Physical model

As shown in figure 1(a), the fluid flow past a still circular-section cylinder is studied. The fluid
is incompressible with constant density ρ and kinematic viscosity ν. The inertial Cartesian
coordinate system is established as shown in figure 1(a), where the x axis (streamwise direc-
tion) is aligned to the incoming free stream with uniform velocity U∞, the z axis (spanwise
direction) is parallel to the cylinder span, and the y axis (vertical direction) is transverse to
both the free stream and the cylinder axis.

The incompressible continuity and Navier–Stokes equations in dimensionless forms are
written as

∇· u= 0, (1)

∂u
∂t

+(u ·∇)u=−∇p+ 1
Re

∇2u, (2)

where∇ is the gradient operator, u is the velocity vector with three components (u,v,w) along
their own coordinates, t is the time scaled by D/U∞, and p is the static pressure scaled by
ρU2

∞. The velocities are scaled by the free-steam velocity U∞ and the lengths by the cylinder
diameter D. Thus, all variables used in the following context are scaled by ρ, U∞ and D.

In the present study, some main variables and parameters are involved. The vorticity ω is
defined as the curl of velocity u, i.e. ω =∇× u, with three components (ωx,ωy,ωz) along the
coordinates. As an important indicator in the present flow dynamics, variations in the drag
and lift forces acting on the body are taken into account and normalized as the drag and lift
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coefficients, CD and CL, respectively. Then, the mean drag coefficient, CD, and the root-mean-
square lift coefficient, C ′

L, are used to determine the intensity of fluid forces. When spanwise
vortices are alternately shed in the near wake, the frequency of such vortex shedding, f, is
obtained through the Fourier analysis of the time history of CL, and scaled as the Strouhal
number, St, defined by St= fD/U∞.

As for the initial condition, the flow is assumed to be still with u= 0 and p= 0 at t= 0,
except at the inlet.

As for the boundary conditions, the 3D flow is assumed to be spatially periodic across the
span. At the inlet, the uniform free stream is prescribed as u= U∞ and v= w= 0. At the
outlet, the simple outflow with ∂u/∂x= 0 is applied. At both lateral boundaries in the vertical
direction, the free slip with velocity ∂u

∂y = v= ∂w
∂y = 0 is adopted. On cylinder surfaces, the no

slip boundary condition with u= 0 is used. The reference pressure of p∞ = 0 is specified at
the centre of the inlet.

As shown in figure 1(a), the whole non-dimensional computational domain for the present
wake flow is described by the inlet length LI = 20, the outlet length LO = 30, the vertical height
LH = 20 and the computational spanwise length or cylinder span LZ = 1. The blockage ratio,
defined by 1/(2LH), is therefore 2.5%.

Themesh distribution in the 2D computational domain is presented in figure 1(b). The smal-
lest grid size of 0.001 is the normal distance of the first layer of the mesh next to the cylinder
surface. A local mesh is mainly refined in the large circular region with a radial diameter of
approximately 4.24, as shown in figure 1(c). A coarse mesh is mainly distributed far from the
cylinder. The total number of the present 2D standard mesh is 20 100. The uniform spanwise
grid size, ∆z= 0.1, is mainly adopted.

The dimensionless time step ∆t is 0.01. Here, the maximal cell Courant number, Co=
∆t|u|/∆l, is less than approximately 0.8, where∆l is the cell size in the direction of the local
velocity u through a cell.

Numerical calculations are performed using FLUENT V6.3.26 software with the finite-
volume method. The pressure-implicit with splitting of operators algorithm as a pressure-
velocity coupling scheme is applied. The pressure equation is solved by the second-order
discretization scheme. The momentum equation adopts the second-order upwind scheme.
In particular, the Green-Gauss node-based method is applied for gradient computation. The
second-order implicit scheme is used in all unsteady formulations. The error of the mass con-
servative equation, equation (1), reaches the order of magnitude of O(10−5), while the errors
of the three components of the momentum equations, equation (2), are lower, on the order of
O(10−7).

The numerical model used here has already been validated and presented in detail in previ-
ous work (Lin et al 2019b). Here, the hydrodynamic parameters, CD, C ′

L and St, in the present
2D simulations at different Reynolds numbers (⩽300) agree well with previous numerical
calculations (Posdziech and Grundmann 2001, Jiang et al 2016), as summarized in table 1.
However, in the 3D simulations, there is another important factor, a different computational
spanwise length LZ, compared with previous works. The effect of this factor on the evolution
of the vorticity and its sign relationships will be studied in the future.

The following analysis is mainly performed at Re= 300. However, as a part of the inde-
pendence study, the effect of the Reynolds number, i.e. Re> 300, on the relationship of vor-
ticity sign and the effect of the spanwise grid size, ∆z= 0.05, on the 3D vortex evolution at
Re= 300 are also investigated. And these results are presented in the appendix. It is shown
that main physical phenomena in (pure) mode B at Re= 310 and 320 or with ∆z= 0.05 are
qualitatively consistent with those at Re= 300.
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Table 1. Summary of hydrodynamic parameters, CD, C ′
L and St with a frequency resol-

ution of δf= 8.3× 10−4, in the present 2D calculations and previous numerical results
at Re⩽ 300.

Re Cases Present
2D (Posdziech and
Grundmann 2001)

2D (Jiang
et al 2016)

270 CD 1.3552 1.352 1.3669
C ′
L 0.5898 — 0.5933

St 0.2058 0.2061 0.2065

280 CD 1.3584 1.356 1.3701
C ′
L 0.6039 — 0.6067

St 0.2075 0.2072 0.2077

300 CD 1.3651 1.362 1.3768
C ′
L 0.6297 — 0.6407

St 0.2091 0.2094 0.2107

Figure 2. Time histories of CD and CL for (pure) mode B at Re= 300, typically
(a) computational transition, t ∈ (0,45), along with a small window at t < 1, and (b) the
stable stage with constant force amplitudes, t > 45.

3. Results and discussions

3.1. Time histories of fluid forces and frequency analysis

The time histories of the drag and lift coefficients for (pure) mode B at Re= 300 are presented
in figure 2 and are obviously different from those for (pure) mode A at Re= 200 (Lin et al
2019b). It seems that there are only twomain stages, the computational transition (CT) at t < 45
and the stable stage with almost constant oscillating amplitudes of the fluid forces, as shown in
figures 2(a) and (b), respectively. For the first stage, i.e. the CT similar to that in (pure) mode
A, four sub-stages are also identified. The first sub-stage (CT-1) at t < 0.8 corresponds to the
non-physical oscillations of the fluid forces rapidly reducing as time proceeds. The second sub-
stage (CT-2), at 0.8< t< 1.5, shows an increasing drag coefficient and a zero lift coefficient.
For the third sub-stage (CT-3) at 1.5< t< 20, CD gradually reduces to the local minimum,
while the oscillating amplitude of CL slowly increases when t > 10. The last sub-stage (CT-4)
at 20< t< 45 is associated with CD gradually increasing and oscillating when t > 28 and CL

continually increasing with oscillating amplitude.
Through Morlet wavelet analysis of the time history of CL, as shown in figure 3, with

a time range from 20 to 1000, only one frequency is detected, which is also different from
that of (pure) mode A (Lin et al 2019b). Moreover, through a careful comparison of the fre-
quency spectra for different time periods, t < 320 and t > 520, three sub-regimes in the stable
stage (t > 45) are identified. The first two sub-regimes are the initial stage (IS), with the first
at 45< t< 320 (IS-1) and the second at 320< t< 520 (IS-2). The last sub-regime is the fully
developed wake (FDW) at t > 520, same as the second stage of FDW in (pure) mode A at
Re= 200 (Lin et al 2019b).

6
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Figure 3. Frequency spectra ofCL obtained throughMorlet wavelet analysis atRe= 300
with a single frequency, f0 = 0.2087, at the frequency resolution of δf= 1.1× 10−3.

Therefore, according to both the force histories and frequency analysis, there are still
three main stages in the present evolution of (pure) mode B, i.e. the CT at t < 45, the IS at
t ∈ (45,520) and the FDW at t > 520.

Here we have:CD = 1.3624,C ′
L = 0.6227, and St= 0.2087 with δf= 1.1× 10−3. The fluid

forces in the 3D flow are slightly less than those in the 2D calculations in table 1.

3.2. Evolution of the vorticity and its sign relationship

In the following context, through analysis of the spatial distribution of the vorticity field at
different times, three sub-regions are mainly of concern: the front surface of the cylinder
denoted by ‘R-I’, the separated shear layers beside the body denoted by ‘R-II’, and the shed-
ding primary vortices behind the body denoted by ‘R-III’. Flows on and near the rear surface
and in the recirculation near the wake centre plane are investigated in future. Here, only addi-
tional vorticities, ωx and ωy, with magnitudes of at least 0.001 are presented, avoiding possible
contamination or interference caused by computational errors. The sign of the nonzero vorti-
city ω is defined by a sign function sgn(ω) as

sgn(ω) =

{
1, if ω > 0,

−1, if ω < 0.
(3)

It should be stated here that special moments or time points, as shown in figure 4, are selected
at the time interval of 0.5, equal to that of saved data. The prescribed time t, associated with
a certain lift coefficient at Ti (i = 0–4), indicates that t is approximately equal to Ti within the
half time interval of 0.25, i.e. |t−Ti|< 0.25.

3.2.1. In the CT. Except for those in the first sub-stage (CT-1), the characteristics of the
(dominant) streamwise and vertical components of vorticity, as well as the spanwise vorticity,
typically as shown in figure 5 at t= 1 and figure 6 at t= 1.5 in CT-2, figure 7 at t= 10.5 and
figure 8 at t= 20 in CT-3, and figure 9 at t= 41 (T2) in CT-4, are analysed as follows.

The wake flow, if only described by the spanwise vorticity, is almost two-dimensional
throughout the entire CT. Generally, a pair of 2D spanwise vortices are first symmetrically
attached on the rear surface in CT-2 (figure 5(c)), gradually elongate downstream in CT-3

7
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Figure 4. Typical points in a whole period or cycle of the oscillating lift coefficient,
where T0 (or T4) and T2 denote the positive and negative extremum values of the lift
force, respectively, and both T1 and T3 are associated withCL = 0, TS and TE are related
to the formation of streamwise vorticity in the shear layers, and TSE and TES are related
to the formation of vertical vorticity in the shear layers in (pure) mode B.

Figure 5. At t= 1 (CT-2), iso-surfaces of (a) ωx =±0.001, (b) ωy =±0.001 and
(c) ωz =±0.1, and contours of (d)ωx, (e)ωy and (f)ωz on cylinder surfaces atRe= 300,
where red and blue colours denote positive and negative values, respectively, and the
green colour denotes values close to zero (|ω|< 0.001). Note that the cylinder is denoted
by the grey translucent surface among the iso-surfaces.

Figure 6. At t= 1.5 (CT-2), iso-surfaces of (a) ωx =±0.001, (b) ωy =±0.001 and
(c) ωz =±0.1, and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 300
(same descriptions as in figure 5).

until t= 10.5 (figure 7(c)), and then asymmetrically slightly oscillate at t= 20 (figure 8(c)).
Finally, in CT-4, they are alternately shed from the upper and lower shear layers, i.e. Kármán
vortex streets form, e.g. at t= 41 (figure 9(c)).

However, ωx and ωy appear in the wake. Initially, these additional vorticities with very
small magnitudes mainly appear on the rear surface, rather than front surface at Re= 200 (Lin
et al 2019b), early in the second stage (CT-2). Then, they are convected downstream into the
shear layers during CT-2 and CT-3. Finally, they are alternately shed in CT-4. Moreover, these
additional vorticities on the surface and in the shear layers gradually increase as time processes

8
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Figure 7. At t= 10.5 (CT-3), iso-surfaces of (a) ωx =±0.002, (b) ωy =±0.002 and
(c) ωz =±0.8, and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 300
(same descriptions as in figure 5).

Figure 8. At t= 20 (CT-3), iso-surfaces of (a) ωx =±0.001, (b) ωy =±0.002 and
(c) ωz =±1.5, and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 300
(same descriptions as in figure 5).

Figure 9. At t= 41 (CT-4, T2), iso-surfaces of (a) ωx =±0.001, (b) ωy =±0.001 and
(c) ωz =±1, and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 300
(same descriptions as in figure 5).

Figure 10. Colour contours of (a) ωx and (b) ωy at z= 0.5, t= 41 (CT-4, T2) and
Re= 300. In the background, only contours ofωz =±0.1 and±0.5 are presented, where
red and blue colours (also shown in the (c) colour legend for reference), as well as solid
and dashed lines, denote positive and negative values, respectively. Note that the arrow
with a hollow head in (b) denotes the vertical vorticity in the lower shear layer that
actually does not originate from that on the lower and rear surface.

in CT-3 andCT-4. They are associatedwith the spanwise flow (w ̸= 0) that first appears and then
increase near cylinder walls due to the intrinsic 3D instability, similar to experiments (Yokoi
and Kamemoto 1992, 1993). This result clearly indicates that the flow is actually already 3D
early in the stage of CT-2, similar to that in (pure) mode A (Lin et al 2019b). However, the
intensity is so weak that the spanwise vortices appear to be two-dimensional.
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Figure 11. At t= 256 (IS-1, T2), iso-surfaces of (a) ωx =±0.05, (b) ωy =±0.05 and
(c) ωz =±1, and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 300
(same descriptions as in figure 5).

In present computational conditions, the characteristic wavelength of additional vorticities
is observed always to be λ not only in CT but also in IS and FDW in the subsequent context.
It is associated with the Fourier mode of n= 1 and exactly equal to the wavelength of (pure)
mode B λB = 1. Even so, it also indicates that the mode B instability could initially occur on
and near walls at earlier moments, typically in CT-4 in figure 9 or 10.

As for the sign distributions of additional vorticities, the focus is mainly placed on sub-
regions R-II and R-III because the additional vorticities in sub-region R-I almost disappear
owing to the weak viscous forces at Re= 300. Generally, the sign of ωx is dominantly the
same as the sign of ωy in the upper shear layer (y> 0), but opposite in the lower shear layer
(y< 0). This reduces to the first sign law, sgn(ωx ·ωy) =±1 for ±y. On the other hand, e.g.
in CT-4, as shown in figure 10(a), the sign of the dominant ωx is always the same in both the
upper and lower shear layers and then in both vortex braid regions due to the stretching effect
of the primary vortex core with the opposite sign, similar to the symmetry of mode B, i.e. an
in-line arrangement from one braid region to the next (Williamson 1996a). However, as shown
in figure 10(b), the sign of the dominant vertical vorticity is in a staggered arrangement in the
upper and lower shear layers, similar to that in mode B of a square cylinder (Lin et al 2018).

Furthermore, based on the above feature, if the sign of the spanwise vorticity in sub-region
R-II is taken into account, we have the interesting vorticity relationship sgn(ωx ·ωy ·ωz) =
−1 (x > 0), referred to as the second sign law. In the R-III region, such a sign relationship is
also theoretically valid for primary additional vorticities, regardless of the stretching effect.
Actually, these two sign laws for vorticity components already exist early in (pure) mode A at
Re= 200 but with a different symmetry of the additional vorticity signs in the wake (Lin et al
2019b).

Additionally, a type of symmetry of the dominant surface vorticities with specific signs
(except near the wake centre y= 0) at the same spanwise position in CT-3 is discovered.
sgn(ωx) on the upper side is always the same as that on the lower side, and sgn(ωy) is the
opposite, typically as shown in figures 7(d) and (e), respectively. Such sign symmetry is dif-
ferent from that in (pure) mode A at the same sub-stage CT-3 in previous work (Lin et al
2019b).

3.2.2. In the IS. Some features of the vorticity and its sign when the wake evolves into the
IS, as shown in figure 11 at t= 256 (T2) in IS-1, and figure 12 at t= 412.5 (T1) in IS-2, are
analysed and summarized as follows.

In the present stage, the wake flow can still be described by the almost 2D spanwise vorticies
alternately shedding, even when ωx and ωy increase up to approximately 0.2.

By checking additional vorticities with specific signs in sub-regions R-II and R-III at the
same spanwise position, the spatial features presented in CT-4 also appear, as well as the first
sign law, which are independent of the formation of spanwise vortices shed at T1 or T2. In
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Figure 12. At t= 412.5 (IS-2, T1), iso-surfaces of (a) ωx =±0.2, (b) ωy =±0.2 and
(c) ωz =±1, and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 300
(same descriptions as in figure 5).

Figure 13. Colour contours of (a) ωx and (b) ωy at z= 0.5, t= 256 (IS-1, T2) and
Re= 300 (same descriptions as in figure 10).

Figure 14. Colour contours of (a) ωx and (b) ωy at z= 0.5, t= 412.5 (IS-2, T1) and
Re= 300 (same descriptions as in figure 10).

sub-region R-I, as shown in figures 12(d) and (e), the first sign law is still valid, i.e. ωx and ωy
with opposite signs are distributed on the front and lower surface.

The second sign relationship between additional vorticities and the spanwise vorticity is
also obtained. In sub-region R-II, for the dominant ωx and ωy appearing with special spanwise
vorticity, the second sign law, i.e. sgn(ωx ·ωy ·ωz) =−1, is still valid. However, in sub-region
R-III, such a relationship seems to be invalid near braid regions, mainly attributed to the strong
stretching effect of the upstream spanwise vortex with the opposite sign on the downstream
‘rib’-like vortex tubes withωx andωy. In particular, these vertical vortices are almost convected
into the upstream spanwise vortex braid. For example, +|ωy|, originally shed with +|ωz| in
the lower shear layer, is moved into the braid of −|ωz| at x= 5 in figure 13(b) or at x= 4 in
figure 14(b).

As for additional components of the vorticity and their signs on the rear surface at the same
spanwise position, another sign symmetry is presented, but different from the symmetrical
feature in CT-3. sgn(ωx) on the rear surface is anti-symmetric about y= 0, but sgn(ωy) is
symmetric about y= 0, e.g. in figures 12(d) and (e), except near the wake centre y= 0.
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Figure 15. At t= 843 (T1), iso-surfaces of (a) ωx =±0.2, (b) ωy =±0.2 and (c) ωz =
±1, and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 300 (same
descriptions as in figure 5).

Figure 16. At t= 844 (≲T2), iso-surfaces of (a) ωx =±0.2, (b) ωy =±0.2 and (c) ωz =
±1, and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 300 (same
descriptions as in figure 5).

Figure 17. At t= 931.5 (T3), iso-surfaces of (a) ωx =±0.2, (b) ωy =±0.2 and (c) ωz =
±1, and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 300 (same
descriptions as in figure 5).

Figure 18. At t= 932.5 (≲T4), iso-surfaces of (a) ωx =±0.2, (b) ωy =±0.2 and
(c) ωz =±1, and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 300
(same descriptions as in figure 5).

3.2.3. In the FDW. The 3D wake flow is completely developed with the appearance of (pure)
mode B at t > 520. In the present context, the flow is analysed in two half periods, i.e. (T0 ∼ T2)
and (T2 ∼ T4), typically as shown in figure 15 at t= 843 (T1) and figure 16 at t= 844 (≲T2),
or in figure 17 at t= 931.5 (T3) and figure 18 at t= 932.5 (≲T4), respectively.

(Pure) mode B is mainly described by alternately shedding spanwise vortices accompanied
by a pair of ‘rib’-like vortex tubes with streamwise and vertical vorticities of specific signs and
smaller spanwise wavelengths, similar to that in (pure) mode A (Lin et al 2019b). In the vortex
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structure of mode B, the spanwise vortex core is almost two-dimensional, but the vortex braid
is a little wavy and therefore 3D, such as at t= T2 or T4. The sign of the primary streamwise
vorticity is always the same in both the upper and lower shear layers at the same spanwise
position, showing streamwise vortices of one sign shed in a parallel or in-line arrangement.
This feature is consistent with the physical description in previous works (Williamson 1996a,
1996b). However, the signs of the dominant vertical voriticity in the upper and lower shear
layers at the same spanwise position are opposite, indicating that vertical vortices of one sign
shed in a staggered arrangement. This is the same phenomenon as in (pure) mode B in the
wake of a square cylinder (Lin et al 2018). Such a feature of the specific signs of ωx and ωy in
(pure) mode B already appeared earlier about t= 41 and is always dominant in R-II and R-III
regimes as time passes.

Similarly, the first sign law in the above two stages still prevails in the two sub-regions R-II
and R-III and even in sub-region R-I at T1 and T3, as shown in figures 15 and 17.

Moreover, the second sign law is also valid very precisely in sub-regions R-I and R-II for the
dominant vorticity, e.g. as shown in figures 15 and 16, and theoretically valid in R-III because
it stems from the shear layers.

The sign symmetry of the surface vorticities (ωx and ωy) on the rear surface occurring in IS
always exists throughout the present stage, such as in figures 18(d) and (e).

3.3. Physical origin of dominant ωx and ωy in the shear layers

3.3.1. In the CT. The origin of ωx and ωy in the shear layers at the same spanwise position
is analysed in CT. For example, in the upper shear layer in CT-2, sgn(ωx) is the same as that
on the rear surface, e.g. in figures 5(a) and (d), which indicates that ωx originates from that on
the rear surface, similar to previous results (Yokoi and Kamemoto 1992, 1993). However, as
shown in figures 5(b) and (e), opposite signs of ωy on the rear surface and in the upper shear
layer clearly show that ωy does not originate from that on the rear surface. These phenomena
also exist in CT-3 (figure 8) and CT-4 (figure 9 or 10). Based on the vortex-induced vortex
mechanism reported in (pure) mode A (Lin et al 2019a, 2019b) and the theory (Lin et al 2019,
Lin andWu 2020), it can be anticipated that+|ωy| in the upper shear layer is induced by+|ωx|
on the upper and rear surface, as a typical example in figures 8(a) and (b).

3.3.2. In the IS. When the wake flow evolves in IS, the origin of ωx in the shear layers is
first investigated. As an example, the spanwise position at z= 0.5 is discussed as follows. At
a typical instant T2, as shown in figures 11 and 13(a), the dominant streamwise vorticity with
a negative sign in the upper shear layer (up), denoted by ‘VorX1_U’ in figure 13(a), may not
originate from that on the rear and upper surface because of the opposite sign. However,−|ωx|
initially appearing in the lower shear layer (down), denoted by ‘VorX0_D’ in figure 13(a),
originates from that on the lower and rear surface (in figure 11(d)), which is consistent with
previous work (Yokoi and Kamemoto 1992, 1993). At T1, as shown in figures 12(a), (d) and
14(a), −|ωx| in the upper shear layer, denoted by ‘VorX0_U’ in figure 14(a), certainly origin-
ates from that generated on the lower and rear surface, which is stretched upward by the clock-
wise spanwise vortex in the upper shear layer. Consequently, it is anticipated that ‘VorX1_U’
at T2 is actually evolved from ‘VorX0_U’ at T1 and accumulates as time passes beyond T1.

Then, the origin of ωy in the shear layers for the present cases in figures 13(b) and 14(b)
is discussed. The dominant vertical vorticity in the lower shear layer (down), denoted by
‘VorY1_D’, seems to not originate from that generated on the rear surface. However, it is
found that the vertical vorticity in the upper shear layer (up), denoted by ‘VorY0_U’, really

13



Fluid Dyn. Res. 54 (2022) 015511 L M Lin and Z R Tan

Figure 19. Colour contours of (a) ωx and (b) ωy at z= 0.5, t= 843 (T1) and Re= 300
(same descriptions as in figure 10).

Figure 20. Colour contours of (a) ωx and (b) ωy at z= 0.5, t= 844 (≲T2) and Re= 300
(same descriptions as in figure 10).

Figure 21. Colour contours of (a) ωx and (b) ωy at z= 0.5, t= 931.5 (T3) and Re= 300
(same descriptions as in figure 10).

originates from that generated on the lower and rear surface, also under the stretching effect of
the formed spanwise vortex in the upper shear layer. ‘VorY0_U’ at T2 also evolves from that
at T1.

These results all suggest that the formation of streamwise and vertical vorticities in the shear
layers in (pure) mode B is more complicated than that in (pure) mode A (Lin et al 2019b).

3.3.3. In the FDW. In FDW, the problem is analysed in detail. For the origin of the dominant
ωx in the shear layers, considering a whole cycle, as shown in figures 19(a), 20(a), 21(a) and
22(a), we note a phenomenon: the upstream ‘head’ of −|ωx| always remains at x∼ 0.8, and
increasing strength at T2 and T4, appears near the wake centre. Based on previous analysis,
this result can not be explained only by coupled mechanisms, including the vorticity originat-
ing from the rear surface just appearing in a certain period (e.g. T1 and T3), the stretching of
spanwise vortices formed in the shear layers due to inertial forces and the viscous dissipation
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Figure 22. Colour contours of (a)ωx and (b)ωy at z= 0.5, t= 932.5 (≲T4) andRe= 300
(same descriptions as in figure 10).

and diffusion. With the help of the vortex-induction mechanism mentioned above and the first
sign law, the intensification of −|ωx| in ‘VorX1_U’ at T2 could be attributed to the induction
of −|ωy| originating from the lower and rear surface and stretching upward in figure 20(b),
while the increasing −|ωx| in ‘VorX1_D’ at T4 could be attributed to the induction of +|ωy|
originating from the upper and rear surface and stretching downward in figure 22(b). It is also
examined that ‘VorX0_D’ initially appears at an earlier time TS between T1 and T2, while
‘VorX0_U’ appears at TE ∈ (T3,T4), e.g. 843< TS < 843.5 here. Therefore, the streamwise
vorticity in the shear layers first originates from that generated on cylinder surfaces but intens-
ifies mainly through the induction of vertical vorticity on surfaces for (pure) mode B, which is
obviously different from (pure) mode A (Lin et al 2019b). Such a coupled mechanism respons-
ible for the origin of streamwise vortices in (pure) mode B is also different from that in the
shear layers and near wake, e.g. the hyperbolic instability of the braid shear layer (Wu and
Ling 1993, Williamson 1996a, 1996b, Luo et al 2003, Jiang et al 2016, 2018), and the vertical
instability in the spanwise direction (Agbaglah and Mavriplis 2017).

Consequently, as an example, we obtain the following formation process of streamwise
vortices:

(a) −|ωx| of ‘VorX0_D’ in the lower shear layer first appears, originating and stretching from
that on the lower and rear surface at t= TS (<T2).

(b) Then, ‘VorX0_D’ increases as time proceeds until t= TSE (<T3), as shown in figure 20(a).
(c) After t= TSE, e.g. 931< TSE < 931.5 here, as shown in figure 21(a), the further intensified

‘VorX0_D’ begins to gain −|ωx| from that on the upper and rear surface.
(d) When t= TE (<T4), ‘VorX0_D’ is separated by+|ωx| generated on the lower and rear sur-

face, as shown in figure 22(a). ‘VorX0_D’ becomes ‘VorX1_D’, which primarily obtains
−|ωx| induced by +|ωy| stretching from that on the upper and rear surface until t= TES
(<T1).

(e) Meanwhile, at t= TE, ‘VorX0_U’ initially appears because of −|ωx| shed from the upper
and rear surface.

(f) Finally, in the rest of the cycle (TES,TS), ‘VorX1_D’ is shed along with anticlockwise
spanwise vortex, as shown in figure 19(a), until the new ‘VorX0_D’ appears at t= TS.

The origin of ωy in the shear layers is also obtained in brief. Further verified by the arrow
for dominant +|ωy|, ‘VorY0_D’ in figure 21(b) as the origin of ωy in the lower shear layer,
i.e. ‘VorY1_D’, first appears at TSE and only stretches from that generated on the upper and
rear surface during a half cycle (TSE,TES). At t= TES, ‘VorY0_D’ is separated by −|ωy| gen-
erated on the rear surface, and then, it evolves into ‘VorY1_D’. In the subsequent half period
(TES,TSE), ‘VorY1_D’ is intensified, dominantly by the vortex-induction mechanism of−|ωx|

15



Fluid Dyn. Res. 54 (2022) 015511 L M Lin and Z R Tan

on the lower and rear surface, and associated with its holding position of x∼ 0.6, which is
almost invariant in figure 19(b) or 20(b). This could also be due to the coupled stretching effect
of ±|ωz| formed in the shear layers and recirculation region near the wake centre. Finally, it
is shed at t= TSE, and a new ‘VorY0_D’ is formed. It should be mentioned that the above
stretching results in ‘VorY1_D’ mainly being distributed in the vortex braid of the shedding
spanwise vortex with a negative sign at TSE, although ‘VorY1_D’ originally appears in the
lower shear layer.

In summary, the mechanisms for origin of ωx and ωy are the initial vortex generation on
the wall and then the vortex induction dominantly just behind the body. They are all closely
related to the formation and shedding process of spanwise vortices. For example, figures 20(a)
and 21(a) illustrate that ‘VorX0_D’ is stretched mainly by+|ωz|, while ‘VorY0_D’ is stretched
dominantly by +|ωz| in figures 21(a) and 22(a) at different time periods.

3.4. Features of subordinate ωx and ωy in FDW

In FDW, some features are also found out for the subordinate streamwise and vertical compon-
ents of the vorticity with specific signs opposite to those of the dominant ωx and ωy, denoted
by ‘VorXs_U’ and ‘VorXs_D’ in figure 19(a) and ‘VorYs_U’ and ‘VorYs_D’ in figure 20(b),
respectively, in the shear layers. The magnitudes of these subordinate ωx and ωy are minor. The
formation process for subordinate ωx is very similar to that for dominant ωx in (pure) mode
A, but with a shorter formation period. The physical origin of such subordinate ωx could also
be interpreted by the present vortex-induction mechanism. For example, +|ωx| in ‘VorXs_D’
is first induced by −|ωy| on the lower and rear surface at TES, and increases until t= TS, as
shown in figure 14(a) or 19(a). Then, it is further intensified by +|ωx| not only generated on
the upper and rear surface but also induced by −|ωy| on the lower and rear surface, as shown
in figure 13 or 20, over the time period of TS to TSE. Finally, it is shed downstream into the
near wake in the rest of the half cycle (TSE,TES), associated with the similar formation process
of ‘VorXs_U’ in the upper shear layer, as shown in figures 21(a) and 22(a).

However, the formation of subordinate ωy is completely different from that of dominant ωy
in (pure) modeA or B. For instance,−|ωy| in ‘VorYs_D’ is initially induced by the above+|ωx|
in ‘VorXs_D’ at the time between T1 and T2 or at approximately TS, as shown in figures 19(b)
and 20(b), which indicates that there is a phase difference in the time between the appearance
of subordinate ωx and ωy. Such a vortex-induction mechanism is valid until the shedding of
‘VorXs_D’ at t= TSE. Then, ‘VorYs_D’ and ‘VorXs_D’ are shed synchronously, as shown in
figures 21(b) and 22(b).

According to the analysis of the vorticity signs of these subordinate ωx and ωy, the two sign
laws mentioned before also prevail in the present circumstances.

3.5. Pure mode B: redescription, formation and whole shedding process

According to the second sign law, (pure) mode B in figures 17 and 18 can be redescribed by
the Π− and Π+ vortices, defined in previous works (Lin et al 2018, 2019b), alternately shed
out of phase across the span when λ= λB. The vortical structure in (pure) mode B is just
opposite to that in (pure) mode A (Lin et al 2018, 2019b), in which the Π− and Π+ vortices
with specific wavelengths are alternately shed in phase across the span. Moreover, the second
sign law provides indirect proof that there are two and only two types of 3D vortex-shedding
modes in the natural laminar wake transition of a bluff body, as reported in previous work (Lin
et al 2018), because there are two and only two groups of vorticity sign combinations of the
three vorticity components appearing in the upper and lower shear layers.
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Table 2. Summary of the formation and shedding process of streamwise and vertical
vorticities in the upper (y> 0) and lower (y< 0) shear layers in a whole cycle of (pure)
mode B, associated with alternately shedding spanwise vortices with vorticity ±|ωz|,
at Re= 300, where ‘Ap’, ‘In’ and ‘Sh’ in brackets denote the vorticity that initially
appeared, increased and were shed, respectively, and symbol 7→ indicates the trans-
formation or evolution process.

Time TS TS → T2 → TSE TSE TSE → T3 → TE

y> 0 VorX0_U 7→
VorX1_U

VorX1_U(In) VorX1_U(Sh) VorX1_U(Sh)

VorY0_U(In) VorY0_U(In) VorY0_U 7→
VorY1_U

VorY1_U(In)

−|ωz|(In) −|ωz|(In) −|ωz|(Sh) −|ωz|(Sh)
y < 0 VorX0_D(Ap) VorX0_D(In) VorX0_D(In) VorX0_D(In)

VorY1_D(In) VorY1_D(In) VorY0_D(Ap),
VorY1_D(Sh)

VorY0_D(In)

+|ωz|(Sh) +|ωz|(Sh) +|ωz|(In) +|ωz|(In)

Time TE TE → T4 → TES TES TES → T1 → TS

y> 0 VorX0_U(Ap) VorX0_U(In) VorX0_U(In) VorX0_U(In)
VorY1_U(In) VorY1_U(In) VorY0_U(Ap),

VorY1_U(Sh)
VorY0_U(In)

−|ωz|(Sh) −|ωz|(Sh) −|ωz|(In) −|ωz|(In)
y < 0 VorX0_D 7→

VorX1_D
VorX1_D(In) VorX1_D(Sh) VorX1_D(Sh)

VorY0_D(In) VorY0_D(In) VorY0_D 7→
VorY1_D

VorY1_D(In)

+|ωz|(In) +|ωz|(In) +|ωz|(Sh) +|ωz|(Sh)

Consequently, the formation and shedding process of (pure) mode B in a whole cycle can
be briefly described as in table 2. It clearly demonstrates that ωx and ωy on the same side of the
shear layer initially appear with a phase difference of approximately (TES −TE) or (TSE −TS)
but shed out of phase over time. As for the formation process before shedding, the streamwise
vorticity of one sign experiences approximately three quarters of a cycle, e.g. t ∈ (TS,TES),
while the vertical vorticity lasts for a whole cycle.

3.6. Other physical relationships or differences between (pure) modes A and B

3.6.1. Vorticity sign of shedding vortices. Two sign laws are summarized. The first sign law
shows the intrinsic relationship between ωx and ωy, precisely in region R-I and dominantly in
regions R-II and R-III, written as

sgn(ωx ·ωy) =
{

−1, if y< 0,
1, if y> 0.

(4)

The second sign law indicates the sign relationship between additional vorticities and the span-
wise vorticity, also exactly in R-I, dominantly in R-II and theoretically in R-III, written as

sgn(ωx ·ωy ·ωz) =−1. (5)

3.6.2. Sign symmetry of the surface vorticity. Two types of sign symmetry of dominant sur-
face vorticities at the same spanwise position are illustrated in CT-3 and FDW. Particularly,
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for the second sign symmetry appearing in FDW, for the convenience, the attention is placed
on the rear surface (except near the wake centre y= 0), and only the Fourier mode of n= 1 is
analysed. As previously reported for (pure) mode A (Lin et al 2019b), sgn(ωx) on the upper
side is always the same as that on the lower side, while sgn(ωy) is opposite on the upper and
lower sides. This means that the symmetry of the surface vorticity is opposite to that of the
vorticity in the shear layers or near wake, where ωx with opposite signs in the upper and lower
shear layers occurs, but ωy with a single sign occurs in both shear layers.

Similarly, this phenomenon is also discovered in (pure) mode B, as shown in figure 17.
sgn(ωx) on the rear surface is anti-symmetric about y= 0, while ωx with a single sign is shed at
the same spanwise position. However, sgn(ωy) is symmetric about y= 0, but ωy with opposite
signs is alternately shed.

Such a feature, different sign symmetries of additional vorticities on the rear surface and in
the shear layers, is believed to be closely related to the generation and formation of vorticity.
This further indicates that the mechanism of vorticity generation on the wall is not sufficient
to interpret the physical origin of additional vorticities in the shear layers because the sign of
the vorticity on one side of rear surface is always opposite to that on the same side of the shear
layers. It could be associated with the sign laws on the rear surface just behind the body, which
will be investigated in the future.

3.6.3. Wavy spanwise vortices. In previous studies (Meiburg and Lasheras 1988, Lin et al
2018), two types of interactions with spanwise vortices, referred to as streamwise and vertical
interactions, were identified. Both of them can be used to explain the wavy spanwise vortex.
There is a relationship between their vorticity signs. For (pure) mode A with spatial symmetry
of additional vortices with ωx and ωy in the near wake, distorted spanwise vortices can be
explained by the dominant vertical interaction between vertical and spanwise vortices. The
physical reason is attributed to the enhancement effect from superimposed vertical vorticies
with a single sign that are shed from shear layers and mainly appear in the vortex core. In con-
trast, the cancelation effect between the opposite-signed streamwise vorticies, which are easily
convected into the core of the upstream spanwise vortex, leads to the streamwise interaction
between streamwise and spanwise vortices being weak.

Therefore, the more uniformly shedding spanwise vortices in (pure) mode B can be simil-
arly newly interpreted. Typically, as shown in figure 18 or 22, dominant additional vorticities
in the near wake are almost distributed in vortex braids, rather than vortex cores. Another factor
may be that the spanwise vortices or vortex cores in (pure) mode B are stronger than those in
(pure) mode A due to the higher shear rate and less viscous dissipation at Re= 300. Moreover,
vertical vortices with opposite signs have the cancelation effect on the same spanwise vortex.
Therefore, the vertical interaction would be weak. Streamwise vortices with a single sign are
mainly distributed across the borders of opposite-signed spanwise vorticities near the wake
centre and almost shed at one side of vortex braids, e.g. as in figure 22(a), instead of at vortex
cores. Similarly, the enhancement effect of these superimposed streamwise vortices leads to
vortex braids being wavy, e.g. as in figure 18(c). Thus, the streamwise interaction is dominant
in vortex braids.

4. Conclusions

The second 3D wake instability, i.e. (pure) mode B, is investigated. DNS of the flow past a
circular cylinder is mainly performed at Re= 300 and LZ = λB = 1.
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Through the analysis of the force histories and frequency, three flow stages are identified,
i.e. the CT, the IS and the FDW flow. In CT, the wake flow mainly evolves from the initial
still flow into two-dimensional spanwise vortices that are alternately shed. As for IS, the basic
characteristics of mode B appear, although the shedding spanwise vortices still appear to be
two-dimensional.

From the viewpoint of the specific vorticity sign, (pure) mode B can be described by stream-
wise vorticies with the same sign parallel to each other along the streamwise direction between
two neighbouring vortex braids and the vertical vortices with opposite signs in a staggered
arrangement, associated with alternately shedding spanwise vortices with opposite signs.

The spatio-temporal evolution of the vorticity shows that additional vorticities appear
almost throughout the whole computational time. Over time, they first appear very early com-
pared to those in the IS. Then, they are gradually enhanced to a certain level in the FDW. As
for the spatial features, these additional vorticities initially appear on cylinder surfaces due to
the intrinsic 3D instability, which confirms that the three dimensionality of the present flow
first occurs near solid walls, instead of in the shear layers or near wake, regardless of (pure)
modes A and B.

Based on careful comparisons of the sign evolution of the three vorticity components dis-
tributed in three sub-regions, the two sign laws discovered in (pure) mode A (Lin et al 2019b)
also exist in the present (pure) mode B. Based on the second sign law, (pure) mode B could be
redescribed by theΠ− andΠ+ vortices alternately shed out of phase across the span. Regarding
the physical origin of the streamwise or vertical vorticity in the shear layers, the mechanism
is mainly attributed to the vortex generation on the wall first and then the dominant vortex
induction behind the body.

During the whole shedding cycle, ωx and ωy on the same side of the shear layers initially
appear with a phase difference but are shed out of phase over time.

As a new feature, a special sign symmetry of the surface vorticity on the rear surface oppos-
ite to that in the near wake for both (pure) modes A and B is observed.

In addition, for (pure) mode B, the streamwise interaction is dominant, leading to the vortex
braids, rather than the vortex cores, wavily varying. In (pure) mode A, the vertical interaction
is relatively dominant for the wavy spanwise vortex.

Moreover, for subordinate ωx and ωy in the FDW, the two sign laws are also effective. In
particular, the physical origin and formation process have their own features, different from
those of the dominant vorticities in (pure) mode B.

In the future, as subsequent parts of the study, the spatio-temporal evolution of the vor-
ticity in large-scale vortex dislocations will be investigated at Re= 200∼ 300 with a large
computational spanwise length of 12.
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Appendix. Effects of the Reynolds number and the spanwise grid size

A1. Effect of the Reynolds number on the sign laws at Re = 310 and 320

Typically, at t= T2, as shown in figures A1 and A2 at Re= 310 and figures A3 and A4 at
Re= 320, the distributions of dominant vorticities with specific signs show that the vorticity
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Figure A1. At t= 896 (T2), iso-surfaces of (a) ωx =±0.2, (b) ωy =±0.2 and (c) ωz =
±1, and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 310 (same
descriptions as in figure 5).

Figure A2. Colour contours of (a) ωx and (b) ωy at z= 0.25, t= 896 (T2) and Re= 310
(same descriptions as in figure 10).

Figure A3. At t= 765 (T2), iso-surfaces of (a) ωx =±0.2, (b) ωy =±0.2 and (c) ωz =
±1, and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 320 (same
descriptions as in figure 5).

Figure A4. Colour contours of (a) ωx and (b) ωy at z= 0.25, t= 765 (T2) and Re= 320
(same descriptions of figure 10).

sign relationships are qualitatively consistent with those at Re= 300, as are the physical mech-
anisms of the appearance of ωx and ωy in the shear layers, even with the appearance of Four-
ier mode of n= 2 on cylinder surfaces. Therefore, for (pure) mode B, the two sign laws and
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Figure A5. When ∆z= 0.05, time histories of CD and CL for (pure) mode B at
Re= 300, typically (a) the CT, t ∈ (0,55), along with a small window at t < 1, (b) the
IS, t ∈ (55,380), and the FDW, t > 380. In sub-figure (b), horizontal dashed lines denote
the peak-to-peak amplitudes of forces at the first IS.

Figure A6. When∆z= 0.05, iso-surfaces of (a)ωx =±0.2, (b)ωy =±0.2 and (c)ωz =
±1, and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at t= 864.5 (T2) and
Re= 300 (same descriptions as in figure 5).

Figure A7. When∆z= 0.05, colour contours of (a) ωx and (b) ωy at z= 0.18, t= 864.5
(T2) and Re= 300 (same descriptions as in figure 10).

physical origin of dominant ωx and ωy, as well as the whole formation-shedding process, even
for subordinate ωx and ωy, are independent of the Reynolds number.

A2. Effect of ∆z=0.05 on the vorticity evolution at Re= 300

As for the effect of the spanwise grid size, a calculation with ∆z= 0.05 is performed at
Re= 300. As shown in figure A5, there are also three main stages identified in the time his-
tories of the fluid forces, qualitatively consistent with those when∆z= 0.1. For example, the
entire CT first appears when t < 55. Then, the flow evolves into the IS when 55< t< 380.
Among them, the first sub-stage at t < 260 is associated with constant force amplitudes, while
the second at t > 260 is associated with the amplitudes reducing almost linearly. Such special
behaviours of fluid forces before FDW are also found at Re= 310 and 320 with∆z= 0.1, and
similar to those in (pure) mode A (Lin et al 2019b). Finally, the wake flow is fully developed
at t > 380, also with invariable amplitudes, which are slightly less than those in the first IS.
In FDW, we have: CD = 1.3497 and C ′

L = 0.5949 which are slightly less than those with
∆z= 0.1, and St= 0.2085 with δf= 1.7× 10−3.
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However, typically, as shown in figure A6 at t= 864.5 (T2), the sign relationships still agree
well with those at ∆z= 0.1, as does the physical origin of ωx and ωy, as shown in figure A7.
Consequently, this means that the smaller spanwise grid size also has no qualitative effect on
the evolution of the vorticity and its sign, particularly for the physical origin of dominant and
subordinate ωx and ωy in the shear layers.
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