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Evaluation of interfacial misfit strain field of
heterostructures using STEM nano secondary
moiré method

Yao Zhao, a Yang Yang,b Huihui Wen, c Chao Liu,d Xianfu Huang*e and
Zhanwei Liu*a

STEM nano-moiré can achieve high-precision deformation measurement in a large field of view. In

scanning moiré fringe technology, the scanning line and magnification of the existing transmission

electron microscope (TEM) cannot be changed continuously. The frequency of the crystal lattice is often

difficult to match with the fixed frequency of the scanning line, resulting in mostly too dense fringes that

cannot be directly observed; thus, the calculation error is relatively large. This problem exists in both the

STEM moiré method and the multiplication moiré method. Herein, we propose the STEM secondary

nano-moiré method, i.e., a digital grating of similar frequency is superimposed on or sampling the

primary moiré fringe or multiplication moiré to form the secondary moiré. The formation principle of

the secondary moiré is analyzed in detail, with deduced theoretical relations for measuring the strain of

STEM secondary nano-moiré fringe. The advantages of sampling secondary moiré and digital secondary

moiré are compared. The optimal sampling interpolation function is obtained through error analysis. This

method expands the application range of the STEM moiré method and has better practicability. Finally,

the STEM secondary nano-moiré is used to accurately measure the strain field at the Si/Ge

heterostructure interface, and the theoretical strain field calculated by the dislocation model is analyzed

and compared. The obtained results are more compatible with the P–N dislocation model. Our work

provides a practical method for the accurate evaluation of the interface characteristics of heterostruc-

tures, which is an important basis for judging the photoelectric performance of the entire device and the

optimal design of the heterostructures.

1. Introduction

Semiconductor heterostructures are generally composed of
more than two layers of materials with different parameter
lattices, each with a different energy band gap,1,2 which are
produced by molecular beam epitaxy or metal–organic
chemical vapor deposition. Due to the mismatch of the crystal
lattice at the interface of the two materials, a certain strain is
often generated,3,4 which is sometimes an effective way to
design or improve the properties of nanomaterials.5,6 In

addition, the lattice mismatch can also cause dislocations at
the interface,7,8 which will break the symmetry of the crystal
structure, change the local bandgap structure,9 and seriously
affect the photoelectric performance of the heterostructure.
Therefore, analyzing the strain field of the heterostructure
interface is of great significance for improving material
properties.10

In silicon strain technology and strain engineering, pheno-
mena such as interface mismatch strain and residual strain/
stress can be seen everywhere.11 In recent years, HRTEM (high-
resolution transmission electron microscope) has become a
powerful tool for measuring the nanometer displacement and
strain fields of strained silicon.12,13 Among them, the geometric
phase analysis (GPA) method based on the Fourier space
algorithm has been applied to various systems, such as dis-
locations, nanoparticles, crack tips, and nanoclusters. The
scanning nano-moiré method is another good type of measure-
ment method of strain and stress at the nanoscale.14–16 It is not
only like a convex lens that can enlarge the lattice spacing and
deformation, but also expands the field of view so that it can be
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applied to a relatively large area of measurement. However, the
existing two-dimensional STEM (scanning transmission elec-
tron microscope) moiré technique is limited by the fact that the
transmission electron microscope (TEM) cannot continuously
change the number of scanning lines and magnification, and
the lattice spacing is often difficult to match with the fixed
scanning spacing. This leads to the result that most of the
fringes obtained by experimental observations are too dense,
and large errors occur in the calculation.

In this paper, a STEM secondary nano-moiré method is
developed. It is used for large-area, high-precision quantitative
analysis of dislocations at the interface of the Si/Ge hetero-
structure. The strain field in the region is calculated, and the
interface stress distribution is quantitatively analyzed com-
bined with elastic theory. The theoretical strain fields calcu-
lated by P–N and Foreman dislocation models are compared
and discussed. This work provides an important basis for
judging the photoelectric performance of the entire device
and the optimal design of the heterostructure.

2. Experimental methods
2.1 STEM nano secondary moiré method

STEM nano-moiré may appear when scanning crystalline mate-
rials in TEM under certain conditions. This scanning moiré
method has the advantages of real-time observation, large field
of view, and high sensitivity.17,18 The strain field of the micro-
device can be directly obtained by calculating the moiré fringes.
However, due to the limitation of the number of scanning lines
and the magnification of TEM, it is usually difficult to match
the lattice spacing with the fixed scanning spacing in the
existing two-dimensional STEM moiré technology. Here, we
developed a STEM secondary nano-moiré method, for which
the specific operation steps are as follows.

Fig. 1(a) shows relatively dense moiré fringes at an angle of
51 formed in the vertical direction. Fig. 2(b) shows relatively
dense moiré fringes in the vertical direction. If Fig. 1(a) and 2(b)
are geometrically superimposed, Fig. 1(c) will be obtained. It
can be seen that in addition to the formed secondary moiré,
there are also first-order moiré fringes. Further, if the sampling
moiré method is applied, the pattern shown in Fig. 1(e) will be
formed. The sampling moiré method19,20 is usually used for the
displacement measurement of large infrastructures (such as
bridges and buildings). For micro/nano-scale strain distribu-
tion measurement, the sampling moiré method has been
developed, and several subfamily methods have been succes-
sively proposed in the recent years. The reconstructed
multiplication moiré method from pixel sampling moiré allows
high-sensitivity deformation measurement in a large field of
view. Obviously, the fringes in Fig. 1(e) after sampling and
interpolation are clearer, without interference, and have good
recognizability. Fig. 1(f) is a schematic diagram of the for-
mation of secondary moiré. Assuming that the moiré fringe
with frequency f1 is a cosine wave with intensity I1, on selecting
a point in it at a certain frequency f2, we can get a new I3. Then,

the cosine wave I3 is converted into a two-dimensional pattern,
as shown in Fig. 1(e), and the obtained moiré fringe pattern will
become clearer without changing the internal rules, which is
equivalent to re-magnifying the internal information or defects
inside the crystal. The second moiré fringe obtained by the
sampling fringe method has more advantages when calculating
the deformation, and it is faster and more convenient. In
contrast, the secondary moiré calculation with geometric

Fig. 1 Formation of the secondary moiré. (a) Schematic diagram of
primary moiré fringe. (b) Reference fringe. (c) Moiré fringes formed by
geometric superposition. (d) The formation principle of geometric super-
position. (e) Moiré fringes formed by digital sampling. (f) The formation
principle of digital sampling.

Fig. 2 Secondary moiré obtained by different interpolation sampling
(a) the secondary moiré. (b) The sampling error of different interpolation
methods.
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superposition is inconvenient but its formation is simple and
fast. More importantly, this method studies the direction,
spacing, and angle of moiré fringe formation.

2.2 Calculation of secondary moiré pattern

For a certain secondary moiré pattern, assume that the spa-
cings between the two fringes are p1 and p2, and their corres-
ponding frequencies are f1 = 1/p1 and f2 = 1/p2. To facilitate
analysis, the transmitted light intensity function of the primary
moiré fringe and reference fringe can be written as

I1 ¼ Ia þ Ib cos 2pf1 sin ax� cos axð Þ
I2 ¼ Ia þ Ib cos 2pf2x

�
(1)

where a represents the angle between the moiré fringe and the
horizontal direction; Ia(x, y) and Ib(x, y) are the light intensity of
the background and the fringe amplitude, respectively. After
the two fringes are superimposed, if a plane wave with intensity
I0 passes through the two fringes continuously, it results in a
secondary moiré with the intensity distribution of:

I ¼ I0I1I2 ¼ I0ðIa2 þ IaIb cos 2pf1 sin ax� cos axð Þ

þIaIb cos 2pf2xþ Ib
2 cos 2pf1 sin ax� cos axð Þ cos 2pf2xÞ

�I0½Ia2 þ IaIb cos 2pf1 sin ax� cos axð Þ þ IaIb cos 2pf2x

þ1
2
Ib
2 cos 2pðf1 sin ax� f1 cos ax� f2xÞ�

(2)

On the basis of the formation of the secondary moiré, the range
of angle and frequency shall meet �301 r a r 301,
2

3
f1 � f2 � 2f1.15

The calculation of the secondary moiré is obtained by the
sampling moiré method. It moves the position of the sampling
point along the main direction of the moiré fringes, and per-
forms sampling interpolation in the same way to obtain the
phase-shifted secondary sampling moiré. For each moving unit
pixel of the sampling point, the shifted phase of the secondary
moiré is 2p/ps, which means that the number of secondary
moiré steps of phase-shifting sampling is ps. Combining the
secondary sampling moiré frequency as the difference between
the sampling frequency and the primary moiré fringe fre-
quency, i.e., 1/pm = 1/pg � 1/ps, we can obtain:21,22

Imðx; y; iÞ ¼ Ibðx; yÞ þ Iaðx; yÞ

� cos 2px
1

pg
� 1

ps

� �
þ j0ðx; yÞ þ

2pi
ps

� �

¼ Ibðx; yÞ þ Iaðx; yÞ

� cos jmðx; yÞ þ
2pi
ps

� �
i ¼ 0; 1; 2; . . . ; ps � 1ð Þ

(3)

where pg is the period of the moiré fringe (i.e., moiré fringe
pitch); j0(x, y) is the initial phase; i is the first amplitude of the

phase-shifted secondary moiré image; jm is the secondary
moiré phase without phase-shifting.

From the geometric superposition and digital sampling
secondary moiré intensity eqn (2) and (3), it can see that in
addition to the difference frequency term, eqn (2) also contains
the primary moiré intensity not included in eqn (3). This just
verifies the difference between the two methods in Fig. 1. The
fringes obtained by digital sampling are clearer, purer, and free
of interference.

According to the number of phase-shifting steps and the
amount of phase-shifting per step, there are many phase-shift
algorithms. Here, we adopt the 4-step phase-shifting method to
calculate the moiré phase.

jmðx; yÞ ¼ � arctan

Pps�1
i¼0

Imðx; y; iÞ sin
2pi
ps

� �

Pps�1
i¼0

Imðx; y; iÞ cos
2pi
ps

� �;

i ¼ 0; 1; 2; 3ð Þ

(4)

It can be seen from eqn (4) that the moiré phase is obtained
by the arctangent function, and the value range is (�p, p]. If the
moiré phase exceeds this range, it will be wrapped in (�p, p],
resulting in jump points in the phase map. Therefore, it is
necessary to carry out phase unwrapping (�2np at the jump
points) to eliminate the phase jump points so that the phase
field changes continuously, and finally the unwrapped phase-
field jm can be obtained.

Then, the displacement field according to the relationship
between the phase difference before and after the deformation
is achieved by:

uxðx; yÞ ¼
pg jmðx; yÞ � j

0
mðx; yÞ

� �
2p

¼ pDjmðx; yÞ
2p

(5)

where j
0
m is the phase field of the unwrapped moiré after the

deformation.
Therefore, the strain fields of the secondary nano-moiré can

be deduced as:23

ex ¼
@U

@x
¼ p

2p
@Djm x; yð Þ

@x

ey ¼
@V

@y
¼ p

2p
@Djn x; yð Þ

@y

gxy ¼
@U

@y
þ @V
@x
¼ p

2p
@Djm x; yð Þ

@y
þ @Djn x; yð Þ

@x

� �

8>>>>>><
>>>>>>:

(6)

Eqn (6) is applicable to strain calculation in a large deforma-
tion area, i.e., when the phase can be calculated, the real strain
field can be obtained by subtracting the undeformed carrier.
However, if the deformation area is relatively small and there
are large undeformed areas in the map, the deformed primary
moiré can be sampled at a similar frequency to obtain the
deformed secondary moiré. At this time, the pattern contains
not only the secondary moiré information of the initial carrier
generated by the mismatch between the moiré and the refer-
ence fringe but also the secondary moiré after deformation. The
real strain can be obtained by subtracting the deformed moiré
fringe with the initial carrier moiré fringe formed in the
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undeformed area, which is expressed as:

edx ¼ e1x � e0x ¼
Dm1

u

Dx1
� Dm0

u

Dx0

� �
pr

edy ¼ e1y � e0y ¼
Dm1

v

Dx1
� Dm0

v

Dx0

� �
pr

8>><
>>:

(7)

where superscripts 0 and 1 respectively represent the deformed
secondary fringe and the initial carrier constructed from the
undeformed area.

The core of secondary sampling moiré measurement is to
analyze the deformation information of the carrier through the
deformation grating. Traditional methods mostly use the form
of fringe as the measurement structure. The digital phase-
shifting technique is a fringe automatic analysis technology,
which can further improve the accuracy of the calculation.
There is no need to determine the sign of the fringe. The
results obtained by the solution is the phase value of each point
on the fringe pattern. Here, we move the collected initial phase
position through a computer program, which is equivalent to
moving the reference grating. Furthermore, the advantage of
sequential digital phase-shifting is that it can easily achieve
phase-shifting without the optical devices.

The secondary sampling moiré method combines the moiré
method with computer processing technology. Based on a
single grating image, a moiré image is formed through sam-
pling and interpolation, and moiré phase-shifting is achieved
by moving the sampling point. The phase analysis and defor-
mation calculation of the moiré can be completed without
superimposing the reference grating and experimental phase-
shifting hardware. It can realize the digitization and automa-
tion of grating deformation measurement, improve the
measurement efficiency, and flexibly adjust the sampling fre-
quency and sampling direction to meet different measurement
requirements.

In the actual sampling to obtain the secondary moiré,
interpolation is required to get an image with the same size
as that of the original image. Here, we explore the influence of
different interpolation functions on the results. Fig. 2(a) shows
the secondary moiré pattern obtained by different interpolation
sampling. When sampling to generate the pattern, the original
pixel image cannot be directly obtained, so interpolation is
required. The commonly used method is the nearest interpola-
tion, which is the fastest, but the smoothness of the data is the
worst, and the changes are generally discontinuous. The
bilinear interpolation algorithm (‘linear’), compared with the
above, occupies more memory and the execution speed is
slightly slower, but the data smoothness is better, and the data
is continuously changing. The cubic spline interpolation
(‘spline’) has the slowest speed, small memory usage, and
smooth data. Bi-cubic interpolation (‘cubic’) is worse than
linear in terms of speed and memory, but the data and the
first derivative are continuous. Using the above four different
interpolation methods, the difference between the calculated
and theoretical sine function is shown in Fig. 2(b). It can be
seen that for a sine wave, the error distributions of the nearest

interpolation and bilinear interpolation are relatively large;
thus, they are not considered in this work.

2.3 Simulation analysis

In order to obtain the accuracy of the strain field measured by
the secondary moiré method, the strain field of a theoretical
lattice with the center stretched to the surroundings was
analyzed, as shown in Fig. 3.

Fig. 3(a) shows the theoretical strain field, where the center
was stretched, and the surroundings were compressed expan-
sion. Fig. 3(b) is the dense deformed primary moiré fringe in
the x-direction generated by the strain field in Fig. 3(a). After
geometric superposition and secondary sampling, and four-
step phase-shifting, Fig. 3(c) and (d) are obtained. Fig. 3(e) is
the strain field of the geometrically superimposed moiré
obtained by Fig. 3(c). It can be seen that due to the interference
of the primary moiré, the strain field has a lot of fringe
interference. Fig. 3(f) is the strain field calculated by Fig. 3(d).
The advantage of the secondary moiré is that the original
deformation can be further enlarged to obtain the deformed
fringes visible to the naked eye, which makes the observation
more intuitive and convenient. Moreover, in an ordinary TEM
experiment, the field of view for observation can be further
expanded without changing the accuracy of the measurement.
Here, the digital phase-shifting was performed on secondary
moiré fringes to obtain four secondary moiré patterns with a
difference of p/2. Then, the strain field was calculated by
eqn (7), as shown in Fig. 3(f). At the same position in the
middle of the y-axis of the strain fields obtained by the above
two methods, cross sections from Fig. 3(e and f) along the x-
direction were selected to compare the strain values, as shown
in Fig. 3(g). It can be seen that the trend of the results is
consistent. The strain value calculated by the geometric super-
position of the secondary moiré method has a certain ringing
effect, while the result of the sampling secondary moiré does
not. Comparing the middle-scribed part of the strain with the

Fig. 3 Simulated deformation of a theoretical lattice. (a) Theoretical strain
field; (b) generation of the primary moiré in the x-direction; (c) the
secondary moiré in the x-direction obtained by geometric superposition
with four-step phase-shift was carried out; (d) the secondary moiré in the
x-direction obtained by sampling with four-step phase-shift was carried
out; (e) the strain field calculated by the geometric superposition of
secondary moiré and phase-shifting; (f) the strain field calculated by
sampling secondary moiré and phase-shifting; (g) the strain values of the
scribed parts in (a), (e), and (f).
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theoretical value, it is found that the sampling secondary moiré
error is 4.12%, which is closer to the real strain.

3. Results and discussion

In this study, the sampling secondary moiré method was used
to measure the strain field at the interface of Si/Ge hetero-
structure (often used in heterojunction bipolar transistors), as
shown in Fig. 4. In the experiment, the STEM used was a Fei
Titan Themis200 with spherical aberration correction. The
voltage was set as 200 kV, and the half convergence angle of
the electron beam a was 17.9 mrad. When characterizing the
strain field of semiconductors on the nanoscale, high sensitiv-
ity and a large field of view are required.

The substrate material of the heterostructure is Si(200), on
which germanium was grown by molecular beam epitaxy, and
then it made into the interface samples, as shown in Fig. 4(a). It
can be seen that the growth direction of Si was [011], and then
300 nm Ge with the same crystal direction was deposited on it.
The sample was prepared by a Focused Ion Beam instrument
(FIB, FEI Helios Nanolab 450S). Fig. 4(b) shows the BF-STEM
atomic structure at the interface of the Si/Ge heterostructure in
the STEM mode. After a certain magnification, it can be seen
that there are three edge dislocations at the interface. Fig. 4(d)
shows the primary moiré fringes obtained in the STEM mode.
The formation is a result of the interference between the
Si(11%1), Ge(11%1), and the scanning line. The field of view
obtained in this way is at least ten times larger than that of
the atomic image, but the moiré information in it needs to be
magnified many times to see clearly. After sampling it at a
similar frequency, the secondary parallel moiré shown in
Fig. 4(e) can be obtained. It is obvious that the moiré on both
sides of the interface has different frequencies; thus, the
position of the interface can be roughly estimated. To deter-
mine the position of the interface more accurately, the digital

secondary geometric superposition moiré can be used. The
advantage is that the moiré and its formation law can be easily
obtained by direct superposition. Compared with the sampling
secondary moiré, this method does not require interpolation,
and can be used to study the formation of complex graphics
after superposition, such as the regular distributions of binar-
ization 0, 1 interval fringes and regular polygons. Here, we used
it to form Fig. 4(f). It can be seen that the secondary moiré on
both sides of the interface deflects in different directions.
Connecting the ends of the deflection lines close to the inter-
face is the real Si/Ge interface. In order to pursue sufficient
accuracy, the superimposed fringes with similar frequencies
can be rotated to a specific angle so that the deflected fringes in
the visual plane are dense enough and there are enough end-
points at the connection interface.

The strain field at the Si/Ge interface was then calculated.
Fig. 5(a) shows the bright field moiré pattern at the interface of
the Si/Ge heterostructure in the STEM mode, with the scanning
spacing of 0.27 nm. Similarly, after Fourier transformation, the
excess noise was filtered out, and the useful moiré fringe
information was extracted (here, partial fringes in the red area
were extracted). After secondary sampling and digital phase-
shifting processed, Fig. 5(b) was obtained. The phase map was
obtained by 4-step phase-shifting and unwrapping. The phase
of the reference region was subtracted to obtain the true
deformation phase map, and then the real strain field compo-
nents e11%1 at the interface were calculated, as shown in Fig. 5(d).
Fig. 5(e) shows the BF-STEM double PMMF24 of the Si/Ge
heterostructure with a scanning spacing of 0.75 nm. The field
of view is 776 � 776 nm2, which is 7.68 times larger than that of
the natural moiré in Fig. 5(a). Similarly, the moiré fringes in the
red area in Fig. 5(e) underwent a series of processes to obtain
Fig. 5(f). It can be seen that there are six mismatched disloca-
tions in Fig. 5(d) that are periodically distributed at the inter-
face, which is caused by the lattice mismatch of silicon and
germanium. The measured periodic length of adjacent

Fig. 4 Interface recognition based on secondary moiré. (a) Schematic
diagram of the Si/Ge material. (b) Atomic structure of Si/Ge at the inter-
face; (c) enlarged view of the interface atomic structure in the red area of
(b); (d) STEM moiré fringe patterns at the interface of an Si/Ge hetero-
structure; (f) parallel moiré of secondary sampling. (g) Corner moiré of
secondary geometric superposition.

Fig. 5 Calculation of strain field: (a) STEM bright-field moiré fringe pat-
terns at the interface of the Si/Ge heterostructure; (b) secondary sampling
moiré; (c) unwrapping phase; (d) real strain field components e11%1 at the
interface with the dislocation; (e) double multiplication moiré fringe
patterns at the interface of the Si/Ge heterostructure; (f) the strain field
calculated from the red area in (a).
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dislocations is 9.64 nm, which is consistent with the classical
Matthews-Blakeslee (MB) model.25

For heterostructures, the misfit strains caused by the inter-
facial mismatch accumulates with the increase in the epitaxial
thickness. When the thickness of the epitaxial layer reaches a
certain critical value hc, a mismatch dislocation will be gener-
ated at the interface of the heterostructures to release the
accumulated strain, which is belonging to the dislocation
system {111}h110i.

The in-plane growth is carried out by adsorbing atoms at the
edge of the step and making the step migrate on the growth
surface. Generally, the unstressed lattice size af of the thin film
material parallel to the interface is different from the lattice
size as of the substrate, and the difference can be as high as
several percentage points. However, the atoms of the film
material will be arranged according to the position of the base
atoms and continue its atomic structure. At this time, the film
material will bear the necessary strain at the interface to make
the growth possible. The mismatch strain caused by the mis-
match of the lattice parameters is em = (as � af)/as. Fig. 4(b)
shows a cross-sectional view of the heterostructure interface.
The lattice mismatch between the film and the substrate is
large, and both have a diamond structure. In this case, the
mismatch strain is about 4.18%. However, the lattice mismatch
in the film is caused by the relaxation of the elastic strains,
which resulted in the formation of very regularly arranged
interface misfit dislocations. Each dislocation has its own
Burgers vector on the interface. If this is the case, there will
be an edge dislocation caused by the lattice mismatch every
9.6 nm, which can be calculated from the actual (011) direction
lattice spacing in the plane, and is consistent with the experi-
mental observations. It can be seen from Fig. 5(a) and (e) that
the dislocations at the Si/Ge interface are arranged periodically.
By calculating the distance between the dislocations, it was
found that the position of the dislocations was closely related to
the misfit degree of crystal growth. In other words, when the
material at the interface accumulates to a certain extent, the
elastic stress caused by the mismatch will be released in
the form of dislocation, thus forming a periodic edge disloca-
tion. The results show that more dislocations and larger
measurement areas can be seen when the field of view is
increased.

Fig. 6 shows the strain field of dislocation in the x-direction
at the interface of Si/Ge heterostructure, of which Fig. 6(a) is the
experimental result, and Fig. 6(b) is the strain field of the
Peierls Nabarro (P–N) dislocation model. In this model,
the strain of edge dislocation along the x-direction can be
expressed as

exx ¼
b

p
1� nð Þy

4 1� nð Þ2x2 þ y2
(8)

where x and y are respectively the right-angle coordinates
centered on the dislocation core position, b is Burgers vector,
and n is the Poisson’s ratio. In the Foreman dislocation model,
the strain of edge dislocation along the x-direction can be

expressed as

exx ¼
b 1� nð Þ

p
4 1� nð Þ2yx2 þ 2 a3 � a2

� �
y3

4 1� nð Þ2x2 þ a2y2
h i2 (9)

where a is the alterable factor that can control the dislocation
width. Fig. 6(c) and (d) are the Foreman dislocation model
strain fields with a = 2 and 3, respectively.

In order to make a more precise comparison, we drew a
circle with a radius of 5 pixel with the core of the dislocation as
the center. The abscissa is the angular degree and the ordinate
is the value of the dislocation, as shown in Fig. 7. By comparing

Fig. 6 The strain field of a dislocation in the x-direction at the interface of
the Si/Ge heterostructure: (a) experimental strain field. (b) Strain field of the
P–N dislocation model. (c)–(f) The Foreman dislocation model strain fields
shown with a = 2 and 3, respectively.

Fig. 7 Strain distribution of different models and experiments: (a) P–N
dislocation model; (b) and (c) the Foreman dislocation model with a = 2
and 3, respectively; (d) dislocations of experimental results.
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the theoretical value and the experimental data, it is found that
the dislocation result curve of Fig. 7(d) in this experiment is
closer to the theoretical strain field of the P–N dislocation
model shown in Fig. 7(a).

4. Conclusions

In the field of micro-/nano-electronic technology, strained
silicon and strain engineering are widely used. Phenomena
such as interface mismatch strain and residual strain/stress
can be seen everywhere. When using scanning moiré to char-
acterize the strain field, the fringes are often too dense to be
directly observed. This is because in the existing two-
dimensional STEM moiré technology, the scanning line and
magnification of the TEM cannot be changed continuously. The
lattice spacing is usually difficult to match with the fixed scan
spacing, making most of the generated fringes too dense. In this
paper, the STEM secondary nano-moiré method was proposed and
its formation principle was analyzed. There are two ways to form the
secondary moiré, i.e., sampling and geometric superposition.
Among them, the sampling secondary moiré can automatically
analyze and process the original fringes, while the phase-shifting
technique can improve the accuracy of calculation and make the
measurement of strain field automatic and digitized. The advantage
of secondary moiré formed by geometric superposition is that it is
simple and can quickly obtain the moiré at any angle. Studying its
formation law is helpful to accurately determine the interface
position. The simulation experiment shows that the sampling
secondary moiré method has a smaller error than the geometric
superposition method. The experimental measurement of the misfit
strain of the Si/Ge interface shows that the geometric superposition
secondary moiré method can quickly find the interface position,
while the sampling secondary moiré can be used to calculate the
interface misfit strain. In the strain field calculated by the sampling
secondary moiré, the dislocations on the Si/Ge interface are
arranged periodically. By calculating the period of dislocation, it is
found that the dislocation location is closely related to the degree of
mismatch of crystal growth. Comparing the experimentally mea-
sured single dislocation with the theoretical model, it can be seen
that they are consistent with the P–N dislocation model. The STEM
secondary nano-moiré method proposed in this work is suitable for
a wide range of nanostructures’ analysis.
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