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ABSTRACT

Thermocapillary migration of a droplet in a vertical temperature gradient controlled by uniform and non-uniform thermal radiations is theo-
retically analyzed and numerically investigated. A non-dimensionlized thermal radiation number is proposed to quantitatively depict the
intensity ratio of the thermal radiation flux to the uniform temperature gradient. From the momentum and energy equations at zero limits
of Reynolds and Marangoni numbers, analytical results for the uniform and non-uniform thermal radiations are determined. The steady
migration velocity raises with the increasing of the thermal radiation number. By using the front-tracking method, it is observed that thermo-
capillary droplet migration under the uniform thermal radiation at moderate Marangoni and moderate thermal radiation numbers reaches a
steady process. The steady migration velocity decreases with the increasing of Marangoni number and increases with the increasing of ther-
mal radiation number. Moreover, the intensity of thermal energy transferred from the interface to both fluids depends on the volume heat
capacity ratio. For the larger/smaller volume heat capacity ratio, more heat is transferred into the continuous phase fluid/the droplet.
Furthermore, when the uniform thermal radiation is replaced by the non-uniform ones, the time evolutions, the structures of temperature
fields, and parameter dependencies of thermocapillary droplet migration at moderate Marangoni and moderate thermal radiation numbers
remain qualitatively unchanged. This study provides a profound understanding of thermocapillary droplet migration in a vertical tempera-
ture gradient controlled by thermal radiations, which is of great significance for practical applications in microgravity and microfluidic fields.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0082867

I. INTRODUCTION

In a microgravity environment, the migration of a droplet in an
external fluid caused by the non-uniform surface tension distribution
along the interface between two immiscible fluids is termed thermoca-
pillary droplet migration. With the fast development of space explora-
tion, studies on the physical mechanism of thermocapillary droplet
migration under reduced gravity become more and more important.
To generate the non-uniform surface tension, two different thermal
sources are transmitted directly or indirectly through the bulk liquid
to the droplet surface. On one hand, a vertical temperature gradient is
added in the bulk liquid through providing the non-uniform tempera-
ture distribution along the interface. Young et al. (YGB)1 studied ther-
mocapillary migration of a droplet in a vertical temperature gradient
field and obtained the droplet migration velocity in zero limits of
Reynolds (Re) and Marangoni (Ma) numbers. Subramanian2 intro-
duced the quasi-steady-state assumption, extended the YGB results to

the small Ma numbers, and determined an asymptotic solution for the
steady migration velocity. Due to effects of inertia, Bratukhin,3

Balasubramaniam and Chai,4 and Haj-Hariri et al.5 analyzed the
deformation of droplet in thermocapillary migration and found an
ellipsoidal shape with the axis of rotation in the flow direction and the
amplitude mainly depending on the Weber (We) number. At small
We numbers, the droplet deformation in the thermocapillary droplet
migration can be ignored. Since then, with the aid of the vertical tem-
perature gradient in the bulk liquid, the thermocapillary droplet
migration and its mechanism are understood very well in a series of
theoretical analyses, numerical simulations, and experimental inves-
tigations.6–15 On the other hand, the thermal radiation to the droplet
surface is another method to provide the non-uniform temperature
distribution along the interface. Oliver and DeWitt (OD)16 analyzed
the thermocapillary droplet migration under the thermal radiation
with a uniform thermal flux at zero limits of Re and Ma numbers and
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obtained the droplet migration velocity. Rednikov and Ryazantsev17

independently derived the same results and determined the deforma-
tion of the droplet. Lopez et al.18 and Rendondo et al.19 experimentally
investigated thermocapillary migration of a droplet caused by laser
beam heating, which makes a strongly nonhomogeneous distribution
of temperature inside the droplet as well as at its surface due to the
radiation absorption, and found the accelerating and steady migration
processes. Ryazantsev et al.20 reported thermo- and soluto-capillary
migration of passive and active droplets with a laser beam and realized
the processes of pushing, pulling, or holding stationary a droplet under
various forms of illumination. Zhang et al.21 numerically studied the
spontaneous droplet migration under thermal radiation with a uni-
form thermal flux at moderate Re numbers and determined effects of
the physical parameters of two-phase fluids on the steady migration
velocity. Gao and Wu22 extended the OD results under the thermal
radiation to the small Re numbers, obtained an asymptotic solution
for the steady migration velocity, and numerically found the linear
rises of the steady-state temperatures of the two-phase fluids with time
as the main feature of temperature fields during the steady migration
processes.

Recently, in view of the mechanism of the varied surface tension
with temperature, some topics on applications of thermocapillary
droplet migration are concerned. In the fluid-handling microtechnol-
ogy, it was required to form, convey, and manipulate droplets in
microchannels. Originated from the interface, thermocapillary flows
are particularly suitable to drive flows at small scales where surface
effects dominate bulk behaviors. In some cases, the effects of gravity in
a horizontal microfluidic channel are approximately omitted or
removed by the density matching of two liquids. One application of
thermocapillary droplet migration in a microfluidic channel is to
manipulate directly a droplet with a laser beam23,24 or to manipulate
indirectly a droplet on an absorbing substrate with a laser beam25 or to
manipulate a droplet with a heater.26 The correspondent physical
mechanism on the heating measure for the different application to
generate the varied surface tension is the adding a thermal radiation
flux on the interface of droplet or the setting up a temperature gradient
field on the substrate.27,28 In comparison with the absorbing substrate
and the heater driving measures, laser actuation as an attractive
approach to induce thermocapillary flows has two main advantages:
on one hand, the light field interactions are contactless and dynami-
cally reconfigurable; on the other hand, the thermocapillary force gen-
erated by absorption is far stronger than the optical force, which may
be ignored.29,30 Rybalko et al.31 reported that the directed motion of
an oil droplet floating in an aqueous solution guided by a laser beam
focused at the oil–water interface, where exists the variation of surface
tension due to the thermal gradient. Baroud et al.32 shown that local-
ized heating from a laser can block the motion of a water-in-oil droplet
interface in a microchannel to act as a microfluidic valve for two-
phase flows. Vincent and Delville33 experimentally investigated ther-
mocapillary droplet migration induced by local laser heating of the
advancing front of a growing droplet confined in a microfluidic chan-
nel and realized the control of droplet size. Song et al.34 reported the
response of an oil droplet floating in an aqueous solution to local laser
heating and observed distinct dynamic transitions of the shape and
motion of the droplet depending on the laser power.

Moreover, although the laser radiation and the thermal radiation
have different wavelengths, they have similar functions to manipulate

droplets due to the absorption of heat and the generation of capillary
forces. Bezuglyi and Ivanova35 and Ivanova and Bezuglyi36 experimen-
tally investigated droplet growth occurring in the layers of water-
alcohol solutions under the action of laser radiation and found that
the concentration-capillary mechanism enables to effectively control
the rate of droplet formation. Shukla and Sallam37 studied effects of
liquid transparency on laser-induced motion of droplets and found
that the motion of the opaque droplets was dominated by thermal
Marangoni effect due to direct heating by the laser beam. Tatosova
et al.38 experimentally and numerically studied the droplet formation
mechanism in thin layers of water–isopropanol mixtures under the
laser heating and found that an increase in the initial concentration of
isopropanol in mixture leads to a decrease in the droplet growth rate
at a given power of the laser beam. In the microgravity environment,
the action of laser radiation may be taken as the thermal radiation
technology to control the thermocapillary droplet migration in the ver-
tical temperature gradient field. At large Ma numbers, thermocapillary
droplet migration in the vertical temperature gradient field was deter-
mined as an unsteady process, since a nonconservative integral ther-
mal flux across the interface in the steady migration process was
identified.39 By adding the thermal radiation on the droplet/a thermal
source in the droplet, Wu40,41 theoretically shown the conservative
integral thermal flux across the interface in the steady thermocapillary
migration process of a droplet in the vertical temperature gradient field
at large Ma numbers and determined that the steady migration veloc-
ity increases with the increasing of Ma number. However, some inter-
esting topics on thermocapillary droplet migration in the vertical
temperature gradient controlled by thermal radiations at small and
moderate Ma numbers, such as effects of uniform and non-uniform
thermal radiations, effects of the radiation intensity on the steady
migration velocity, evolutions of steady temperature distributions in
the two-phase fluids referring to the different fluidic parameters
remain to be studied with respect to their physical mechanisms.

In this paper, we first show analytical results of thermocapillary
droplet migration in a vertical temperature gradient field controlled by
thermal radiations with uniform and non-uniform thermal fluxes at
zero limits of Re and Ma numbers and determine the dependence of
the steady migration velocity on thermal radiation (Tr) number. Then,
we numerically investigate effects of Tr number, volume heat capacity
ratio, and uniform/non-uniform thermal radiation on thermocapillary
droplet migration in the combined vertical temperature gradient and
the thermal radiation at moderate Ma numbers. Section II describes
the model and formulation of thermocapillary droplet migration
in the combined vertical temperature gradient and thermal radiation.
The analytical results of the steady thermocapillary migration of a
droplet at zero limits of Re and Ma numbers in relation to Tr number
are determined in Sec. III. The numerical results of thermocapillary
droplet migration at moderate Ma and moderate Tr numbers are ana-
lyzed in Sec. IV. Finally, in Sec. V, conclusions and discussions are
given.

II. MODEL AND GOVERNING EQUATIONS

Consider a single droplet with a radius R0ðcmÞ placed in a
continuous-phase fluid of unbounded extend under a uniform vertical
temperature gradient G ðK=cmÞ and a thermal radiation flux
X ðW=cm2Þ, as illustrated in Fig. 1(a). Gravity is ignored. The droplet
surface and the continuous-phase fluid are assumed as a gray body
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and transparent to radiation, respectively. The droplet moves up due
to the non-uniform surface tension r ¼ r0 þ rTð�T � T0Þ, where
r0ðdyn=cmÞ and rTðdyn=cmKÞ are the surface tension coefficient at
the undisturbed temperature T0ðKÞ and the changing rate of the inter-
facial tension between the droplet and the continuous-phase fluid with
temperature �T ðKÞ, respectively. The continuity, momentum, and
energy equations for the continuous-phase fluid and the droplet in a
laboratory coordinate system ½�r ðcmÞ;�z ðcmÞ� are written as

@qi
@t

þ �r � ðqi�v iÞ ¼ 0;

@qi�v i
@t

þ �r � ðqi�v i�v iÞ ¼ � �r�pi þ �r � lið �r�v i þ �rT
�v iÞ

h i
;

@�T i

@t
þ �r � ð�v i�T iÞ ¼ ji

ki
�r � ðki �r�T iÞ;

(1)

where the symbols �v i ðcm=sÞ;�pi ðdyn=cm2Þ; �T i ðKÞ represent the veloc-
ity, pressure and temperature, respectively. The direction of the incident
irradiation is antiparallel to the �z-axis. qiðg=cm3Þ; li ðdyns=cm2Þ;
ki ðW=cmKÞ, and jiðcm2=sÞ represent the density, the dynamical vis-
cosity, the thermal conductivity, and the thermal diffusivity, respectively.
Symbols with subscript 1 and 2 denote physical variables and coeffi-
cients of the continuous-phase fluid and the droplet, respectively. The
solutions of Eq. (1) have to satisfy the boundary conditions at infinity

�v1 ! 0; �p1 ! p1; �T 1 ! T0 þ G�z (2)

and at the interface �rbðcmÞ of the two-phase fluids
�v1ð�rb; tÞ ¼ �v2ð�rb; tÞ;

n � �P1 � n� n � �P2 � n ¼ 2rH;

n � �P1 � s� n � �P2 � s ¼ � �rsr � s;
�T 1ð�rb; tÞ ¼ �T 2ð�rb; tÞ;

k1
@�T 1

@n
ð�rb; tÞ þ Xi�z � n ¼ k2

@�T 2

@n
ð�rb; tÞ;

(3)

where �P1ðdyn=cm2Þ and �P2ðdyn=cm2Þ are the stress tensors of the
two-phase fluids. n and s are the unit vectors normal and tangent to
the interface, respectively. i�z is a unit vector of the �z-axis.

�rs ¼ �r � n @
@n

� �
is the surface gradient operator. H ðcm�1Þ is the

curvature of the interface. The thermal radiation flux X [¼ Hf ð�rbÞ] is
assumed as a uniform or a wave function with the amplitude
H ðW=cm2Þ.

In the modeling assumptions, both fluids are immiscible, and the
physical properties are constant. The droplet keeps a spherical axisym-
metric shape without deformation ðH ¼ 1=R0Þ. The equations of
states for density, viscosity, heat conduction, and heat diffusivity are
written as follows:

dqi
dt

¼ dli
dt

¼ dki
dt

¼ dji
dt

¼ 0: (4)

By taking the radius of the droplet R0, the velocity v0 ¼ �rTGR0=l1
and GR0 as the reference quantities to make coordinates, velocity, and
temperature dimensionless, Eq. (1) is rewritten as

�r � �v i ¼ 0;

qi
@�v i
@t

þ qi�v i � �r�v i ¼ � �r�pi þ
1
Re

�r � lið �r�v i þ �r�vTi Þ
� �

;

@�T i

@t
þ �v i � �r�T i ¼ ji=ki

Ma
�r � ðki �r�T iÞ:

(5)

The physical coefficients (density qi, dynamic viscosity li, thermal
conductivity ki, and thermal diffusivity ji) are non-dimensionlized by
the quantities of continuous-phase fluid. Re, Ma, Prandtl (Pr), and Tr
numbers are, respectively, defined as

Re¼ q1v0R0

l1
; Ma¼ v0R0

j1
; Pr ¼Ma

Re
¼ l1
q1j1

; and Tr ¼ H
Gk1

:

(6)

The solutions of Eq. (5) must satisfy the boundary conditions at infinity

�v1 ! 0; �p1 ! 0; �T 1 ! �z ; (7)

and at the interface �rb of the two-phase fluids

�v1ð�rb; tÞ ¼ �v2ð�rb; tÞ;
n � �P1 � n� n � �P2 � n ¼ 2

Re
rH;

n � �P1 � s� n � �P2 � s ¼ � 1
Re

@r
@s

;

�T 1ð�rb; tÞ ¼ �T 2ð�rb; tÞ;
@�T 1

@n
ð�rb; tÞ þ Trf ð�rbÞi�z � n ¼ k2

@�T 2

@n
ð�rb; tÞ;

(8)

where r ¼ 1
Ca � �T 1. Ca ¼ v0l

r0

� �
is the Capillary number.

III. THEORETICAL ANALYSIS OF THERMOCAPILLARY
DROPLET MIGRATION AT ZERO LIMITS OF Re ANDMa
NUMBERS

At zero limits of Re and Ma numbers, the momentum and
energy equations in Eq. (5) are written in a spherical coordinate sys-
tem (r; h) moving with the droplet

Dvi ¼ 0 or E4wi ¼ 0;

DTi ¼ 0;
(9)

where

FIG. 1. (a) A schematic of the thermocapillary droplet migration system under a vertical
temperature gradient G and a thermal radiation flux X; (b) heat fluxes Trf ðhÞ cos h
absorbed by the upper interface of the droplet vs h 2 ½0;p=2� for the uniform and the
non-uniform thermal radiations [f1 ¼ 1; f2 ¼ cos h, and f3 ¼ sin2h] at Tr¼ 1.
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E2 ¼ @2

@r2
þ sin2h

r2
@2

@ðcos hÞ2 ; (10)

and wi is the stream functions of the continuous fluid and the droplet.
At the place far from the droplet, the velocity and temperature of the
continuous-phase fluid should satisfy

v1ðr ! 1; hÞ ! ð�V1 cos h;V1 sin hÞ;
T1ðr ! 1; hÞ ! r cos h:

(11)

At the droplet surface, the velocities inside and outside the droplet must
meet the continuous and impermeable conditions described below

vr;1ð1; hÞ ¼ vr;2ð1; hÞ ¼ 0;

vh;1ð1; hÞ ¼ vh;2ð1; hÞ:
(12)

Meanwhile, the temperatures and the heat fluxes inside and outside
the droplet must be continuous and in balance with the thermal radia-
tion as given below, respectively,

T1ð1; hÞ ¼ T2ð1; hÞ (13)

and

@T1

@r
ð1; hÞ þ Trf ðhÞ cos h ¼ k2

@T2

@r
ð1; hÞ; h 2 0;p=2½ �;

@T1

@r
ð1; hÞ ¼ k2

@T2

@r
ð1; hÞ; h 2 p=2;p½ �:

(14)

The difference of the tangential stresses is balanced by the interfacial
gradient of the surface tension

Prh;1ð1; hÞ �Prh;2ð1; hÞ ¼ 1
Re

@T1

@h
ð1; hÞ; (15)

wherePrh;i ¼ li
Re ½r @

@r
vh;i
r

� �þ 1
r
@vr;i
@h �.

A. Uniform thermal radiation [f1(h)5 1]

Following the methods for solving the problems for low
Reynolds number hydrodynamics,16,42,43 the solutions of the govern-
ing equation (9) satisfying the boundary conditions (11)–(15) with the
uniform thermal radiation [f1ðhÞ ¼ 1] can be determined as

w1 ¼
V1
2

ðr2 � r�1Þ sin2h

þ
X1

n¼3;odd

Dnðr3�n � r1�nÞC�1=2
n ðcos hÞ;

w2 ¼
3V1
4

ðr4 � r2Þ sin2h

þ
X1

n¼3;odd

Dnðr2þn � rnÞC�1=2
n ðcos hÞ

(16)

and

T1 ¼ Tr
4
r�1 þ r þ 2� 2k2 þ Tr

2ð2þ k2Þ r�2

� 	
cos h

þ
X1

n¼2;even

anr
�ðnþ1ÞPnðcos hÞ;

T2 ¼ Tr
4
þ 6þ Tr
2ð2þ k2Þ r cos hþ

X1
n¼2;even

anr
nPnðcos hÞ;

(17)

where an ¼ ð�1Þðn�2Þ=2 ð2nþ1ÞTr
2½ð1þk2Þnþ1�ðnþ2Þðn�1ÞP

n=2
j¼1

2j�1
2j ; ðn � 2; evenÞ,

Dn ¼ nðn�1Þ
2ð2n�1Þð1þl2Þ an�1; ðn � 3; oddÞ. PnðsÞ and C�1=2

n ðsÞ
¼ Ð 1

s Pn�1ðxÞdx are the Legendre and Gegenbauer polynomials of
order n, respectively. The steady migration velocity is obtained
through the net force balance condition and written as

V1;1 ¼ 6þ Tr
3ð2þ 3l2Þð2þ k2Þ : (18)

It is noted that the migration velocity V1;1 returns to the original
one for thermocapillary droplet migration in the vertical temperature
gradient field, when Tr number is zero. Under the control of the
uniform thermal radiation, the migration velocity V1;1 raises as Tr
number increases.

B. Non-uniform thermal radiation [f2(h)5cos h]

Using the above methods, the solutions of the governing equation
(9) satisfying the boundary conditions (11)–(15) with the non-
uniform thermal radiation [f2ðhÞ ¼ cos h] can be determined as

w1 ¼
V1
2

ðr2 � r�1Þ sin2h

þ Tr
5ð3þ 2k2Þð1þ l2Þ

ð1� r�2ÞC�1=2
3 ðcos hÞ

þ
X1

n¼4;even

Dnðr3�n � r1�nÞC�1=2
n ðcos hÞ;

w2 ¼
3V1
4

ðr4 � r2Þ sin2h

þ Tr
5ð3þ 2k2Þð1þ l2Þ

ðr5 � r3ÞC�1=2
3 ðcos hÞ

þ
X1

n¼4;even

Dnðr2þn � rnÞC�1=2
n ðcos hÞ;

(19)

and

T1 ¼ Tr
6
r�1 þ r þ 8� 8k2 þ 3Tr

8ð2þ k2Þ r�2

� 	
cos h

þ Tr
3ð3þ 2k2Þ r

�3P2ðcos hÞ

þ
X1

n¼3;odd

anr
�ðnþ1ÞPnðcos hÞ;

T2 ¼ Tr
6
þ 3ð8þ TrÞ

8ð2þ k2Þ r cos hþ
Tr

3ð3þ 2k2Þ r
2P2ðcos hÞ

þ
X1

n¼3;odd

anr
nPnðcos hÞ;

(20)

where an ¼ ð�1Þðnþ1Þ=2 ð2nþ1ÞTr
½ð1þk2Þnþ1�ðn�2Þðnþ1Þðnþ3ÞP

ðn�1Þ=2
j¼1

2j�1
2j ; ðn � 3;

oddÞ, Dn ¼ nðn�1Þ
2ð2n�1Þð1þl2Þan�1; ðn � 4; evenÞ. The steady migration

velocity is obtained through the net force balance condition and written as

V2;1 ¼ 8þ Tr
4ð2þ 3l2Þð2þ k2Þ : (21)
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It is noted that the migration velocity V2;1 returns to the original
one for thermocapillary droplet migration in the vertical temperature
gradient field, when Tr number is zero. Under the action of the non-
uniform thermal radiation with f2ðhÞ ¼ cos h, the migration velocity
V2;1 raises as Tr number increases. In comparison with the uniform
thermal radiation [f1ðhÞ ¼ 1], at a fixed Tr number, the migration
velocity V2;1 is smaller than V1;1.

C. Non-uniform thermal radiation [f3(h)5 sin2
h]

The non-uniform thermal radiation with f3ðhÞ ¼ sin2h was used
to investigate the steady thermocapillary droplet migration at large Ma
numbers under the vertical temperature gradient and the non-

uniform thermal radiation.40 Following the above derivations, the sol-
utions of the governing equation (9) satisfying the boundary condi-
tions (11)–(15) with the non-uniform thermal radiation
½f3ðhÞ ¼ sin2h� can be determined as

w1 ¼
V1
2

ðr2 � r�1Þ sin2h

� 6Tr
35ð4þ 3k2Þð1þ l2Þ

ðr�1 � r�3ÞC�1=2
4 ðcos hÞ

þ
X1

n¼5;odd

Dnðr3�n � r1�nÞC�1=2
n ðcos hÞ;

w2 ¼
3V1
4

ðr4 � r2Þ sin2h

� 6Tr
35ð4þ 3k2Þð1þ l2Þ

ðr6 � r4ÞC�1=2
4 ðcos hÞ

þ
X1

n¼5;odd

Dnðr2þn � rnÞC�1=2
n ðcos hÞ;

(22)

and

T1 ¼ 3Tr
40

r�1 þ r þ 5� 5k2 þ Tr
5ð2þ k2Þ r�2

� 	
cos h

� Tr
5ð4þ 3k2Þ r

�4P3ðcos hÞ

þ
X1

n¼4;even

anr
�ðnþ1ÞPnðcos hÞ;

T2 ¼ 3Tr
40

þ 15þ Tr
5ð2þ k2Þ r cos h�

Tr
5ð4þ 3k2Þ r

3P3ðcos hÞ

þ
X1

n¼4;even

anr
nPnðcos hÞ;

(23)

where an ¼ ð�1Þn=2 ð2�nÞð3þnÞð2nþ1ÞTr
2½ð1þk2Þnþ1�ðn�1Þðn�3Þðnþ2Þðnþ4ÞP

n=2
j¼1

2j�1
2j ; ðn � 4;

evenÞ, Dn ¼ nðn�1Þ
2ð2n�1Þð1þl2Þ an�1; ðn � 5; oddÞ. The steady migration

FIG. 2. Droplet migration velocity vs non-dimensional time (a) for Tr¼ 1 (the combined YGB1 and OD16 model) and 0 (the YGB model) with the grid resolution 256� 384; (b)
for Tr¼ 1 with three grid resolutions 128� 192, 256� 384, and 512� 768 at Re ¼ Ma¼ 0.01, Ca¼ 0.1, and q2 ¼ l2 ¼ k2 ¼ j2 ¼ 0:8. The correspondent analytical
results at zero limits of Re and Ma numbers are also provided for comparison.

FIG. 3. Time evolutions of droplet migration velocities for Tr¼ 0, 5, 10, 20, and 50
at the fixed Ma ¼ 5, Pr¼ 50, Ca¼ 0.1, and q2 ¼ l2 ¼ k2 ¼ j2 ¼ 0:8.
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velocity is obtained through the net force balance condition and writ-
ten as

V3;1 ¼ 2ð15þ TrÞ
15ð2þ 3l2Þð2þ k2Þ : (24)

It is noted that the migration velocity V3;1 returns to the original
one for thermocapillary droplet migration in the vertical temperature gra-
dient field, when Tr number is zero. Under the non-uniform thermal radi-
ation with f3ðhÞ ¼ sin2h, the migration velocityV3;1 raises as Tr number
increases. In comparison with the uniform thermal radiation [f1ðhÞ ¼ 1]
and the non-uniform thermal radiation [f2ðhÞ ¼ cos h], at a fixed Tr
number, the migration velocityV3;1 is smaller thanV1;1 andV2;1.

As given in Eq. (14), the droplet obtains the additional thermal
energy via the heat flux Trf ðhÞ cos h across the interface provided
by the thermal radiation. For the uniform and non-uniform thermal
radiations [f1ðhÞ ¼ 1; f2ðhÞ ¼ cos h, and f3ðhÞ ¼ sin2h], the heat
fluxes Trf ðhÞ cos h absorbed by the upper interface of the droplet vs
h 2 ½0; p=2� at Tr¼ 1 are shown in Fig. 1(b). It reveals that the integral
heat fluxes at the upper interface, that is, the areas surrounded by the
curves and the one/two coordinate axes, for the uniform and non-
uniform thermal radiations have the following relationship:ðp=2

0
Trf1ðhÞ cos hdh >

ðp=2
0

Trf2ðhÞ cos hdh

>

ðp=2
0

Trf3ðhÞ cos hdh > 0; (25)

which corresponds to the above result for the migration velocities, that is,

V1;1 > V2;1 > V3;1: (26)

Moreover, under the vertical temperature gradient field, the change
of the heat flux Trf ðhÞ cos h absorbed by the upper interface with h
provides the additional tangential surface tension in @T1

@h ð1; hÞ. As
given in Eq. (15), to satisfy the shear stress boundary condition, the
variational tangential surface tensions @T1

@h ð1; hÞ for the uniform and
non-uniform thermal radiations [f1ðhÞ ¼ 1; f2ðhÞ ¼ cos h, and
f3ðhÞ ¼ sin2h] cause different shear stresses of the continuous-phase
fluid and the droplet, that is, different velocity fields in Eqs. (16),
(19), and (22).

IV. NUMERICAL SIMULATION OF THERMOCAPILLARY
DROPLET MIGRATION AT MODERATE Ma AND
MODERATE Tr NUMBERS
A. Numerical methods

As shown schematically in Fig. 1(a), the symmetric axis of the
container is taken as the �z-axis. An axisymmetric droplet is placed

initially at the center of coordinates and then moved along the �z-axis
under a vertical temperature gradient and a uniform/non-uniform
thermal radiation flux. The continuous, momentum, and energy equa-
tions with the surface tension force dFr and the radiative heat energy
dQ in a cylindrical coordinate system �r ¼ ð�r ;�zÞ are written as

�r � �v i ¼ 0;

@ðqi�v iÞ
@t

þ �r � ðqi�v i�v iÞ ¼ � �r�pi þ
1
Re

�r � lið �r�v i þ �r�vTi Þ
� �

þ 1
Re

dFr;

@�T i

@t
þ �v i � �r�T i ¼ ji=ki

Ma
�r � ðki �r�T iÞ þ ji=ki

Ma
dQ;

(27)

where

dFr ¼

ð
DsAB

�2rHnþ @r
@s

s


 �
2prd2ð�r � �rbÞds

2prcDrDz

¼ ðrrsÞB � ðrrsÞA
� �� rcDsABi�r

rcD�rD�z
(28)

and

dQ ¼ Trdq;

dq ¼

ð
DsAB

f ð�rbÞði�z � nÞ2prd2ð�r � �rbÞds
2prcDrDz

¼

ð
DsAB

f ðsÞði�z � nÞði�r � nÞds
rcDrDz

¼

ð
DhAB

f ðhÞ cos h sin hdh
rcDrDz

;

(29)

where d2 is a two-dimensional function constructed by the repeated
multiplication of the one-dimensional Dirac delta function. i�r is a unit
vector of the �r-axis. DsAB is a short front element on the interface. rc is
the radius of the cross section at the center c of DsAB. h is the angle
coordinate of the interface s as shown in Fig. 1(a). The solutions of Eq.
(27) should satisfy the initial conditions of the half domain �r 2 ½0; r1�
and �z 2 ½z1; z2�

�v i ¼ 0;
�T i ¼ �z

(30)

and the boundary conditions at the top and bottom walls (�z ¼ z1 and
�z ¼ z2), on the central symmetric axis (�r ¼ 0) and at the right wall
(�r ¼ r1)

�vr;1ð�r ; z1Þ ¼ �vr;1ð�r ; z2Þ ¼ 0;
@�vz;1
@z

ð�r ; z1Þ ¼ @�vz;1
@z

ð�r ; z2Þ ¼ 0; �T 1ð�r ; z1Þ ¼ z1; �T 1ð�r ; z2Þ ¼ z2;

�vr;ið0;�zÞ ¼ 0;
@�vz;i
@r

ð0;�zÞ ¼ 0;
@�T i

@r
ð0;�zÞ ¼ 0;

�vr;1ðr1;�zÞ ¼ 0;
@�vz;1
@r

ðr1;�zÞ ¼ 0; �T 1ðr1;�zÞ ¼ �z :

(31)
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In the following computation, we apply a fixed regular staggered
Marker-and-Cell grid in the computational domain, a second-order
central difference scheme for the spatial variables, and an explicit pre-
dictor–corrector second-order scheme for time integration of the
above momentum and energy equations. Since both fluids are
assumed immiscible, all physical coefficients are discontinuous across
the interface. The interface is captured and updated by the front-
tracking method,44 so all discontinuous physical coefficients across the
interface are treated as continuous. The conversion of the physical
quantities between the interface nodes (�rp;�zp) and the grid points
(iD�r ; jD�z) is treated with the Peskin’s weighting function45

wijð�rpÞ ¼ dð�rp � iD�rÞdð�zp � jD�zÞ; (32)

dðrÞ ¼
ð1=4hÞ 1þ cos ðpr=2hÞ½ �; jrj < 2h;

0; jrj � 2h;

(
(33)

where h is the grid spacing in r. To calculate the surface tension
force dFr, the temperature on the interface is determined by
interpolating values on the grid points. The tangent vector s is
computed from a Lagrangian interpolation polynomial fitting
through four interface nodes. The surface tension force dFr and
the radiative heat energy dQ on the interface are distributed to the
grid points by means of the weighting function (32), respectively.
More details of the numerical methods can be found in Refs. 44
and 46.

FIG. 4. Streamlines in the reference frame moving with the droplet generated by the mirror symmetry and isotherms in a laboratory coordinate frame for Ma¼ 5, Pr¼ 50, Ca¼ 0.1,
and q2 ¼ l2 ¼ k2 ¼ j2 ¼ 0:8 (a) at t ¼ 10, 20, 30, 40, and 60 and the fixed Tr¼ 5; (b) at Tr ¼ 0, 5, 10, 20, and 50 and the fixed t¼ 20. The correspondent interface tempera-
ture Ts vs h and the total normal (tangential) surface force Frn;�z (�Frn;�z ) on the droplet projected to the �z direction vs t or Tr are drawn in (c) and (d) and (e) and (f), respectively.
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B. Numerical results

To validate the code, we perform several calculations for the
droplet migration at Re ¼ Ma ¼ 0.01, Ca¼ 0.1, and q2 ¼ l2 ¼ k2
¼ j2 ¼ 0:8 using the method described above. The vertical tempera-
ture gradient and the uniform thermal radiation [f1ðhÞ ¼ 1] are
placed, so that the radiation heat energy function in Eq. (29) is written
as

dq1 ¼ sin2hB � sin2hA
2rcD�rD�z

� sin hA cos hADhAB
rcD�rD�z

; (34)

where hB ¼ hA þ DhAB. The computational domain is chosen as
f�r ;�zg 2 f½0; 8�; ½�4; 8�g. First of all, we compare numerical results
with analytical results at zero limits of Re and Ma numbers. The grid
resolution is chosen as 256� 384 grid points, that is, 32 grid points
per droplet radius. As shown in Fig. 2(a), both the numerical migra-
tion velocities of the droplet at Tr¼ 1 (the combined YGB1 and OD16

model) and Tr¼ 0 (the YGB model) exhibit convergent approxima-
tions to the above and the YGB analytical results in (18), respectively.
The differences of the terminal migration velocities for Tr¼ 1 and 0
from the correspondent analytical results are very small (1.1% and
0.6%, respectively). Second, to check the sensitivity of numerical
results to grid refinements, we compare numerical results for Tr¼ 1
with three grid resolutions 128� 192, 256� 384, and 512� 768 (16,
32, and 64 grid points per droplet radius) with the above analytical
result at zero limits of Re and Ma numbers in Fig. 2(b). The terminal
migration velocity curve seems to converge toward the analytical result
when the grid becomes finer. The difference in the migration velocities
computed with 32 and 64 grid points per droplet radius is very small
(about 1%). In the following calculations, we fix 256� 384 grid points
(32 grid points per droplet radius) as the grid resolution, the Pr num-
ber as 50 and the time step as 2� 10�5. The above other parameters
are kept unless otherwise indicated.

1. Effects of Tr number on thermocapillary droplet
migration

The time evolutions of the droplet migration velocities under the
vertical temperature gradient and the uniform thermal radiation at
Ma¼ 5 and Tr¼ 0, 5, 10, 20, and 50 are shown in Fig. 3. For lower Tr
(� 5) case, the droplet migration velocity first monotonically increases
as time increases, and then approaches to a steady value. The transient
migration process before reaching the steady state is longer as Tr num-
ber increases. The global evolution process (two stages) of the droplet
migration is similar to that under a vertical temperature gradient
(Tr¼ 0). For higher Tr (>5) case, a decelerating process appears after
the accelerating one; that is, a overshoot stage exists in the transient
process. The overshoot amplitude raises as Tr number increases. After
the overshoot stage, the droplet migration velocity approaches to a
steady value. In the range of Tr number, the steady migration velocity
increases as Tr number increases. Figure 4(a) displays the pattern evo-
lution of streamlines in a reference framemoving with the droplet gen-
erated by the mirror symmetry and isotherms in a laboratory
coordinate system at Ma¼ 5 and Tr¼ 5. In the migration process,
when the external streamlines go around the droplet, a Hill’s spherical
vortex appears within the droplet. Meanwhile, the isotherms far away
from the droplet remain horizontal without disturbances. The iso-
therms near and inside the droplet bend to the downstream direction

along the interface and the migration direction, respectively. Since the
heat flux absorbed by the interface is a cosine function, a temperature
gradient along the interface generated by the thermal radiation is
added. The combined interfacial temperature gradients lead to the
larger non-uniform surface tension distribution. As a result, the driv-
ing force generated by the larger surface tension accelerates the droplet
to move up.

To clarify the pattern evolution of the above isotherms in a labo-
ratory coordinate system, we draw the correspondent interface tem-
perature Ts vs h at t¼ 10, 20, 30, 40, and 60 in Fig. 4(c). At a fixed
time, Ts monotonously decreases as h increases. It represents the
change of the normal surface tension module j2rH=Rej
¼ j2ð1=Ca� TsÞ=Rej. Meanwhile, the gradient of Ts with respect to h
causes the tangential surface tension module j �rsr � s=Rej
¼ jð@Ts=@hÞ=Rej. As time increases, Ts monotonously increases
but the shape of curve of Ts with h is approximately kept. It reveals
that the normal surface tension module changes with t but the
tangential surface tension module approximately does not change.
To quantitatively depict the changes of normal and the tangential
surface tensions exerted at the interface in the migration process,
we can, respectively, calculate the total normal and tangential sur-
face forces on the droplet projected to the �z direction described
below

Frn;�z ¼
ð
frn � i�z2prcds ¼ 2p

Re

ð
�2rHn � i�z rcds

¼ � 4p
Re

ðp
0
r cos h sin hdh

¼ � 4p
Re

ðp
0

1
Ca

� Ts


 �
cos h sin hdh

¼ 4p
Re

ðp
0
Ts cos h sin hdh; (35)

FIG. 5. Time evolutions of droplet migration velocities for Tr¼ 0, 5, 10, 20, and 50
at the fixed Ma ¼ 100, Pr¼ 50, Ca¼ 0.1 and q2 ¼ l2 ¼ k2 ¼ j2 ¼ 0:8.
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and

Frs;�z ¼
ð
frs � i�z2prcds ¼ 2p

Re

ð
ð �rsr � sÞs � i�z rcds

¼ � 2p
Re

ðp
0

@r
@h

sin2hdh

¼ 2p
Re

ðp
0

@Ts

@h
sin2hdh; (36)

where Frn;�z and Frs;�z are non-dimensionlized by q1v
2
oR

2
0 and show

them in Fig. 4(d). As time increases, the total normal surface force
Frn;�z approaches a constant. At each time, the total normal surface

force Frn;�z and the total tangential surface force Frs;�z are approxi-
mately opposite numbers to each other.

Figure 4(b) displays the streamlines in a reference frame moving
with the droplet generated by the mirror symmetry and isotherms in a
laboratory coordinate system at the steady migration state (t¼ 20) for
Ma¼ 5 and Tr¼ 0, 5, 10, 20, and 50. In the range of Tr number, the
external flow just passes around the droplet and does not separate
from the droplet surface, and the Hill’s spherical vortex within the
droplet is kept. The computed velocity fields are thus similar. As Tr
increases, a higher temperature region is formed in both fluids near
the top of droplet and enlarged to be a higher temperature belt distrib-
uted near the upper hemisphere. At Tr¼ 50, the higher temperature

FIG. 6. Streamlines in the reference frame moving with the droplet generated by the mirror symmetry and isotherms in a laboratory coordinate frame for Ma¼ 100, Pr¼ 50,
Ca¼ 0.1, and q2 ¼ l2 ¼ k2 ¼ j2 ¼ 0:8 (a) at t ¼ 10, 20, 50, 70, and 90 and the fixed Tr¼ 5; (b) at Tr ¼ 0, 5, 10, 20, and 50 and the fixed t ¼ 50. The correspondent
interface temperature Ts vs h and the total normal (tangential) surface force Frn;�z (�Frn;�z ) on the droplet projected to the �z direction vs t or Tr are drawn in (c) and (d) and (e)
and (f), respectively.
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belt spreads to the lower hemisphere, so that the isotherms in a wider
range outside the droplet bend to the downstream direction. The
enhanced temperature gradient along the interface induces a larger
surface tension. As a result, the droplet velocity at the steady migration
state (t¼ 20) increases as Tr number increases. At Ma¼ 5, the heat
convection plays an equal role as the heat conduction in the energy
redistribution. On one hand, the thermal energy of the interface
absorbed from the thermal radiation is transferred to both fluids
through the heat conduction. A local higher temperature region near
the interface is formed. The higher temperature region in both fluids
along the normal direction of the interface is larger as Tr number
increases. On the other hand, the thermal energy of the interface is
transported along the streamlines by the heat convection. The higher
temperature region in both fluids along the tangent direction of the
interface is enlarged as Tr number increases. As a result, the isotherms
near the interface at the lower hemisphere and far from the interface
bend to the downstream direction. The topological characteristics of
the temperature fields in the steady migration process are very differ-
ent from that in thermocapillary droplet migration with a vertical tem-
perature gradient (Tr¼ 0). Figure 4(e) shows that as Tr increases, the
interface temperature Ts monotonously increases and the absolute
value of temperature gradient j@Ts=@hj also increases. In particular,
for Tr> 0, the growth rate of j@Ts=@hj on the upper interface is larger
than that on the lower one. It reveals that both the normal and tangen-
tial surface tension modules change with Tr. As shown in Fig. 4(f), the
total normal surface force Frn;�z monotonously increases with the
increasing of Tr. At each Tr, the total normal surface force Frn;�z and
the total tangential surface force Frn;�z are approximately opposite
numbers to each other.

The time evolutions of the droplet migration velocities under the
vertical temperature gradient and the uniform thermal radiation at
Ma¼ 100 and Tr¼ 0, 5, 10, 20, and 50 are shown in Fig. 5. In the
range of Tr number, three stages (acceleration, deceleration, and
steady) appear in the droplet migration processes. The amplitude of
the overshoot stage in the transient process raises as Tr number
increases. After the transient process, the steady migration velocity

also increases as Tr number increases. To compare with the case of
Ma¼ 5 in Fig. 3, the raising rate of the steady migration velocity with
Tr number clearly decreases. Figure 6(a) displays the pattern evolution
of streamlines in a reference frame moving with the droplet generated
by the mirror symmetry and isotherms in a laboratory coordinate sys-
tem at Ma¼ 100 and Tr¼ 5. To compare with the case of Ma¼ 5 in
Fig. 4(a), the computed velocity fields are similar, but the temperature
fields are very different. On one hand, at Ma¼ 100, the heat conduc-
tion only plays a weak role in the energy redistribution. Although the
thermal energy of the interface is still absorbed from the thermal radia-
tion, it is difficult for transferring the thermal energy to both fluids
along the normal direction of the interface through the heat conduc-
tion. Even at the longer time (t¼ 90), a higher temperature region can-
not be formed in both fluids near the top of the droplet. The isotherms

FIG. 7. (a) Steady migration velocity vs Ma number at Tr¼ 0, 5, 10, 20, and 50; (b) steady migration velocity vs Tr number at Ma¼ 5, 20, 50, and 100.

FIG. 8. Steady migration velocity vs Tr number at Ma¼ 5, 100, and q2 ¼ l2
¼ k2 ¼ 0:8 and kðj2Þ ¼ 2/3(1.2), 1(0.8), 2(0.4).
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close to the droplet in the continuous phase fluid bend to the migra-
tion direction. Since the droplet cannot obtain enough thermal energy
through the heat conduction to rise the internal temperature, the iso-
therms inside the droplet connect with those behind the droplet and
make self-closed lines. A local region with the lower temperature in
the droplet is thus formed in the droplet. On the other hand, at
Ma¼ 100, the heat convection makes a main role in the energy redis-
tribution. The thermal energy of the interface absorbed from the ther-
mal radiation is transported along the interface by the stronger heat
convection. The temperature gradient along the interface is reduced,
so that the non-uniform surface tension distribution tends to be uni-
form. That is the main reason for the decrease in the raising rate of the
steady migration velocity with Tr number at Ma¼ 100. To compare

with the case of Ma¼ 5 in Fig. 4(c), Fig. 6(c) shows that at a fixed time
the decrease in the interface temperature Ts with h is still kept, but the
absolute value of temperature gradient j@Ts=@hj decreases. As time
increases, the shape of curve of Ts with h is approximately kept, but
the growth rate of Ts is lower than that in Fig. 4(c). It reveals that the
normal surface tension module changes with t but the tangential sur-
face tension approximately does not change. In Fig. 6(f), as time
increases, the total normal surface force Frn;�z approaches a constant.
At each time, the total normal surface force Frn;�z and the total tangen-
tial surface force Frn;�z are approximately opposite numbers to each
other.

Figure 6(b) displays the streamlines in a reference frame moving
with the droplet generated by the mirror symmetry and isotherms in a

FIG. 9. Streamlines in the reference frame moving with the droplet generated by the mirror symmetry and isotherms in a laboratory coordinate frame at Tr ¼ 0, 5, 10, 20, and
50 and the fixed t¼ 20 for Ma¼ 5, Pr¼ 50, Ca¼ 0.1, q2 ¼ l2 ¼ k2 ¼ 0:8 and (a) kðj2Þ ¼ 2=3ð1:2Þ; (b) kðj2Þ ¼ 2ð0:4Þ. The correspondent interface temperature Ts vs
h and the total normal (tangential) surface force Frn;�z (�Frn;�z ) on the droplet projected to the �z direction vs Tr are drawn in (c) and (d) and (e) and (f), respectively.
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laboratory coordinate system at the steady migration state (t¼ 50)
for Ma¼ 100 and Tr¼ 0, 5, 10, 20, and 50. As Tr number increases,
an adding temperature gradient along the interface enhances the
non-uniform surface tension distribution, so the larger driving force
accelerates the droplet to move up. Although the most of thermal
energy of the interface absorbed from the thermal radiation is trans-
ported along the interface due to the stronger heat convection, a
small amount of the thermal energy obtained from thermal radiation
is confined in the local region of both fluids near the upper hemi-
sphere due to the weaker heat conduction. At larger Tr number
(� 50), a higher temperature region is formed in both fluids near
the top of the droplet. At this case, the isotherms close to the droplet
in the continuous phase fluid bend to the downstream direction

along the interface. In the droplet, the thermal energy, which flows
into and out of the droplet through the heat conduction, is trans-
ferred by the heat convection. The self-closed isotherms in the drop-
let are thus formed. To compare with the case of Ma¼ 5 in Fig. 4(e),
Fig. 6(e) shows that although both the interface temperature Ts and
the absolute value of temperature gradient j@Ts=@hj still increase as
Tr increases, their growth rates are lower than those in Fig. 4(e). It
reveals that both the normal and the tangential surface tension mod-
ules change with Tr. As shown in Fig. 6(f), the total normal surface
force Frn;�z monotonously increases with the increasing of Tr. At
each Tr, the total normal surface force Frn;�z and the total tangential
surface force Frn;�z are approximately opposite numbers to each
other.

FIG. 10. Streamlines in the reference frame moving with the droplet generated by the mirror symmetry and isotherms in a laboratory coordinate frame at Tr ¼ 0, 5, 10, 20, and
50 and the fixed t¼ 50 for Ma¼ 100, Pr¼ 50, Ca¼ 0.1, and q2 ¼ l2 ¼ k2 ¼ 0:8 and (a) kðj2Þ ¼ 2=3ð1:2Þ; (b) kðj2Þ ¼ 2ð0:4Þ. The correspondent interface temperature
Ts vs h and the total normal (tangential) surface force Frn;�z (�Frn;�z ) on the droplet projected to the �z direction vs Tr are drawn in (c) and (d) and (e) and (f), respectively.
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Figure 7(a) displays the dependence of the steady migration
velocity V1 on Ma number for Tr¼ 0, 5, 10, 20, and 50. In the range
of Tr number, V1 decreases as Ma number increases. The descent
rate of V1 with Ma number is larger when Tr number is larger. Figure
7(b) displays the dependence of steady migration velocity V1 on Tr
number for Ma¼ 1, 5, 20, 50, and 100. In the range of Ma numbers,
V1 increases as Tr number increases. The raising rate of V1 with Tr
number is smaller when Ma number is larger.

2. Effects of the volume heat capacity ratio on
thermocapillary droplet migration

In the continuous phase fluid, thermal energy can be transported
from the external field and the interface by the heat convection and
the heat conductivity. However, in the droplet, thermal energy can be
only transported from the interface by the heat conductivity. When
the radiative heat energy is absorbed by the interface of the upper
hemisphere, the temperature of interface is higher than these of the
continuous phase fluid and the droplet near the interface. The inten-
sity of heat energy transferred from the interface to both fluids, which
depends on their physical parameters, can affect on the redistribution
of the temperatures in both fluids and the pattern evolution of iso-
therms. In the Sec. IVB 1, due to the non-dimensionlized parameters
k2 ¼ j2 ¼ 0:8, the dimensional volume heat capacity of both fluids
are the same (q1C1 ¼ k1=j1 ¼ q2C2 ¼ k2=j2). For convenience, the
volume heat capacity ratio between the droplet and the continuous-
phase fluid is defined as

k ¼ q2C2

q1C1
¼ k2=j2

k1=j1
¼ k2=k1

j2=j1
; (37)

which is also the non-dimensionlized volume heat capacity of the
droplet (k ¼ q2C2 ¼ k2=j2). In the energy equation (27), for k ¼ 1,
the adding radiation heat energy to both fluids are the same. In the fol-
lowing, we will investigate thermocapillary droplet migration for dif-
ferent volume heat capacity ratios k through changing j2 and keeping
k2 ¼ 0:8.

The dependence of steady migration velocity V1 on Tr number
for Ma¼ 5 and 100 with kðj2Þ ¼ 2/3(1.2), 1(0.8), and 2(0.4) is shown
in Fig. 8. For Ma ¼ 5, when Tr¼ 0, that is, without the thermal radia-
tion, the steady migration velocities V1 are almost the same for the
different k. When Tr> 0, V1 decreases as k increases. The descent
rate of V1 with k is larger when Tr number is larger. Figures 9(a) and
9(b) display the streamlines in a reference frame moving with the
droplet generated by the mirror symmetry and isotherms in a labora-
tory coordinate system at the steady migration state (t¼ 20) for
Ma¼ 5; Tr¼ 0, 5, 10, 20, and 50; and k ¼ 2/3, 2, respectively. Since
the computed velocity fields are similar to those for k ¼ 1 in Fig. 4(b),
we only focus on the evolution of the temperature fields of the two-
phase fluids. At Ma¼ 5, the heat convection plays an equal role as
the heat conduction in the energy redistribution. To compare with the
case of k ¼ 1 in Fig. 4(b), the temperature distributions in the
continuous-phase fluids are similar. However, the intensity of heat
energy transferred from the interface to the droplet decreases as k
increases. It corresponds to the different contribution of the volume
heat capacity ratio to both fluids in the energy equation (27). More
and more heat is transferred into the droplet when k is smaller. It leads
to decrease in the bulge of isotherm in the droplet. In comparison with

the case of k¼ 1 in Fig. 4(e), Figs. 9(c) and 9(e) show that although both
the interface temperature Ts and the absolute value of temperature gradi-
ent j@Ts=@hj increase as Tr increases, their growth rates decrease as k
increases. It reveals that both the normal and the tangential surface ten-
sion modules change with Tr. As shown in Figs. 9(d) and 9(f), the total
normal surface force Frn;�z monotonously increases with the increasing
of Tr. In comparison with the case of k ¼ 1 in Fig. 4(f), the growth rate
of Frn;�z with respect Tr decreases as k increases. At each Tr, the total
normal surface force Frn;�z and the total tangential surface force Frn;�z are
approximately opposite numbers to each other.

In Fig. 8, for Ma ¼ 100, the steady migration velocity V1
decreases as k increases. The descent rate of V1 with k is almost con-
stant as Tr number increases. Figures 10(a) and 10(b) display the
streamlines in a reference frame moving with the droplet generated by
the mirror symmetry and isotherms in a laboratory coordinate system
at the steady migration state (t¼ 50) for Ma¼ 5; Tr¼ 0, 5, 10, 20, and
50; and k ¼ 2/3, 2, respectively. Since the computed velocity fields are
similar to those for k ¼ 1 in Fig. 6(b), we only focus on the evolution
of the temperature fields of the two-phase fluids. At Ma¼ 100, the
heat convection is stronger than heat conduction. To compare with
the case of k ¼ 1 in Fig. 6(b), the temperature distributions in the
continuous-phase fluids are similar. However, the intensity of thermal
energy transferred from the interface to the droplet decreases as k
increases. It corresponds to the different contributions of the volume
heat capacity ratio to both fluids in the energy equation (27). At small
k, more heat is transferred into the droplet. Meanwhile, the thermal
energy in the droplet is redistributed by the stronger heat convection.
This leads to the formation of the self-closed isotherms in the droplet.
In comparison with the case of k ¼ 1 in Fig. 6(e), Figs. 10(c) and 10(e)
show that although both the interface temperature Ts and the absolute
value of temperature gradient j@Ts=@hj increase as Tr increases, their
growth rates decrease as k increases. It reveals that both the normal
and the tangential surface tension modules change with Tr. As shown
in Figs. 10(d) and 10(f), the total normal surface force Frn;�z

FIG. 11. Time evolutions of droplet migration velocities under the uniform and non-
uniform thermal radiations with f1 ¼ 1; f2 ¼ cos h and f3 ¼ sin2h at Ma¼ 5 and
100, Tr¼ 10, and q2 ¼ l2 ¼ k2 ¼ j2 ¼ 0:8.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 022109 (2022); doi: 10.1063/5.0082867 34, 022109-13

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0082867/16638231/022109_1_online.pdf

https://scitation.org/journal/phf


monotonously increases with the increasing of Tr. In comparison with
the case of k ¼ 1 in Fig. 6(f), the growth rate of Frn;�z with respect Tr
decreases as k increases. At each Tr, the total normal surface force
Frn;�z and the total tangential surface force Frn;�z are approximately
opposite numbers to each other.

3. Effects of the non-uniform thermal radiation
on thermocapillary droplet migration

In Fig. 1(a), when the uniform thermal radiation with f1ðhÞ ¼ 1
is replaced by the non-uniform thermal radiations with f2ðhÞ ¼ cos h

FIG. 12. Streamlines in the reference frame moving with the droplet generated by the mirror symmetry and isotherms in a laboratory coordinate frame under the uniform and
non-uniform thermal radiations with f1 ¼ 1; f2 ¼ cos h, and f3 ¼ sin2h for Pr¼ 50, Ca¼ 0.1, Tr¼ 10, and q2 ¼ l2 ¼ k2 ¼ j2 ¼ 0:8 (a) at Ma¼ 5 and the fixed t¼ 50; (b)
at Ma¼ 100 and the fixed t¼ 70. The correspondent interface temperature Ts vs h and the total normal (tangential) surface force Frn;�z (�Frn;�z ) on the droplet projected to
the �z direction vs fi are drawn in (c) and (d) and (e) and (f), respectively.
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and f3ðhÞ ¼ sin2h, respectively, the radiation heat energy functions in
Eq. (29) are written as

dq2 ¼ cos3hA � cos3hB
3rcD�rD�z

� sin hA cos2hADhAB
rcD�rD�z

¼ cos hAdq1; (38)

and

dq3 ¼ sin4hB � sin4hA
4rcD�rD�z

� sin3hA cos hADhAB
rcD�rD�z

¼ sin2hAdq1: (39)

The time evolutions of the droplet migration velocities under the
vertical temperature gradient and the uniform/non-uniform thermal
radiations at Ma¼ 5 and 100, Tr¼ 10 are shown in Fig. 11. Under the
non-uniform thermal radiations with f2 and f3, two stages (acceleration
and steady) for Ma¼ 5 and three stages (acceleration, deceleration,
and steady) for Ma¼ 100 appear in the droplet migration processes,
which are similar to those under the uniform thermal radiation with f1
for Ma¼ 5 and 100, respectively. The global migration velocities of the
droplet under the non-uniform thermal radiations with f2 and f3 are
smaller than that under the uniform thermal radiation with f1. For
Ma¼ 5, the streamlines in a reference frame moving with the droplet
generated by the mirror symmetry and isotherms in a laboratory coor-
dinate system at the steady migration state (t¼ 50) are shown in
Fig. 12(a). Since the computed velocity fields for f1, f2, and f3 are simi-
lar, we only focus on the evolution of the temperature fields of the
two-phase fluids. From f1 to f2 to f3, the droplet is placed at the lower
temperature zone and the higher temperature belt in both fluids along
the normal direction of the interface gradually decreases. Figure 12(c)
shows that the interface temperature Ts decreases from f1 to f2 to f3.
However, the distributions of Ts on the droplet for f1, f2, and f3 are dif-
ferent. Ts monotonously decreases as h increases for f1 and f2, but Ts
undergoes increasing and decreasing processes as h increases for f3. It
reveals that both the normal and the tangential surface tension mod-
ules change with fi. As shown in Fig. 12(d), the total normal surface
force Frn;�z decreases from f1 to f2 to f3. At each fi, the total normal sur-
face force Frn;�z and the total tangential surface force Frn;�z are approxi-
mately opposite numbers to each other.

For Ma¼ 100, the streamlines in a reference frame moving with
the droplet generated by the mirror symmetry and isotherms in a labo-
ratory coordinate system at the steady migration state (t¼ 70) are
shown in Fig. 12(b). Both the computed velocity and temperature
fields for f1, f2 and f3 are similar. To compare with the case of Ma¼ 5
in Fig. 12(c), Fig. 12(e) displays that both the variations of the interface
temperature Ts and the absolute value of temperature gradient
j@Ts=@hj with fi are kept. However, the change rate in the increasing/
decreasing zone of Ts on the droplet is lower than that in Fig. 12(c). It
reveals that both the normal and the tangential surface tension mod-
ules change with fi. In Fig. 12(f), the total normal surface force Frn;�z
decreases from f1 to f2 to f3. At each fi, the total normal surface force
Frn;�z and the total tangential surface force Frn;�z are approximately
opposite numbers to each other.

Figure 13(a) displays the dependence of steady migration velocity
V1 on Ma number for f1, f2, and f3 at Tr¼ 10. The global evolutions
of V1 with Ma number for f2 and f3, that is, the monotonically
decreasing processes, are similar to that for f1. The descent rates of V1
with Ma number for f2 and f3 are smaller than that for f1. At a fixed
Ma number, V1 for f2 and f3 are smaller than that for f1. Figure 13(b)
displays the dependence of steady migration velocity V1 on Tr num-
ber for f1, f2, and f3 at Ma¼ 5. The global evolutions of V1 with Tr
number for f2 and f3, that is, the monotonically increasing processes,
are similar to that for f1. The growth rates of V1 with Tr number for
f2 and f3 are smaller than that for f1. At a fixed Tr number, V1 for f2
and f3 are smaller than that for f1.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, under controlling by uniform and non-uniform ther-
mal radiations, thermocapillary migration of a droplet in a vertical tem-
perature gradient is theoretically analyzed and numerically investigated.
The non-dimensionlized Tr number is proposed to quantitatively depict
the intensity ratio of the thermal radiation flux to the uniform tempera-
ture gradient. From the momentum and energy equations at zero
limits of Re and Ma numbers, analytical results for the uniform and

FIG. 13. (a) Steady migration velocity vs Ma number at Tr¼ 10; (b) steady migration velocity vs Tr number at Ma¼ 5 under the uniform and non-uniform thermal radiations
with f1 ¼ 1; f2 ¼ cos h, and f3 ¼ sin2h.
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non-uniform radiation thermal fluxes are determined. The steady
migration velocity increases as Tr number increases.

By using the front-tracking method, it is observed that thermoca-
pillary droplet migration under the uniform thermal radiation at mod-
erate Ma and moderate Tr numbers undergoes an acceleration process
(and then a deceleration process) and finally reaches a steady process.
In the steady migration process, the velocity fields are represented by
the non-separated external flow around the droplet and the internal
vortex flow in the droplet. In the temperature fields, a higher tempera-
ture belt in both fluids near the upper hemisphere is formed. The
steady migration velocity decreases with the increasing of Ma number
and increases with the increasing of Tr number. Moreover, the inten-
sity of thermal energy transferred from the interface to both fluids
depends on the volume heat capacity ratio. For larger/smaller volume
heat capacity ratio, more heat is transferred into the continuous phase
fluid/the droplet. Furthermore, for the non-uniform thermal radia-
tions, the time evolutions, the structures of temperature fields and
parameter dependencies of thermocapillary droplet migration at mod-
erate Ma and moderate Tr numbers are similar to those for the uni-
form thermal radiation.

This study indicates that the action of thermal radiation can be
used to control thermocapillary droplet migration in a vertical temper-
ature gradient, which is of great significance for the understanding of
basic mechanisms and practical applications in the microgravity and
microfluidic fields.
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