https://doi.org/10.1017/jfm.2022.250 Published online by Cambridge University Press

J. Fluid Mech. (2022), vol. 940, A18, doi:10.1017/jfm.2022.250

F liad?

7~y On u._ﬂ-':?,&
/9 . ':I" v

Helicity distributions and transfer in turbulent
channel flows with streamwise rotation

Changping Yu', Running Hu'!-2, Zheng Yan?'} and Xinliang Li!->>{

'LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
2School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
3Institute of Applied Physics and Computational Mathematics, Beijing 100094, PR China

(Received 23 May 2021; revised 5 March 2022; accepted 16 March 2022)

Helicity is a quadratic inviscid conservative quantity in three-dimensional turbulent flows
and is crucial for turbulent system evolution. Helicity effects have mainly been highlighted
over the past few decades to explore the intrinsic mechanism of turbulent flows, while the
statistical characteristics of helicity itself are nearly absent in general anisotropic turbulent
flows. In this paper, we investigate the helicity statistics in turbulent channel flows with
streamwise rotation at moderate rotation numbers (Ro; = 7.5, 15 and 30) and Reynolds
numbers (Re; = 180 and 395), including their spatial and scale distributions, anisotropy
and cross-scale transfer. The appearance of a mean secondary flow in the spanwise
direction corresponds to a mean streamwise vorticity, which indicates the presence of
a high-helicity distribution. Numerical results reveal a regular helicity profile along the
wall-normal direction, and a new peak is found in the near-wall region around y* = 6 of
the streamwise or spanwise helicity profiles. The inter-scale helicity transfer is analysed by
the filtering method, and the numerical consequences reveal that the second channel of the
helicity cascade we proposed previously is dominant in contrast to the first channel. The
rotation effects are explored by comparing the numerical results obtained under different
rotation numbers. With increasing rotation number, more helical structures in the near-wall
regions are present, with peaks of helicity profiles and fluxes coming closer to the wall.
With a higher Reynolds number, their amplitudes are larger and scale-space transfer is
strengthened. These systematic numerical analyses uncover the helicity distributions and
transfer in wall-bounded turbulent flows.

Key words: turbulent boundary layers, rotating turbulence

1. Introduction

Rotating turbulent flows have been explored by theoretical derivation, numerical
simulation and experiment for a long time, due to their potential value in the applications of
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pumps, gas turbine blade passages and large-scale atmospheric and oceanic flows (Wu &
Kasagi 2004; Weller & Oberlack 2006; Alkishriwi, Meinke & Schroder 2008). In contrast
to homogeneous rotating turbulent flows (Pouquet & Mininni 2010) and turbulent channel
flows with spanwise rotation (Yang & Wu 2012; Xia, Shi & Chen 2016), streamwise
system rotation leads to a mean secondary flow in the spanwise direction, which is
regarded as a unique characteristic (Bradshaw 1987). The mean spanwise secondary flow
originates from the spanwise component of the Coriolis force, which appears in the
governing equation of spanwise momentum (2.1a). The appearance of a mean secondary
flow corresponds to a mean streamwise vorticity, which indicates the existence of high
helicity in these wall-bounded turbulent flows (Oberlack et al. 2006; Masuda, Fukuda &
Nagata 2008; Dai, Huang & Xu 2019). This motivates us to study helicity statistics based
on our previous works of helicity in homogeneous and isotropic turbulent flows (Yan et al.
2020).

Previous studies of turbulent channel flow with streamwise rotation have mainly
concentrated on mean secondary flows. Oberlack et al. (2006) carried out a Lie group
analysis of the two-point correlation equations, and found that linear scaling laws of
the mean streamwise velocity exist, which is confirmed by direct numerical simulations
(DNS) and large-eddy simulations (LES). The experiments of turbulent channel flows
with streamwise rotation were conducted through particle-image velocimetry (PIV) by
Recktenwald ef al. (2007), and the development of the mean secondary flows was
observed. The statistical consequences of DNS and experiments are qualitatively similar,
especially under the effect of the rotation rate. Later, Recktenwald, Alkishriwi & Schroder
(2009) conducted LES with a larger spanwise computational domain, and obtained better
agreement with PIV data. Helical wave decomposition was further developed by Yang,
Su & Wu (2010), and was applied to viscous incompressible turbulent channel flows
with streamwise rotation. They found that streamwise system rotation leads to polarity
asymmetry, which motivates us to investigate helicity statistics in anisotropic turbulent
flows. Yang & Wang (2018) performed DNS with moderate and high rotation numbers
with sufficiently large streamwise computational domains to study the scales of the
dynamics of Taylor—Gortler vortices, and Taylor—Gortler vortices can characterize the
mean secondary flow according to instability analysis by Wall & Nagata (2006) and
Masuda et al. (2008). DNS datasets were also used to investigate the effect of streamwise
system rotation on pressure fluctuation, the self-constraint mechanism and the sustaining
mechanism of Taylor—Gortler vortices (Yang et al. 2018, 2020a,b). Dai et al. (2019)
studied the coherent structures in turbulent channel flows with streamwise system rotation
through DNS and LES, and proposed that rotation promotes cyclones and suppresses
anticyclones.

Helicity is a scalar product of velocity and vorticity, and it is one of the two quadratic
inviscid invariants of three-dimensional flows (Moffatt & Tsinober 1992; Yan et al.
2019). It measures the degree of knottedness or linkage of vortex lines (Moffatt 1969),
and the degree of broken symmetry (Betchov 1961). Seminal developments in helicity
theory have been made in the past few decades, such as helicity cascade, scaling laws
and their effects on energy cascade in homogeneous and isotropic turbulence (Brissaud
1973; Chen et al. 2003b; Biferale, Musacchio & Toschi 2012; Plunian et al. 2020).
For helicity experiments, Scheeler et al. (2017) made a great breakthrough benefiting
from high-resolution measuring techniques, and confirmed that helicity is a conservative
variable even in viscous flows (Moffatt 2017). In our previous work (Yan et al. 2020),
we proposed that there exist two channels of helicity cascade, and they can describe
the inter-scale helicity transfer through different physical mechanisms, especially in
anisotropic turbulent flows.
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In anisotropic turbulent flows, there have been some valuable works focusing on the
helicity effect on turbulent flow properties. Pelz et al. (1985) carried out DNS of plane
Poiseuille and Taylor—Green vortex flows, and found that the velocity and vorticity tend
to align in regions of low viscous dissipation. Correlations are not observed in Rogers &
Moin (1987), except for low-dissipation regions near the outer edge of the buffer layer.
Yokoi & Yoshizawa (1993) examined the helicity effects on swirling flows in a rotating
frame and discussed the suppression of kinetic energy cascades through the inhomogeneity
of helicity. Pieri et al. (2014) defined a new vector field, named cross-helicity, in a
rotating frame and performed a high-resolution DNS of the developed homogeneous
baroclinic turbulence. Nguyen & Papavassiliou (2020) used helicity to investigate scalar
transport in wall-bounded turbulence through Lagrangian tracking and found that helicity
levels are associated with the probability of markers remaining inside a coherent region.
Hiejima (2020) studied the helicity effects on inviscid instability in Batchelor vortices,
and proposed that helicity instability originates inside the vortex core. Povitsky (2017)
proposed a three-dimensional flow in a cubic cavity driven by parallel walls with high
helicity and found that mixing occurs faster than in the benchmark case.

However, there barely exists a detailed analysis of helicity itself for spatial distributions
and inter-scale transfer in anisotropic turbulent flows, except for the helicity dynamics in
Ekman boundary layers (Deusebio & Lindborg 2014). Hence, in this paper, we investigate
the spatial distributions, multiscale distributions and inter-scale transfer of helicity in
turbulent channel flows with streamwise rotation to reveal the helicity dynamics in
wall-bounded turbulent flows and provide some theoretical suggestions for LES modelling.

The paper is organized as follows. In §2, we introduce some computational details
and mean statistics, to characterize the high helical status of turbulent channel flows
with streamwise rotation. In §3, the helicity dynamics is studied in detail, such as
helicity profiles in different directions, helicity spectra and inter-scale helicity fluxes. The
conclusions and discussions are presented in § 4.

2. Computational description and mean statistics

For incompressible turbulence, the Navier—Stokes equations in a rotating reference frame
read as (Deusebio & Lindborg 2014; Vallis 2017)

ad
8—l;—l—u-Vu+2.Q X U= —Vp+vV2u, 2.1a)

V.u=0, 2.1b)

where u is the velocity vector in a rotating reference frame, p is the modified total pressure
including the potential of the centrifugal force and v is the kinematic viscosity. Here, 2
is the rotating vector of the system, and 2 = (£2,, 0, 0). In our numerical simulations,
§2, is set up to be a constant to satisfy the homogeneous rotation condition. We solved
the above equations numerically in Cartesian coordinates with x, y and z directions,
where x, y and z correspond to the streamwise, wall-normal and spanwise directions,
respectively. Periodic boundary conditions are applied to the x and z directions, and we
adopted no-slip and impermeable boundary conditions in the top and bottom walls along
the y direction. Similar to the classical reference (Kim, Moin & Moser 1987), we employed
the pseudospectral method. Fourier series are used to expand the velocity and vorticity in
the streamwise and spanwise directions with uniform grids, and Chebyshev polynomials
are employed in the wall-normal direction with Chebyshev—Gauss—Lobatto points. More
computational details can be found in other valuable papers (Kim et al. 1987; Yang et al.
2010; Yang & Wang 2018).
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Figure 1. Sketch of turbulent channel flow with streamwise rotation.

2.1. DNS with Re; = 180 and 395 at moderate rotation numbers

The presence of very long structures along the streamwise direction is one of the main
characteristics of the present numerical simulations, and sufficiently long computational
domains, especially in the streamwise direction, should be used to capture these long
structures (Jiménez & Moin 1991; Wu & Kasagi 2004; Weller & Oberlack 2006;
Recktenwald et al. 2007). Hence, at the present rotation numbers, we chose a largest
computational domain with 1287 x 2 x 8 in the streamwise, wall-normal and spanwise
directions with Ro; = 30 and Re; = 180. Their definitions are Ro; = 2§2,h/u;, Re; =
hu; /v, and h is the half-channel height. The sketching diagram is shown in figure 1.
In our numerical simulations, we use four rotation numbers of Ro, = 0, 7.5, 15 and 30
with a fixed Reynolds number based on the wall-friction velocity Re; = 180 to evaluate
the rotation number effects, and compare the statistical consequences at a fixed rotation
number Ro; = 7.5 with Re; = 180 and Re; = 395 to evaluate the Reynolds number
effects. The corresponding mesh setting of the DNS with Re; = 395 at a weak streamwise
rotation refers to Moser, Kim & Mansour (1999) with a small computational domain.

Similarly, the rotation number and Reynolds number based on the bulk velocity are
obtained by

282.:h hU
Rop="22 Rep=—2. (2.2a.b)
Up v
The bulk velocity is
1 h
Up=— U(y)dy. 2.3
v=on ), (y)dy (2.3)

The statistical analyses begin after the flows reach steady state, and we select the last
40h/u, as the sampling time. Unless otherwise stated, all physical variables present in this
paper are non-dimensionalized by the inner scale with the wall-friction velocity u, and the
kinematic viscosity v, and they are marked by superscript symbol 4. Some characteristic
parameters are listed in table 1.

We show the profiles of mean velocities in the streamwise and spanwise directions under
different rotation numbers and Reynolds numbers in figure 2. Averaging is performed
over the x—z plane and time, which is marked by (-). The statistical results are consistent
with previous work (Yang et al. 2010; Yang & Wang 2018), even though we adopted a
larger Reynolds number. The inhibitory effects of the rotation number are reflected at the
smaller mean streamwise velocity with higher rotation numbers. However, the statistical
consequences of the mean spanwise velocity under different rotation numbers are slightly
different from the results obtained in Yang et al. (2010). The rotation number effects on the
mean spanwise velocity distribution are monotonic in the present numerical simulations.
With the increase of rotation number, the amplitudes of the reverse flow in the core regions
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Case Ly x2h x L, Ny x Ny x N, Rep, Rop, Re; Roq

STOO 32m x 2 x 8m; 1024 x 128 x 512 2783.76 0 180 0
STO7 327w x 2 x 8= 1024 x 128 x 512 2715.82 050 180 75
STO7R 327w x 2 x 8w 4096 x 192 x 1536  7893.19 038 395 75
ST15 641 x 2 x 8= 2048 x 128 x 512 249496 1.08 180 15
ST30 1287 x 2 x 8w 4096 x 128 x 512 218143 248 180 30

Table 1. The computational configurations and some characteristic parameters of the flows.
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Figure 2. The profiles of mean velocities in the streamwise and spanwise directions.

are larger, and their peak locations are farther away from the channel centre. Likewise,
the secondary flows close to the wall are also enhanced by higher rotation numbers. The
Reynolds number effect is negligible in the near-wall regions, and the amplitudes of a
mean secondary flow also increases with a higher Reynolds number. In contrast, there
does not exist a secondary flow without rotation.

According to the homogeneity conditions in the streamwise and spanwise directions, the
presence of a mean secondary flow leads to a non-zero-mean vorticity in the streamwise
direction. Hence, the streamwise vorticity is also the main characteristic of turbulent
channel flows with streamwise rotation. The profiles of mean vorticities in the streamwise
(wy)T and spanwise directions (w.)" under different rotation numbers and Reynolds
numbers are exhibited in figure 3. The mean wall-normal velocity and vorticity are zero,
and we do not show their profiles in the current paper. In the present analysis, the mean
streamwise vorticities are obtained by computing the slopes of the mean spanwise velocity
vs wall-normal height y, and the mean spanwise vorticities are obtained by computing the
slopes of the mean streamwise velocity vs wall-normal height y. For the mean streamwise
vorticity in figure 3(a), there exists a peak within the half-channel. The peak is located
around y &~ £0.8, which is associated with the shoulder of the mean flows (Oberlack
et al. 2006; Dai et al. 2019). The shoulder locations are easily affected by system rotation,
and the amplitudes of the mean streamwise vorticities are enhanced by higher rotation
numbers. In addition, the peak locations move closer towards the wall with the increase
of rotation number. From the peak towards the wall or channel centre, the streamwise
vorticity decreases monotonically. Around the wall, its sign is negative and its amplitude
is very large, which is caused by large gradients of spanwise velocity within the near-wall
regions. Meanwhile, around the channel centre, its sign is also negative and the cosine
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Figure 3. The profiles of mean vorticities in the streamwise and spanwise directions.

distribution is consistent with the inertial waves solution (Yang et al. 2010). The inhibitory
effects of streamwise rotation are also reflected in the profiles of the mean spanwise
vorticity in figure 3(b). With the increase of rotation number, the amplitudes of the mean
spanwise vorticity are weakened, especially around the shoulder location. The large mean
spanwise vorticity can be attributed to the large gradient of streamwise velocity within the
boundary layers. As for Reynolds number effect, a higher Reynolds number corresponds to
amore fully developed turbulent state, and it leads to larger vorticities at the wall boundary.
However, the vorticity profiles at the streamwise and spanwise directions are similar at
different Reynolds number.

2.2. Numerical simulations with higher Reynolds numbers through DNS and LES

The Reynolds number effects on the distributions of the mean secondary flows are worth
exploring, and we carry out more numerical simulations with higher Reynolds numbers
in this section. In order to be consistent with previous numerical settings, we adopted
the LES method to investigate turbulent channel flows with Ro; = 7.5 and Re; = 395,
590 and 1000. The dynamic Smagorinsky model (Germano et al. 1991) is employed, and
this model has been claimed to be successful for turbulent channel flows with streamwise
rotation (Dai et al. 2019). In addition, DNS with a weak rotation number Ro; = 2 and
Re; = 1000 and 2000 are also carried out to explore the Reynolds number effects. In order
to decrease the computational cost, we select developed turbulent channel flows without
any rotation as the initial flow fields. The raw dataset with Re; = 1000 was downloaded
from the Johns Hopkins Turbulence Database (JHTDB)(see http://turbulence.pha.jhu.edu)
(Graham er al. 2016), and another raw dataset with Re; = 2000 was downloaded from
the website of the University of Texas at Austin (see https://turbulence.oden.utexas.edu/)
(Hoyas & Jiménez 2006). The specific parameters including the computational domains,
mesh cells, Reynolds numbers and rotation numbers are listed in table 2.

The mean streamwise and spanwise velocity profiles with the LES method are exhibited
in figure 4, and the mean streamwise and spanwise velocity profiles with Re; = 395
through the DNS method are compared to verify the success of the current LES model.
For the streamwise velocity profile, the discrepancies are negligible except in the core
regions with different Reynolds numbers. For the spanwise velocity profile, the mean
secondary flows are preserved with different Reynolds numbers. The main difference lies
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Case Ly x2h x L, Ny x Ny x N, Re; Ro;  Method

STO7R395 327 x2x 87 1024 x 96 x 256 395 7.5 LES
STO7R590 3271 x 2 x 87 1536 x 128 x 512 590 7.5 LES
STO7R1000 32w x 2 x 81 2048 x 192 x 1024 1000 7.5 LES
JHU1000 8 x 2 x3m 1536 x 512 x 1024 1000 2 DNS
UT2000 8t x 2 x 3w 3072 x 1024 x 2048 2000 2 DNS

Table 2. The computational settings and characteristic parameters of the flows with higher Reynolds numbers
through DNS and LES.
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Figure 4. The profiles of mean velocities in the streamwise and spanwise directions with Re; = 395, 590 and
1000. The mean streamwise and spanwise velocity profiles with Re; = 395 are compared with symbol o.

in the locations of peak and valley, and their locations move away from the wall with
increasing the Reynolds number.

For the case with higher Reynolds number and a weak rotation number using the DNS
method, we show the profiles of the mean streamwise and spanwise velocity profiles
at different typical instants in figure 5 to investigate the effects of the presence of the
streamwise rotation on the development process of the secondary flows. For the mean
streamwise velocity profiles, the initial distributions are consistent with classical scaling
laws with Re; = 1000 and 2000, and they assure us of the quality of the datasets we
downloaded. With the presence of the streamwise rotation, the mean streamwise velocity
profile begins to depart from the initial distributions. In the meanwhile, the mean spanwise
velocity profile begins to develop, up to regular distributions of the secondary flows. With
time, the system rotation drives a wall-normal transfer of spanwise momentum. The mean
secondary flows begin to form within the near-wall regions, and then develop at the core
regions. The development processes of the secondary flows are similar with Re; = 1000
and 2000, and eventually towards a stationary status. We highlight the presence of the
mean secondary flows with high Reynolds numbers, and the statistical analysis of the
stationary flow fields turns to the case with smaller Reynolds numbers and moderate
rotation numbers.

The above statistical consequences reveal that the secondary flows are common at
different Reynolds numbers, and the Reynolds number effects are mainly reflected in
the locations of the peaks and valleys of the secondary flows. Nevertheless, the rotation
number effects are the main factor for the secondary flows and are more complicated
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Figure 5. The profiles of mean velocities in the streamwise and spanwise directions at different typical
instants with Re; = 1000 and 2000.

(Yang et al. 2010; Yang & Wang 2018), and we select the cases with Re; = 180, 395 at
moderate rotation numbers to explore the helicity distributions and scale transfer in the
following sections.

3. Helicity statistics
3.1. Helicity profiles

To further investigate the transfer paths of energy and helicity with background shear
flows, we can decompose the fluid fields into mean and fluctuating components as a =
(a) + a' (Hirtel et al. 1994; Piomelli, Yu & Adrian 1996), and the fluctuating components
can be further decomposed into resolved and unresolved components. In contrast to
homogeneous and isotropic turbulence, new energy transfer paths exist for mean flows
decomposed into resolved and unresolved components in wall-bounded turbulent flows.
In this section, we show the mean and fluctuating components of energy and helicity
to characterize the flow field. The resolved and unresolved components analysed by the
filtering method are emphasized in a later section.
We can define the mean and fluctuating energy as

Em= )’ + w)?, Ef=u?>+0>+w? (3.1a,b)

Similarly, the mean and fluctuating helicity can be defined as
Hm = Hxm + Hzm = (u)(wy) + (W){w;), Hf = v'o} + Vo) +ww. (3.2a,b)

Here, the prime ' denotes a fluctuating component. It should be mentioned that there
exist another two components consisting of mean and fluctuating fields according to the
Schwarz inequality. However, their ensemble averages are zero, and they are absent in the
above decompositions.

The profiles of mean and fluctuating energy and helicity are shown in figure 6. The
profiles of the mean energy are consistent with the distributions of streamwise velocity
in figure 2. The main reason for this is that the streamwise velocity is dominant,
even though there exists a mean secondary flow of the spanwise velocity. In the core
regions, the amplitudes of the mean energy decrease with an increase of rotation number.
However, the rotation effects on the fluctuating energy are different. With the presence
of streamwise rotation, the fluctuating energy profiles are indeed changed, but rotation
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Figure 6. The profiles of the mean and fluctuating energy (a,b), and the mean and fluctuating helicity (c,d).

number effects are not monotonic in the near-wall regions. With the increase of rotation
number in the core regions, the amplitudes of the fluctuating energy would increase.
Hence, we can conclude that rotation would promote the energy path from the mean flows
into fluctuating flows in the core regions. The Reynolds number effects on the fluctuating
energy profiles are similar in the core regions. The mean and fluctuating helicity are
nearly zero in turbulent channel flows without rotation, which verifies the necessity of
exploring helicity statistics in turbulent channel flows with streamwise rotation. The
profiles of the mean helicity in figure 6(c) indicate uniform helicity distributions of the
main flows. With the increase of rotation number, the amplitudes of the mean helicity
increase gradually in the core regions. In the near-wall regions, the amplitudes of helicity
also increase with the increase of rotation number. Meanwhile, the peaks of the mean
helicity distribution gradually approach the wall. The positive and negative helicities in
different regions mainly depend on the mean spanwise velocity. We show the fluctuating
helicity profiles at different rotation numbers in figure 6(d). The rotation effects are
similar to those of the mean helicity. However, with a higher Reynolds number, the
amplitudes of the mean and fluctuating components of helicity are larger with similar
profile distributions, even at a weak rotation number. This means that high helicity
might exist and be apparent in turbulent flows with high Reynolds numbers. In the
present numerical simulations, the larger helicity profiles are obtained by relatively large
streamwise rotations at relatively low Reynolds numbers, and the regulations might be
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Figure 7. The profiles of the mean helicity in the streamwise direction (@) and the spanwise direction (b).

extended to natural or engineering turbulent flows with higher Reynolds numbers. The
regular distributions pave the way for exploring the spectra and fluxes of helicity in later
sections.

To investigate the helicity anisotropy in turbulent channel flows, we show the mean
helicity profiles in the streamwise (Hx) and spanwise (Hz) directions in figure 7. Energy
anisotropy has been explored in turbulent channel flows (del Alamo & Jiménez 2003; Dunn
& Morrison 2003; Jiménez 2012), and we apply the methodology to helicity anisotropy.
The mean wall-normal helicity is nearly zero, because the mean velocity and vorticity in
the wall-normal direction are zero in turbulent channel flows, and we do not show their
profiles for the sake of simplicity. Except for the peaks nearest to the wall, the profiles of
the mean streamwise helicity are similar to the total helicity profiles in figure 6, both in
terms of amplitudes and peak locations. However, new larger peaks of the mean streamwise
and spanwise helicity exist around y© = 6 with Ro, = 30. As for the cases with weak
rotation, the peak locations may be larger, but all of them are smaller than the locations
of the buffer layers. Their amplitudes are nearly the same, but their signs are different.
Hence, the newly found peaks in the near-wall regions are not easily found in turbulent
channel flows (Nguyen & Papavassiliou 2020). The presence of the new peaks can be
attributed to the mean large vorticity in the near-wall regions. Dimensional analysis of the
amplitudes of the mean streamwise velocity and vorticity, and the mean spanwise velocity
and vorticity in the near-wall regions in figures 2 and 3, can also verify the relationship
of the amplitudes of the mean streamwise and spanwise helicity. The newly found peaks
indicate a high helical status in the near-wall regions, which also can be characterized by
Taylor—Gortler-like vortices at the cross-section perpendicular to the streamwise direction
in figure 8(b). In figure 8(a), the large-scale Taylor—Gortler vortices characterize the
helical structures beyond the near-wall regions. The spiral characteristic represented by
wall-normal and spanwise velocity vectors, accompanied by the mean streamwise velocity,
reflects the three-dimensional helical structures.

3.2. Helicity spectra

The analysis of helicity anisotropy in the previous section indicates the necessity
of studying the scale distributions of helicity in the streamwise and spanwise directions
(Yang et al. 2020b). In figure 9, we display the one-dimensional premultiplied helicity
spectra in the streamwise, wall-normal and spanwise directions depending on the wall
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Figure 8. (a) Taylor-Gortler vortices visualized by the contours of the fluctuating streamwise vorticity and
velocity vectors in the wall-normal and spanwise directions at the cross-section perpendicular to the streamwise
direction in case STO7. (b) Contours of the fluctuating streamwise vorticity corresponding to the rectangular
domains in (a), where we adopt a logarithmic vertical axis to present near-wall helical structures.

distance and the normalized streamwise wavelength /lj = Ay /v, where A, = 27 /k,. The
definition of the streamwise premultiplied helicity spectrum is

Hx = k(0" (ky, y*) - da ki, y)), (3.3)

where k, is the streamwise wavenumber, the asterisk denotes complex conjugate, & denotes
the Fourier transform of the streamwise velocity and @, denotes the Fourier transform of
the streamwise vorticity. The definitions of the wall-normal and spanwise premultiplied
helicity spectra are similar, and we do not show them for the sake of simplicity. According
to the criteria proposed by Avsarkisov et al. (2014), Hoyas & Jiménez (2008) and Yang &
Wang (2018), we select two isopleths for individual helicity spectra, and they are 62.5 %
and 12.5 % of the individual positive and negative maximum amplitudes. The criteria are
similar to those proposed by del Alamo et al. (2004) and Lozano-Duran & Jiménez (2014).
In contrast to the energy spectra, the positive and negative helicities denote different
chiralities, which complicates the helicity spectra. The log—log plots of helicity spectra
emphasize the small scales of the helicity distribution in the near-wall regions. The helicity
spectra in turbulent channel flows without rotation are chaotic, and we do not show them
for the sake of simplicity. The peaks of the streamwise and spanwise helicity spectra are
located around y™ = 6, which are associated with the newly found peaks of the helicity
profiles in figure 7. The locations of the peaks of the wall-normal helicity spectra are
larger and mover close to the wall with an increase of rotation number. Streamwise helicity
is negative in the near-wall regions and positive in the core regions, and this distribution
regularity also applies to the wall-normal helicity spectra with weak rotation. However, the
values of the streamwise helicity spectra are positive above the near-wall regions. With a
larger rotation number, the positive distributions of the streamwise helicity spectra can be
changed at different streamwise wavelengths. We can infer that the positive distributions of
the streamwise helicity spectra might be absent with enough large rotation numbers. The
development of the dominant role of the negative streamwise helicity spectra is associated
with spatial transportation of the streamwise helicity along the wall-normal direction, and
it can be evaluated by the general form of the classical Kolmogorov equation similar to the
methodology of energy cascade in wall-bounded turbulent flows (Marati, Casciola & Piva
2004; Cimarelli et al. 2016).
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Figure 9. Premultiplied one-dimensional helicity spectra as functions of the streamwise wavelength and wall
distance in the streamwise (Hx), wall-normal (Hy) and spanwise directions (Hz) at different rotation numbers
and Reynolds numbers. The solid and dashed lines correspond to 62.5 % and 12.5 % of the individual positive
and negative maximum amplitudes.

For wall-normal helicity spectra, the wavelengths of the peaks decrease gradually with
an increase of rotation number. With a higher Reynolds number at a weak rotation,
negative helicity spectra exist within the near-wall regions. According to the regulations of
rotation number effects on the streamwise helicity spectrum distribution, we infer that the
negative helicity spectra within the near-wall regions would disappear at a stronger rotation
number. In the core regions with a higher Reynolds number or rotation number, most of
wall-normal helicity spectra cannot be captured at the present resolution. The main reason
lies in the propagation of inertial waves around the channel centre (Yang et al. 2010),
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Figure 10. Premultiplied one-dimensional helicity spectra as functions of the streamwise wavelength, around
the plane of y*© = 6. The absolute values of the helicity spectra are selected for log-log plots.

which corresponds to an infinite streamwise computational domain. However, the present
resolution can capture the high-helicity distributions in the near-wall regions and typical
Taylor—Gortler vortices at y/h = 0.5 (Yang & Wang 2018).

The spanwise helicity spectra are rather regular, and two-layer distributions exist in
the streamwise and wall-normal space. The first peak is also located around y* =6,
and it reflects a good correspondence with the streamwise spectra within the near-wall
regions reflected in figure 7. The second peak is located above the buffer layers, and the
interface is located around the buffer layers. The two-layer distributions of the spanwise
helicity spectra are associated with two layers of streamwise-elongated roll cells (Yang &
Wang 2018; Yang et al. 2020b). The counter-rotating Taylor—Gortler vortices weaken the
velocity gradient in the buffer layer, and the energy sources are weakened correspondingly
(Goto 2008). According to the scale-energy paths (Marati et al. 2004; Cimarelli et al.
2016), the energy source is located within the buffer layer, and transports to the viscous
sublayer and log layer. The weakened energy source and spatial scale-energy transport
by counter-rotating Taylor—Gortler vortices are consistent with previous conclusions of
helicity effects on energy cascade (Alexakis 2017; Yan et al. 2020).

The scale distributions of helicity are shown in figure 10 around the plane of y© = 6.
Apparent scale separations of helicity exist in three directions in the present numerical
simulations with streamwise rotation, which highlights the complexity of near-wall
turbulence from the perspective of helicity. The helicity spectra of the turbulent channel
flows without rotation are disordered, and this reflects the multiscale nature of helicity
under rotation effects. For streamwise helicity spectra, the rotation number effects are not
monotonic. For spanwise helicity spectra, with the increase of rotation number, the small
scales along the streamwise direction can obtain a fuller development, and the large-scale
structures transfer to smaller scales. With a higher Reynolds number, more small scales
can be resolved in figure 10. The helicity spectrum density in large scales is smaller in
contrast to those with a low Reynolds number, and this means the transfer of helicity from
large scales to small scales is strengthened with a high Reynolds number. However, two
peaks of the streamwise and spanwise helicity spectra exist at a moderate rotation number.
Consistent with the numerical consequences in figure 9, this phenomenon originates from
the insufficient development of helicity at moderate rotation numbers. We infer that, with
sufficiently high rotation numbers and Reynolds numbers, the characteristics of helicity in
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Figure 11. Premultiplied one-dimensional helicity spectra as functions of the spanwise wavelength and wall
distance in the streamwise (Hx), wall-normal (Hy) and spanwise directions (Hz) at different rotation numbers.
The solid and dash lines correspond to 62.5% and 12.5 % of individual positive and negative maximum
amplitudes.

homogeneous and isotropic turbulence (Brissaud 1973; Chen, Chen & Eyink 2003a; Yan
et al. 2020) may appear. Hence, it has potential value to apply to some proven models to
wall-bounded turbulence.

The premultiplied helicity spectra along the spanwise direction as functions of the
normalized spanwise wavelength Aj = A;u; /v, where A, = 2w /k,, and wall distance
are shown in figure 11. In contrast to streamwise scales, the spanwise scales are not
sensitive to the rotation number, and the largest scales of the premultiplied helicity
spectra of the spanwise scales can be easily resolved at the present numerical resolutions,

940 A18-14


https://doi.org/10.1017/jfm.2022.250

https://doi.org/10.1017/jfm.2022.250 Published online by Cambridge University Press

Helicity distributions and transfer

@ 3 3 —®

320

160

£ 160 |

k

-320

Figure 12. Premultiplied one-dimensional helicity spectra as functions of the spanwise wavelength, around
the plane y* = 6.

especially in the near-wall regions. For streamwise helicity spectra, three apparent regions
exist with the wall distance. In the near-wall regions of y* < 10, the helicity spectrum
density is negative, and its amplitude is large enough to ensure a fully developed helicity
cascade. The peak is also located around y™ = 6, which is consistent with the near-wall
peak appearing in the helicity profiles. In the logarithmic regions, the helicity spectrum
density is positive, and its amplitude is smaller than that in the near-wall regions. In the
core regions, the helicity spectrum density is also negative. The three-layer distribution
of the streamwise helicity spectra reflects the complexity of the helicity statistics in
wall-bounded turbulence. For wall-normal and spanwise helicity spectra, the helicity
spectrum density is positive in near-wall regions and negative above the near-wall regions.
For all premultiplied helicity spectra, the amplitudes gradually increase, and the peak
location approaches the wall with the increase of rotation number. These regularities are
similar to the premultiplied helicity spectra of the streamwise scales. With the increase
of Reynolds number, the negative streamwise helicity would disappear, and the negative
spanwise helicity distribution would be weakened. Similar to streamwise scales, the spatial
fluxes of helicity along the wall-normal direction towards the wall are strengthened, and
high-helicity distributions are present in the near-wall regions.

We exhibit the premultiplied helicity spectra of the spanwise scales around the plane
of y© =6 in figure 12. Apparent scale separations appear in all cases, reflecting the
multiscale distributions of helicity in the near-wall regions. For all helicity spectra of
the spanwise scales, the rotation number effects are not monotonic, and the amplitudes
of helicity spectrum density at small scales decrease with the increase of rotation
number at low rotation numbers. Hence, rotation effects on the helicity scale distributions
hinder the transfer process of helicity from large scales to small scales. With a higher
Reynolds number, the amplitudes of the streamwise and spanwise helicity spectrum
densities are smaller, and the regulations are consistent with those of streamwise
scales.

For all helicity spectra, the distribution of isolines reflects that the spanwise length
scales of turbulent structures are smaller than the streamwise length scales. This indicates
that the helical structures in the near-wall regions develop both in the streamwise and
spanwise directions, and the streamwise lengths are larger than the spanwise lengths. This
conclusion is consistent with previous work about energy distributions and Reynolds stress
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scales (del Alamo & Jiménez 2003; Jiménez 2012). With the increase of rotation number,
the amplitudes of the premultiplied helicity spectra increase overall.

In this section, we exhibited the premultiplied helicity spectra in the streamwise and
spanwise directions. We find that the scale distributions of helicity are not chaotic, in
contrast to the case without rotation, especially in the near-wall regions. The multiscale
nature of helicity found in the near-wall regions highlights the complexity of wall-bounded
turbulence, and we study the scale interactions of helicity in the near-wall regions in the
next section.

3.3. Helicity flux

Based on the theoretical requirements of multiscale physics, the scale-to-scale fluxes of
energy and helicity in three-dimensional turbulent flows are emphasized (Domaradzki
et al. 1994; Piomelli et al. 1996). Yan et al. (2020) proposed that there exist two channels
of helicity cascade for anisotropic turbulent flows. In this section, the two channels of the
helicity cascade in turbulent channel flows with streamwise rotation are explored in detail
by the filtering method.

The filtering operation for any variable a is defined by

a(x,t) = / G(ryx)a(x —r,t)dr, 3.4

where G is the filter function, such as a box, Gaussian or sharp spectral filter (Pope 2001;
Yan et al. 2019). Although discrepancies exist when adopting different filter functions
(Buzzicotti et al. 2018), we employ the box filter function, which is moderate for capturing
inverse energy cascades (Piomelli et al. 1991; Leslie & Quarini 1979). It is defined in one
dimension as
1 i+n—1
a; = ol K + 2' Z aj + ajn | » (3.5)
Jj=i—n+1

where the filter width A = 2nAx, and Ax is the grid spacing (Martin, Piomelli & Candler

2000; Wang et al. 2012). In our numerical analysis, we apply the filter operation in the
streamwise and spanwise directions. The energy flux can be defined as

Hg = —‘L’ijSij, (3-6)

where 1; = u;u; — u;u; is the subgrid-scale stress, and S','j = (1/2)(0u;/0x; + du;/dx;) is
the large-scale strain. Similar to the previous Reynolds decomposition, the energy flux can
be rewritten as

nf =mnf"+ o, (3.7)

where 11 g’" = —(15) (S’ij) is the mean averaged in the streamwise and spanwise directions,

Hﬁf = — (1 — (tij))(Si,- - <Sii>) is the fluctuating component (Hértel ef al. 1994).

The mean and fluctuating components of energy flux have been investigated in previous
works (Hirtel et al. 1994; Hirtel & Kleiser 1997, 1998), and the statistical consequences
in figure 13 are consistent with these works. Here, we focus on the rotation effects on
their amplitudes and distributions. For the mean component of the energy flux, their
amplitudes are one order of magnitude larger than those of the fluctuating component,

and the peak locations become closer to the wall with the increase of rotation number.
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Figure 13. The mean and fluctuating components of energy flux at different rotation numbers. The filter
width A = 8Ax, where Ax is the streamwise grid spacing.

The self-amplification of the strain-rate field is the main contributor to the energy cascade
(Carbone & Bragg 2020). Above the buffer layers (y™ > 10), the rotation weakens the
amplitudes of the mean energy flux. For the fluctuating component, the forward energy
cascade is hindered, and the inverse energy cascade is promoted in the near-wall regions
and hindered above the buffer layer. This hindered energy cascade may be associated with
the helicity effect (Biferale er al. 2012; Alexakis 2017; Yan et al. 2020). With a higher
Reynolds number, the mean and fluctuating components of the energy flux are larger, and
the profile distributions are similar.
The helicity flux is defined as

=it + i, (3.8)
where HH ' is the first channel of helicity cascade defined as T Hl — TURU’ and
HH2 is the second channel of helicity cascade defined as HH2 yU.QU Here,

R,] = (1/2)(0w;/dxj + dw;j/dx;) is the large-scale symmetric vorticity gradient, y; =
(wiuj — wiuj) — (wju; — wju;) is the subgrid-scale vortex stretching stress and S?,-j =
(1/2)(Qu;/dx; — du;/dx;) (Yan et al. 2020). Similarly, we can also decompose the helicity
flux into mean and fluctuating components as

HHI H1m+HH1f, 17212 H2m +17H2f (3.9a,b)
mim = e gt gt ng Vi, (3.10a,b)
Here, Hiﬂm = —(rij)(l_?,j) is the mean of the first-channel helicity flux, HHlf

—(tj — (tij))(l_i,, (_,,)) is the fluctuating component of the first-channel hellclty flux,

I me = —{(¥y) (.Q,J) is the mean of the second-channel helicity flux and 17T, 2 =—(yj —

( yij))(!_Zij - (S_Z,])) is the fluctuating component of the second-channel hehclty flux.

In figure 14, we show the mean and fluctuating components of helicity flux at different
rotation numbers and Reynolds numbers. In contrast to the peaks located around y* = 10
of the energy flux in figure 13, the peaks of the helicity flux with a moderate rotation
number are located around y*© = 6, which is consistent with the distributions of the helicity
spectra in the near-wall regions. The mean helicity flux in the case without rotation is
nearly zero, which illustrates that the absence of the mean secondary flow results in
zero-mean net flux of the helicity cascade. The rotation effects on the profiles of the mean
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Figure 14. The mean and fluctuating components of helicity flux at different rotation numbers. The filter
width A = 8Ax.

helicity fluxes are similar to those of the helicity profiles and spectra. For the fluctuating
component of the helicity flux, their amplitudes are comparable to the mean components,
and the main reason for this lies in the large fluctuations of vorticity. Around the buffer
layer, the fluctuating helicity cascade can be strengthened with an increase of the rotation
number. It can be concluded that rotation intensifies the turbulent motions in the near-wall
regions, and promotes helicity transfers from outer regions to near-wall regions.

Next, we compare the discrepancies in the two channels of the helicity cascade in
figure 15. In our previous paper, we proposed that the first channel mainly originates
from vortex twisting, and the second channel mainly originates from vortex stretching
(Yan et al. 2020). In turbulent channel flows with streamwise rotation, there exists an
apparent vortex twisting process induced both by rotation and advection. However, the
vortex stretching process is still dominant because of the background shear flows. Hence,
we infer that the second channel is dominant, and the effect of the first channel is not
negligible in the present numerical simulations. The statistical results in figure 15 confirm
our predictions. The amplitudes of the second channel are larger than those of the first
channel, both for mean and fluctuating components. In addition, the peaks of the second
channel also are located around y*© = 6, and the peaks of the first channel are located
above the buffer layers. In the near-wall regions, shear motions are dominant, and vortex
stretching processes are also dominant, which leads to high helicity transfer through the
second channel. While above the buffer layers, the vortex twisting processes gradually
become important, which highlights the high helicity transfer through the first channel.

The spatial distributions of the first- and second-channel helicity fluxes are shown in
figure 16 by three-dimensional isosurfaces. As we stated previously, the second channel
of the helicity cascade mainly originates from the vortex stretching process, and the
spatial distributions of the second channel present large-scale ordered streak structures.
These ordered streaks are closely associated with Reynolds stress structures and high-
and low-speed velocity streaks (Jiménez 2012). The ordered spatial distributions of the
secondary channel indicate that the second channel is more intermittent than the first
channel, which verifies the conclusions about intermittency discrepancy in homogeneous
and isotropic turbulence (Yan et al. 2020). In contrast, the spatial distributions of the first
channel are chaotic, and they present small-scale block structures, which is consistent with
the vortex twisting process. The contours of the two channels in the insets of figure 16
indicate that the dominant spatial distributions of the second channel are concentrated
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Figure 15. The mean and fluctuating components of the first- and second-channel helicity fluxes at different
rotation numbers and Reynolds numbers. Here, H1 marks the first channel, and H2 marks the second channel.
The filter width A = 8Ax.

within the near-wall regions in contrast to the first channel, which results from a more
dominant role of vortex stretching in the near-wall regions.

4. Conclusions and discussion

In this paper, we investigated the helicity statistics in turbulent channel flows with
streamwise rotation, and focused on the profiles, spectra and scale-to-scale fluxes of
helicity. More new physical phenomena were revealed in wall-bounded turbulent flows,
in contrast to homogeneous and isotropic turbulence.

In contrast to turbulent channel flows without rotation, the helicity profiles of turbulent
channel flows with streamwise rotation are regular along the wall-normal direction. The
appearance of high helicity mainly originates from the mean secondary flows, and it
manifests as the mean spanwise velocity and streamwise vorticity. The sign of the helicity
is positive in the near-wall regions and negative in the core regions, and its amplitude
changes continuously with the wall distance. Helicity anisotropy reflects on the different
distributions in the streamwise, wall-normal and spanwise directions, and new peaks
of the mean streamwise and spanwise helicity profiles exist in the near-wall regions
around y™ = 6. These peaks are located under the buffer layers, and they differ with
the turbulent energy distribution. The near-wall peaks are concealed in the total helicity
profiles, because their amplitudes are nearly the same, and their signs are opposite.
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Figure 16. Isosurfaces of the first channel () and second channel (b) of helicity cascade with filter width
A = 8Ax in case STO7. The thresholds are selected as 10 % of the corresponding maximum. The insets are the
corresponding contours of a cross-section perpendicular to the streamwise direction.

With the increase of rotation number, all peak locations of the helicity profiles move closer
to the wall. Rotation promotes helicity spatial transfer from outer regions to near-wall
regions, and it presents highly helical structures in the near-wall regions. Reynolds number
effects are similar to rotation effects. With a higher Reynolds number, the developments of
turbulent flows are fuller, which is represented as the stronger nonlinearity, the more small
scales resolved, the larger amplitudes of energy and helicity and the stronger cross-scale
transfer. Even at a weak rotation, the helicity distributions tend to be regular at a higher
Reynolds number.

The positive and negative signs of the helicity render complex its spatial and scale
distributions in wall-bounded turbulence. The high helicity amplitudes in the near-wall
regions indicate that multiscale developments of helicity may exist. The apparent scale
separations of premultiplied helicity spectra confirm this prediction, and we found that
multilayer helicity distributions also exist along the wall-normal direction. Rotation
promotes the small-scale development of helicity, especially in the near-wall regions.
The premultiplied helicity spectra of the streamwise and spanwise scales illustrate that
highly helical structures develop both in the streamwise and spanwise directions, and the
streamwise scales are larger than the spanwise scales.

We adopted filtering and Reynolds decomposition methods to investigate the dual
channels of the helicity cascade we proposed previously (Yan et al. 2020). The high
shearing motions occurring in the near-wall regions mean that the vortex stretching
is dominant in contrast to vortex twisting. Hence, the second channel is dominant for
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the helicity cascade. In addition, the peaks of the helicity cascade through the second
channel are also located around y*© = 6, and they are closely associated with the peaks of
streamwise or spanwise helicity profiles. The spatial distributions of the second channel
are ordered, and their scales are very large along the streamwise direction. Its distributions
are similar to the Reynolds stress or streak structures, and are more intermittent than in the
first channel.

The high and regular helicity distribution in the wall-bounded turbulent flows provides
an alternative representation for the secondary flows, which are associated with the
presence of non-zero streamwise vorticity (Bradshaw 1987). According to the origin
discrepancy, there are first and second kinds of Prandtl’s secondary flow. The first kind
originates from the imbalance between the cross-stream pressure gradient and centrifugal
force, such as occurs in curved pipes (Berger, Talbot & Yao 1983; Hiittl & Friedrich 2001;
Noorani, El Khoury & Schlatter 2013; Chin et al. 2020). The second kind originates from
Reynolds stress gradients with non-circular cross-section, such as occurs in duct flows
(Modesti et al. 2018; Pirozzoli et al. 2018; Orlandi & Pirozzoli 2020). The presence of
the streamwise vorticity combined with the streamwise velocity corresponds to a high and
regular helicity distribution. We may infer that the high and regular helicity distribution
is general in secondary flows. More structure information of the secondary flows can be
uncovered via investigating the statistical characteristics of helicity. In the Appendix, we
select the turbulent duct flows with different Reynolds numbers (second kind of Prandtl’s
secondary flow) to illustrate the similarity and discrepancy of the helicity distribution
between turbulent duct flows and turbulent channel flows with streamwise rotation. It can
be concluded that the high and regular helicity distribution is general in secondary flows,
and this phenomenon is insensitive to the Reynolds number, especially within the near-wall
regions.

The discovery of the new peaks in the near-wall regions uncovers the helicity
distributions, and it provides a theoretical foundation to confirm helicity effects in
wall-bounded turbulent flows. In the future, larger computational domains with higher
rotation numbers should be investigated to verify the nonmonotonic rotation effects. More
anisotropic turbulent flows can be selected to investigate their helicity statistics, such as
pipe flows with rotation, Rayleigh—Taylor instabilities, etc.
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Figure 17. (a) Cross-section contour of the normalized mean streamwise vorticity, accompanied by the isolines
of the normalized mean streamwise velocity with Re; = 150. (b) Cross-section contour of the normalized mean
streamwise helicity, accompanied by the vectors of the normalized mean wall-normal velocities with Re; =
150. Cross-section contours of the normalized mean streamwise helicity with Re; = 220 (¢), Rer = 500 (d),
Re; = 1000 (e) and with Re; = 2000 (f). The two dot-dashed lines mark the positions analysed subsequently.

Appendix. Helicity distribution in square duct flows

In this section, we select square duct flows as one type of Prandtl’s secondary flow of
the second kind, to show the helicity distribution in other wall-bounded turbulent flows.
The cross-section flow statistics were downloaded from a public turbulent database (see
http://newton.dma.uniromal.it/square_duct/), including the mean streamwise velocity (u),
the mean streamwise vorticity (@) and the mean wall-normal velocities (v) and (w), with
Re; = 150, 220, 500, 1000 and 2000. This public turbulent database is highly credible,
and has been validated in previous valuable works (Pirozzoli et al. 2018; Modesti et al.
2018; Orlandi & Pirozzoli 2020).

We show the numerical results of the turbulent duct flows in figure 17, and all variables
are non-dimensionalized by the inner scale. Only a quarter slice is selected for the sake
of simplicity. The mean streamwise vorticity contour and bended isolines of the mean
streamwise velocity in figure 17(a) reflect the eight counter-rotating eddies in turbulent
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Figure 18. The normalized mean wall-normal velocities (v)™ and (w)™, the normalized mean streamwise
vorticity and the normalized mean streamwise helicity profiles (a) with z+ & 50 and (b) with y* ~ 50.

duct flows, which bring high-momentum fluid from the duct towards the corners (Pirozzoli
et al. 2018). In addition, there are also corresponding counter-rotating eddies within the
near-wall regions, which are visual in the current log—log coordinates. The counter-rotating
eddies outside the near-wall regions can also be represented by regular streamwise helicity
distribution, which applies to all current cases with different Reynolds numbers. This
means that the secondary flows in turbulent duct flows represented by a regular distribution
might be general. With the increase of Reynolds number, the mean streamwise helicity
increases slightly, and its peak locations tend to approach the corners. This Reynolds
number effect is similar with that in turbulent channel flows with streamwise rotation.

The profile distributions associated with the secondary flows marked in figure 17(f)
are exhibited in figure 18. In contrast to the turbulent channel flows with streamwise
rotation, the secondary flows exist both in two directions within the cross-section. Hence,
the secondary flow profiles apply to both wall-normal velocities (v) ™ and (w)*. The profile
distributions of (v)™ and (w)™ are on the diagonal symmetry in figures 18(a) and 18(b),
respectively. The diagonal symmetry determines that the normalized mean streamwise
vorticities in figures 18(a) and 18(b) are opposite numbers. The mean streamwise helicity
profile distribution is a combined result of the mean streamwise velocity and vorticity.
The mean streamwise velocity increase with the increase of the wall distance, while the
mean streamwise vorticity is largest within the near-wall regions. Hence, the high-helicity
distribution appears around the middle regions. The numerical consequences with Re; =
2000 in figures 18(a) and 18(b) indicate that the high helicity is locate around y© = 7+ ~
20. The high-helicity distribution regulation also applies to the cases with other lower
Reynolds numbers, and this means that the helicity distribution is insensitive to Reynolds
number.
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