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A B S T R A C T   

Shear bands are closely linked with the plasticity and fracture behaviors of metallic glasses (MGs). This work 
proposes a new idea to predict shear bands by continuously distributed dislocations. The dislocations are unreal 
and used to model the plastic deformation of shear band. The possible positions of shear band initiation are 
determined based on the elastic stress field, and the direction and length of shear band propagation are deter
mined by the distributed dislocation technique. Finite element simulations based on constitutive model are 
carried out to compare with the theoretical modeling. Two examples are considered, i.e., shear bands near a void 
and a notch under tensile loading. The results show that the theoretically predicted shear band morphology is 
well consistent with the finite element simulations, which verifies the validation of using distributed dislocations 
to predict shear bands. This work provides a new way to model shear band, and it has potential applications in 
predicting shear band morphology and fracture behaviors in MGs.   

1. Introduction 

Metallic glasses (MGs) have attracted much attention due to their 
superior strength and high elastic strain. However, MGs are lack of 
ductility and often caused abrupt quasi-brittle failure at room temper
ature. In order to improve their ductility, shear bands, as the main 
plastic carrier of MGs, have been a research hotspot. Usually, shear 
bands initiate at the stress concentrators [1,2], and then propagate along 
the specific planes [2]. When a shear band propagates throughout the 
specimen, the strength of the MG is weakened quickly and an abrupt 
fracture will follow shortly. In fact, the formation of shear bands is 
regarded as a prelude of fracture of MGs. 

Seeing that reasonable prediction of shear banding is of significance 
to analyze the failure behaviors of MGs, the research on shear banding 
has been received extensive interest in recent years. To deeply reveal the 
mechanisms of shear band initiation and propagation, numerous 
experimental observations [1,3–10], theoretical methods [2,11,12], 
molecular dynamics simulations [13–16] and finite element (FE) simu
lations [17–22] have been conducted. From the perspective of experi
mental observation, Demetriou et al. [3] observed the evolution of shear 
banding near a notch and fracture behaviors in Pb-based MG. Gludovatz 

et al. [4] observed size-dependence modes of shear banding near a notch 
and crack growth in Pb-based MG. Qu et al. [1] found the propagation 
modes of shear bands in Pb-based and Ti-based MGs under compression. 
From the perspective of theoretical analysis, Packard and Schuh [2] 
analyzed shear-banding path and yield stress of MGs under Hertzian 
pressure. In the analyses, maximum shear stress criterion, 
pressure-modified maximum shear stress criterion and shear plane cri
terion were applied, respectively. The shear plane criterion was verified 
to be more accurate than others, which demonstrates the shear band 
propagation is attributed to the stresses along the specific shear plane, 
rather than the maximum stress. The above investigations have revealed 
many interesting phenomena. However, how to capture the 
spatio-temporal evolution nature of shear bands is still a challenge. 
Therefore, Yang et al. [13] carried out atomistic simulations to study the 
evolution of shear bands and crack nucleation in Zr-based MG under 
nanoindentation; Wang et al. [15] studied the influence of nanoscale 
pores on shear banding, strength and ductility of Zr-based MG by mo
lecular dynamics simulations. 

However, atomistic simulations can only be applied to calculate 
nanoscale models, and the statistical phenomena and collective behav
iors associated with multiple shear band interactions under typical 
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experimental conditions cannot be captured. Instead, FE simulation 
based on constitutive models of MG is a feasible solution. Anand and Su 
[17] proposed a Mohr-Coulomb type constitutive model and the model 
was implemented in FE simulations to simulate shear bands in MGs. 
Based on the proposed constitutive model, Su and Anand [18] simulated 
the evolution of shear bands under indentation; Tandaiya et al. simu
lated shear band morphology near mode I crack tip [19] and 
mixed-mode crack tip [20]. These simulated results based on the 
constitutive model match well with experimental observations, which 
illustrates the availability of the constitutive model to simulate shear 
bands. Hence, FE simulations based on the constitutive model will be 
applied to verify our new idea of predicting shear band. 

In this paper, we adopt a new way to predict the propagation of shear 
band. The idea is to replace the shear deformation along a shear band by 
continuously distributed dislocations, and the length and direction of 
shear band propagation are determined based on the distributed dislo
cation technique (DDT). In principle, the distributed dislocation can be 
applied to model complex deformation modes of various materials, and 
it has been successfully applied to model cracks [23–26], boundaries 
[23,27], plasticity [28–30] and dislocation slip [31–34], while no 
research work has been found it was used to model shear band. In fact, 
shear banding is a relative movement of two parts of MG along a specific 
shear plane, and the shear deformation can be modeled by continuously 
distributed glide dislocations according to the DDT. The integral equa
tion of dislocation density can be established based on the condition that 
the stresses along shear bands satisfy the corresponding yield conditions 
(such as Mohr-Coulomb criterion [35] or the ellipse criterion [36]). The 
dislocation density function is obtained by solving the integral equation, 
and then the direction and length of shear band can be determined. This 
work will provide a new way to study shear banding in MGs and broaden 
the application scope of the DDT. 

This paper is organized as follows. In Section 2, the solution scheme 
is presented. In order to compare with the proposed theoretical method, 
the FE simulations based on the constitutive model developed by Anand 
and Su are conducted. The constitutive modeling is introduced in this 
section. The theoretical solution of shear banding near a void and a 
notch is presented based on the DDT. In Section 3, the results are shown 
and discussed. The comparison of shear band morphology between 
theoretical modeling and FE simulation is shown. Finally, Section 4 is 
the concluding remark. 

2. Solution scheme 

2.1. Constitutive modeling 

2.1.1. Main equations for shear-band-deformation respond in MGs 
The constitutive model used in this work was proposed by Anand and 

Su [17], which was based on the hypothesis of finite deformation and 
Mohr-Coulomb yield condition. It has been verified that the constitutive 
model is valid to model shear band in Zr-based MGs under various 
loading modes, such as tension, compression, indentation, etc. In the 
constitutive model, it is assumed that plastic flow occurs by shearing 
accompanied by dilatation relative to some slip systems, and there are 
six potential slip systems: 

s(1) = e1cosθ̂ + e3sinθ̂, m(1) = e1sinθ̂ − e3cosθ̂;
s(2) = e1cosθ̂ − e3sinθ̂, m(2) = e1sinθ̂ + e3cosθ̂;
s(3) = e1cosθ̂ + e2sinθ̂, m(3) = e1sinθ̂ − e2cosθ̂;
s(4) = e1cosθ̂ − e2sinθ̂, m(4) = e1sinθ̂ + e2cosθ̂;
s(5) = e2cosθ̂ + e3sinθ̂, m(5) = e2sinθ̂ − e3cosθ̂;
s(6) = e2cosθ̂ − e3sinθ̂, m(6) = e2sinθ̂ + e3cosθ̂;

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1)  

where s(k) is a slip direction and m(k) is a normal direction of slip plane, 
and their superscript denotes the slip system. {ei, i= 1,2, 3} are the 
orthonormal principal directions of stress tensor, and the stress tensor is 
symmetric and it has the spectral representation σ = σiei ⊗ ei (σi is the 

principal stress and σ1 ≥ σ2 ≥ σ3). ̂θ = π
4+

arctan μ
2 , where μ is the internal 

friction coefficient. The resolved shear and compressive normal stresses 
on each slip system can be given by 

τ(k) = s(k)⋅σm(k), σ(k) = m(k)⋅σm(k). (2) 

Hence, Mohr-Coulomb yield criterion for each slip system can be 
written as τ(k) − μσ(k) ≥ c, where c is the cohesion. Shear band will be 
nucleated and propagated when the Mohr-Coulomb yield condition is 
achieved in any one slip system. Once the shear band is generated, the 
cohesion in the shear band will be decreased and the strain softening will 
appear. The cohesion function is defined as 

c = τ0 + b
(

1 −
η
η0

)q

, (3)  

where τ0 is the initial cohesion. b, q and η0 are material parameters. η is 
the plastic volumetric strain, and it can be determined by its rate func
tion 

η̇ = g0

(

1 −
η
η0

)p ∑6

k=1
v(k), η(0) = 0, (4)  

where v(k) is the shearing rate, and it is defined as 

v(k) = v0

(
τ(k)

c + μσ(k)

)1/m

, (5)  

where v0 and m are material parameters. Further, the plastic stretching 
tensor is given by 

Dp =
∑6

k=1
v(k)

[

sym
(
s(k) ⊗ m(k))+ g0

(

1 −
η
η0

)p

m(k) ⊗ m(k)
]

. (6) 

To measure the plastic shear deformation of shear band, an equiva
lent plastic shear strain (EPSS) is defined as 

EPSS =

∫ t

0
|Dp

0|dt, (7)  

where Dp
0 is the deviatoric tensor of Dp. 

2.1.2. FE implementation and verification of constitutive model 
In this work, the constitutive model is implemented in the FE soft

ware ABAQUS by writing a user material subroutine VUMAT [37], and 
the MG with composition Zr56.06Cu23.39Ni15.54Ta2.27Al1.62Ti1.11 is 
considered. The related material parameters used in the FE simulations 
are listed in Table 1, which are obtained from the previous studies [17, 
18,20,38–40]. The Young’s modulus and Poisson’s ratio are 89 GPa [18] 
and 0.36 [39], respectively. The internal friction coefficient is taken as 
0.04 [40]. The strain rate sensitivity parameter is usually taken from 
0.005 to 0.02 [17,18,20,38], and it is taken as 0.01 in this work. The 

Table 1. 
Material parameters in the present FE simulation [17,18,20,38–40].  

Material parameters Value Material parameters Value 

Young’s modulus, E  89 GPa Cohesion function 
exponent, q  

2 

Poisson’s ratio, ν  0.36 Dilatancy function 
exponent, p  

0.5 

Dilatancy function coefficient in 
tension, g0  

0.4 Internal friction 
coefficient, μ  

0.04 

Dilatancy function coefficient in 
compression, g0  

0.04 Initial cohesion, τ0  820 
MPa 

Reference shear strain rate, v0  0.001 
s− 1 

Cohesion function 
coefficient, b  

80 MPa 

Strain rate sensitivity parameter, 
m  

0.01 Saturation free volume, 
η0  

0.005  
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parameters in the dilatancy function and the cohesion function are ob
tained from the Ref. [18]. 

To verify the validity of the VUMAT programing, a single-element 
model under uniaxial tension and compression loading was calculated. 
The true stress-strain response is plotted in Fig. 1. The results show that 
the compressive yield stress is higher than the tensile yield stress and the 
strain softening in tension is much faster than it in compression, which is 
consistent with the experiment results [41]. It should be noted that the 
damage behaviors in shear band do not be considered, and the strain 
softening is only considered, as shown in Fig. 1. Previous works [18,20] 
have verified that this way is feasible to simulate shear bands in Zr-based 
MGs. To further verify the validity of the VUMAT programing, a 
two-dimensional plane strain FE model is established, as shown in Fig. 2 

(a). The plate contains a circle micro-void in its center under uniform 
tension and compression. The element type is CPE4R. The contour of 
EPSS under tension and compression is plotted in Fig. 2(b) and (c), 
respectively. Generally, the formation of shear bands is regarded as a 
prelude of fracture of MGs, and the propagation of shear bands causes 
the final fracture. In Fig. 2, shear bands are initiated from a micro-scale 
void and propagated through the entire specimen. The inclined angles of 
shear band are 50◦ and 44◦ in tension and compression, respectively. In 
fact, the difference of mechanical behaviors between tension and 
compression is an important characteristic in MGs, such as fracture 
angle and fracture stress [36,41]. The present simulations are consistent 
with the mechanical characteristics of MGs, and thus the VUMAT pro
graming is feasible to simulate shear band. 

2.2. Distributed dislocation modeling of shear band 

According to the DDT, a dislocation with infinitesimal Burgers vector 
can serve as a kind of strain nuclei in solids, and various deformation 
modes can be modeled by distributed dislocations as long as the density 
of distributed dislocations is reasonable. The opening-mode deformation 
(mode I), the shearing-mode deformation (mode II), and the tearing- 
mode deformation (mode III) of the crack can be modeled by the 
continuous glide dislocations, the climb dislocations, and the screw 
dislocations, respectively. Hence, a mixed-mode crack can be replaced 
by mixed-mode dislocations. Fig. 3(a)–(c) show the modeling of a 
mixed-mode crack by continuously distributed dislocations. The dislo
cation is denoted by the red symbol ‘⊥’. Similarly, a shear band (blue 
line) could be also modeled by continuously distributed dislocations, as 
shown in Fig. 3(d)–(f). In fact, the main difference between modeling 
shear band and modeling crack is the boundary condition along the 
dislocation strips. For the crack problem, the crack plane is traction-free. 
For MGs, a shear band will be generated if the critical condition τ + μσ =

τ0 is reached (for simplicity, assuming a Mohr-Coulomb yield criterion, 
although the ellipse criterion has been found to be better for MGs [36, 

Fig. 1.. Stress–strain response of a single C3D8R element under tension or 
compression. 

Fig. 2.. Simulation of fracture angle in plane strain under uniform tension and compression: (a) FE model, a two-dimensional plate containing a micro-void; (b) 
contour of EPSS under tension; (c) contour of EPSS under compression. 
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42]). Here, τ and σ are the elastic shear and normal stresses along the 
shear plane; μ is the internal friction coefficient; τ0 is the cohesion. Shear 
banding is an in-plane shearing-mode deformation, and thus, theoreti
cally, it can be modeled by the glide dislocations distributed along the 
shear plane. In the shear band, the yield condition τ +μσ = τ0 must be 
satisfied. Although the concept of dislocation has been used for inter
preting the shear plastic deformation of MGs some decades ago [43], it is 
now generally accepted that the plastic deformation of MGs relies on 
nanoscale structural defects like shear transformation zone [44], rather 
than dislocations. Thus, it should be pointed out that the distributed 
dislocations in the present theoretical modeling are unreal, and they are 
used only to model the shearing deformation of shear bands. 

Next, two examples will be considered, and our idea will be verified 
from the simple to the complex. The first is shear banding near a square 
void under uniform tension. Due to the stress concentration at the cor
ners of the void, shear band will be initiated from the corners. The 
stresses are concentrated at the corner, namely, it is a point-type stress 
concentrator (two-dimensional plane is considered). Thus, the shear 

band morphology is relatively simple. The second example is a more 
complex case, that is shear banding near a notch. This is a line-type 
stress concentrator. Thus, the shear band morphology is more complex. 

2.3. Shear banding near a square void 

In this section, the problem of shear banding near a square void is 
considered. The FE model for this problem is firstly introduced, and then 
the theoretical solution based on the DDT is presented. 

2.3.1. The FE model 
The FE model is a two-dimensional square plate containing a square 

void in the center of the model under plane strain state, and it is 
established by ABAQUS/Explicit. The model is subjected to the uniaxial 
uniform tensile load in the vertical direction. The length of the model is 
24 mm and the length of the void is 2 mm. The length of the model 
exceeds ten times of the void length, so the free surface has little effect 
on the plastic deformation near the void. The element type is CPE4R. 

Fig. 3.. Schematic of using continuously distributed dislocations to model cracking and shear banding: (a) and (b) the crack will slide and open under external 
loading; (c) sliding and opening-mode deformation of the crack plane are replaced by continuously dislocations distributed along the crack; (d) the stress components 
along a specific plane in MGs satisfy τ+μσ>τ0, and then a shear band will be initiated and propagated (e); (f) the shear deformation of shear band is modeled by 
continuously dislocations distributed along the shear band. 

Fig. 4.. Schematic of theoretical modeling of shear banding near the square void: (a) an infinite plane contains a square void under uniaxial uniform tensile load σa, 
and a shear band is generated due to the stress concentration at the corner of the void; (b) the void is cut out from an infinite plane by a kinked crack, and then the 
kinked crack and the shear band are modeled by continuously distributed dislocations. L = 2 mm, S is unknow and need to be solved. 
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There are 35,742 elements in the model. The length of the elements near 
the void is 0.04 mm. The biggest element is in the boundary of the plate 
and the length is 2 mm. 

2.3.2. Theoretical solution based on the DDT 
In this section, we use distributed dislocations to model shear band 

near a void. The stress field induced by dislocations in an infinite plane 
can be obtained easily. For simplicity, an infinite plate containing a 
square void and a shear band under uniaxial tensile load is considered in 
the theoretical model. Due to the void, an image force on the disloca
tions will be generated, and the stress field is complicated in this case. 
For simplicity, the problem of an infinite plane containing a void is 
considered as the equivalent problem of an infinite plane containing a 
kinked crack. The kinked crack is located along the boundaries of the 
void, namely, the void is cut out by the kinked crack(. According to the 
DDT, the crack can be modelled as an array of dislocations, so the pre
sent problem is simplified as an infinite plane containing dislocations. 

As shown in Fig. 4(a), in the theoretical model, an infinite plate 
contains a square void. Although an infinite plate is considered in the 
theoretical model and a finite plate is simulated in the FE model, there is 
little difference between them. This is because the free surface has little 
effect on the deformation near the void when the distance between the 
void and the free surface surpasses ten times the size of the void [45]. As 
shown in Fig. 4, a shear band (blue line) is generated due to the stress 
concentration at the corner. S is the length of the shear band and θ is the 
inclined angle. The positive value of θ is defined as the anticlockwise 
direction. In order to compare with the FE simulation, L is fixed at 2 mm. 

According to the analysis in Section 2.2, the kinked crack and shear 
banding can be modeled by continuously distributed dislocations, as 
shown in Fig. 4(b). The problem is described as an infinite elastic plane 
containing five dislocation strips (four dislocation strips are distributed 
along the boundaries of the void and one dislocation strip is along the 
shear band) under uniaxial uniform tensile load. The stress field in the 
global coordinate induced by multiple dislocation strips in an infinite 
elastic plane has been derived, as shown in Appendix. Hence, the stress 
components due to five dislocation strips can be given by 

σtotal
ij (x, y) =

∑5

n=1
σij
(
x, y, θn,αn, dn, ln,Bxn,Byn

)
ij = xx xy or yy, (8)  

where dn is the distance between the origin of the global coordinate and 
the center of the dislocation strip “n”; ln is the half length of the dislo
cation strip; θn is the orientation angle and αn is the inclined angle (see 
Appendix); Bxn and Byn are the components of dislocation density 
function, which are unknown. Because the shear band is modeled by 
glide dislocations, the component Byn of the shear band is equal to zero. 
The stress field of the problem shown in Fig. 4 can be obtained by the 
superposition of the stresses induced by dislocations and the applied 
stresses, so it can be given by 

σij(x, y) = σtotal
ij (x, y) + σ̃ij(x, y) ij = xx xy or yy, (9)  

Here, σ̃ij(x, y) is induced by the applied tensile load, and σ̃xx = σ̃xy = 0,
σ̃yy = σa. In order to obtain the dislocation density function, related 

equations need to be established by stress boundary conditions. The 

Fig. 5.. Schematic of the model of a rectangular specimen containing a notch: (a) FE model, a rectangular specimen containing a half of circle notch under uniaxial 
tensile load; (b) theoretical model, a two-dimension rectangular specimen containing a half of polygonal notch and an arbitrary shear band originating from the 
notch; (c) the specimen of the theoretical model is cut out from an infinite plane by a kinked crack, and then the kinked crack and the shear band are replaced by 
continuously distributed dislocations. R = 1.5 mm, H = 10 mm and W = 16 mm. 
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boundary conditions are described that the kinked crack plane is 
traction-free and the shear band satisfies τ+μσ = τ0. The stress compo
nents along each dislocation strip can be calculated by the relationship 
between the local coordinate and the global coordinate (Eq. (10)) and 
the Mohr stress transformation (Eq. (11)). 

x = dncosθn + xncosαn − ynsinαn, (10a)  

y = dnsinθn + xnsinαn + yncosαn. (10b)  

σynyn = σxx(x, y)(sinαn)
2
+ σyy(x, y)(cosαn)

2
− σxy(x, y)sin2αn, (11a)  

σxnyn = −
{

σxx(x, y) − σyy(x, y)
}
(sinαncosαn) + σxy(x, y)cos2αn. (11b) 

Hence, the integral equations of dislocation density functions can be 
established by the stress boundary conditions of the void and the shear 
band, as shown in Eq. (12). 

σynyn = σxnyn = 0 forthevoidboundaries, (12a)  

σxnyn + μσynyn = τ0 fortheshearband. (12b) 

In Eq. (12), the unknowns are Bxn, Byn and S. The analytical solution 
of the integral equations is difficult to obtain, but the numerical solution 
can be solved by the Gauss-Chebyshev quadrature method [23,46,47]. 

Fig. 6.. Comparison of normalized elastic stress field near the void between theoretical modeling (right) and FE simulation (left).  
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The core idea of the numerical method is that the continuous integral 
equations can be discretized as a series of nonlinear equations. The 
numerical solution is relatively accurate as long as the discretized 
number is large enough. Giving a specific value of θ, the corresponding 
value of S can be obtained by Eq. (12). Therefore, the variation of S 
versus θ can be obtained. In this paper, a hypothesis is proposed that the 
shear band will propagate along the direction in which S reaches its 
maximal value. Based on the hypothesis, the propagating direction and 
length of shear band can be determined. 

2.4. Shear banding near a notch 

In this section, we consider the problem of shear banding near a 
notch in a finite-size plate. Firstly, the FE model is introduced in Section 
2.4.1. Secondly, the theoretical solution is presented based on the DDT 
in Section 2.4.2. 

2.4.1. The FE model 
This is a two-dimensional rectangular plate containing a half-circle 

notch under plane strain state, and it is established by ABAQUS/ 
Explicit. The schematic of the FE is shown in Fig. 5(a). The uniform 
tensile load is applied on the left and right boundaries. The geometric 
dimensions of this model are R = 1.5 mm, H = 10 mm and W = 16 mm. 
The element type is CPE4R. There are 58,776 elements in the model. The 
smallest element near the notch is 0.008 mm. 

2.4.2. Theoretical solution based on the DDT 
In this section, a finite plate containing a notch under uniform tensile 

load is considered. For simplicity, the problem of a finite plane con
taining a notch is considered as the equivalent problem of an infinite 
plane containing a kinked crack. The kinked crack is located along the 
boundaries of the finite plate, and the plate is cut out by the kinked crack 
from an infinite plane. According to the DDT, the crack can be modelled 
as an array of dislocations, so the present problem is simplified as an 
infinite plane containing dislocations. As shown in Fig. 5(b) and (c), a 
finite-size plate contains a notch under the uniform tensile load. For 
simplification, the circle notch is replaced by a regular polygon (14 
sides). Due to the notch, the stress concentration is generated near the 
notch. Hence, we assume that shear banding is nucleated from the notch. 
Based on the DDT, the boundaries of the specimen and the shear band 
are modeled by continuously distributed dislocations along them. The 
present problem can be described that an infinite plane contains 13 
dislocation strips (12 dislocation strips along the boundaries and 1 
dislocation strip along the shear band) and the tensile load is applied on 
the left and right boundaries of the specimen. The problem of multiple 

dislocation strips in an infinite plane has been solved in Appendix, and 
the stress field can be given by 

σij(x, y) = σtotal
ij (x, y) =

∑13

n=1
σij
(
x, y, θn,αn, dn, ln,Bxn,Byn

)
ij = xx xy or yy.

(13) 

Notice that the stress field in Eq. (13) is only contributed by dislo
cations without the contribution of applied load, which is different from 
the problem of the void. In the problem of the void, the external load is 
remote uniform tension, while the tensile load is applied on the dislo
cation strips in the present problem. 

The stress components along each dislocation strip can be calculated 
by Eqs. (10) and (11). The boundary conditions of the problem in 
Fig. (12) are that the uniform tensile loading is applied on the right and 
left dislocation strips and other dislocation strips along the boundaries 
are traction-free. According to these conditions, the integral equations 
can be established in Eq. (14). 

σynyn = σa fortheleftandrightboundaries, (14a)  

σxnyn = 0 fortheleftandrightboundaries, (14b)  

σynyn = σxnyn = 0 forotherboundaries, (14c)  

σxnyn + μσynyn = τ0 fortheshearband. (14d) 

Eq. (14) can be solved by the Gauss-Chebyshev quadrature method, 
and the shear band length s can be obtained. The variation of s versus β 
and α can be calculated. β and α are two parameters to determine the 
orientation and the inclined angle of the shear band. In order to examine 
the range of shear band propagation, β is taken every 10◦. In doing so, 
the maximal value of s can be obtained, and then the length and inclined 
angle of shear band propagation can be determined. 

3. Results and discussions 

In Section 3, the results are shown and discussed. Firstly, the theo
retical elastic stress field is verified by FE simulations. Secondly, the 
shear band morphology predicted by the DDT is compared with FE 
simulations. The void problem is analyzed in Section 3.1 and the notch 
problem is discussed in Section 3.2. 

3.1. Shear banding near a void 

Because shear bands in MGs are usually initiated at stress concen
trators, we must first examine the exactitude of the elastic stress field by 
the DDT to determine the stress concentration zones. The comparison of 

Fig. 7.. (a) contour chart of EPSS by FE simulation; (b) theoretical results of using dislocations to model shear banding: the variation of shear band length versus its 
possible direction. The tensile load is σa/τ0=1. 
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normalized elastic stress field between FE simulations and theoretical 
calculations by the DDT is shown in Fig. 6. The results show little dif
ference between theoretical modeling and FE simulation, which is a 
mutual validation between them. The stress concentration zones are 
located at the vicinity of the corners of the void. Hence, shear bands are 
expected to be initiated from the corners. The shear band propagating 
length can be obtained by the DDT. The contour chart of equivalent 
plastic shear strain (EPSS) by FE simulations was plotted in Fig. 7(a), and 
the variation of S versus θ was plotted in Fig. 7(b). 

The results in Fig. 7 show the propagating length and direction of 
shear bands. In the FE simulation, the propagating length S is 0.993 mm 

at θ=52◦ and S = 0.99 mm at θ=− 43◦ In the theoretical modeling, S is 
1.032 mm at θ=54◦ and S = 1.096 mm at θ=− 44◦ The relative errors of 
propagating length between FE simulation and theoretical modeling are 
3.8% and 9.7%. The relative errors of propagating direction are 3.8% 
and 2.3%. The relative error of shear band propagating direction is 
within 5% and it is within 10% for the shear band propagating length. 
The results illustrate it is reasonable that the shear band will propagate 
along the direction in which S reaches its maximal value, and more 
importantly, the DDT is valid to predict shear bands in MGs. 

Fig. 8.. Comparison of elastic stress field near the notch between theoretical modeling (right) and FE simulation (left).  
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3.2. Shear banding near a notch 

In this section, the problem of shear bands near a notch in MGs is 
analyzed. The comparison of normalized elastic stress field near the 
notch between theoretical modeling (labelled by lowercase letters) and 
FE simulation (labelled by uppercase letters) is shown in Fig. 8. The 
results show there is a little difference between them near the notch. 
There are two main reasons for the difference: 1) In the numerical so
lution, continuous dislocation density functions are discretized, which 
causes inaccurate stress distribution near dislocation strips; 2) In the 
theoretical modeling, a polygonal notch is used, which is an approxi
mate model compared with the FE model. However, the difference is 
relatively small. In this paper, we focus on the prediction of shear band 
morphology, i.e., plastic zone shape and size. Compared with entire 
plastic zone, the difference of elastic stress field in the vicinity of the 
notch is insignificant. In the theoretical modeling, the shear band 
propagating direction and length are determined by the stresses along 
the shear band. Hence, as long as the stress field is relatively accurate, 
the simplification in the theoretical modeling is reasonable. 

As shown in Fig. 9, the plastic zone under different tensile loads is 
determined by theoretical modeling and FE simulation. The results show 

the theoretical shear band morphology is relatively consistent with FE 
results. At σa/τ0=1, shear bands are initiated and propagated along in
clined planes, and the plastic deformation is generated under the notch. 
Under the notch, the normal stress is concentrated (as shown in Fig. 8), 
which causes a relatively large shear stress along the inclined planes. 
Thus, the Mohr-Coulomb yield condition is preferentially reached in the 
inclined plane under the notch. With increasing applied tension loading 
(at σa/τ0=1.25), shear bands in the both sides of the notch propagate 
rapidly and become longer than shear bands under the notch. This is 
because the shear stress concentration zones are distributed in the both 
sides of the notch. With increasing tensile loading, plastic deformation 
near the notch is gradually dominated by shear banding in the both 
sides. In the previous experimental observations [3,5,48], there is a 
similar phenomenon, and the results show the shear bands in the both 
sides of the notch are predominant and eventually fractured along a 
shear band in one side. As a whole, the theoretical modeling of shear 
banding is relatively close to corresponding FE simulations, and the DDT 
is an effective tool to predict shear bands in MGs. 

The previous experiments have shown that the propagating path of 
shear banding is curved in many cases [3–5,18], and shear bands 
propagate progressively under complex loading or uniaxial loading 

Fig. 9.. Comparison of shear band morphology between theoretical prediction and FE simulation: shear bands (blue lines) predicted by theoretical modeling at σa/ 
τ0=1 (a) and at σa/τ0=1.25 (c); Contour chart of EPSS simulated by FE method at σa/τ0=1 (b) and at σa/τ0=1.25 (d). 

Fig. 10.. Schematic of the DDT to model a curved and progressive-propagating shear band.  
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before macroscopic yielding [1]. In the present theoretical modeling, 
shear band propagation is assumed as a straight line. In fact, a curve 
shear band can also be modeled by the DDT. With the increasing applied 
loading, the direction and length of shear band propagation can be 
determined step by step, as shown in Fig. 10. Certainly, the predicted 
shear band path is an approximation of the actual shear band. However, 
the predict path will be close to the actual path with the increasing 
calculation step. In future works, the DDT will be developed further to 
model more complex shear bands in MGs. 

4. Concluding remarks 

In this paper, the specimen boundaries and shear banding are 
modeled by continuously distributed dislocations. In doing so, the 
specimen with a complex-shaped geometry can be simplified as an 
infinite plane containing dislocations, which avoids to derive the image 
force on dislocations. Thus, the elastic stress field near a void and a 
notch is obtained easily, and then the stress concentration zones can be 
determined. According to the existing experimental observations [1,2], 
shear bands are initiated at the stress concentrators. The possible posi
tions of shear banding initiation are determined by the stress concen
tration zones. We can distribute dislocations along these possible 
positions. According to stress boundary conditions, integral equations of 
dislocation density function can be established. The integral equations 
have a unique and self-consistent solution, so the length of shear band 
propagation can be obtained. For different possible directions of shear 
band, the different lengths can be obtained. Assuming the shear band 
will propagate along the direction in which the length reaches its 
maximal value, the direction and length of shear band can be deter
mined uniquely. 

In order to examine the validation of the theoretical modeling, FE 
simulations are carried out based on the constitutive model proposed by 
Anand and Su [17]. For the problem of shear banding near a void, the 
predicted and simulated length and direction of shear bands are very 
close. The relative error of shear band propagating direction is within 
5% and it is within 10% for the shear band propagating length. For the 

problem of shear banding near a notch under tension loading, the pre
dicted and simulated shear band morphology is quite similar, and the 
variation tendency of plastic zone with the increasing tensile load is also 
the same. The results preliminarily demonstrate that the DDT is valid to 
predict shear bands in MGs. Besides, FE simulation requires a very dense 
mesh to simulate shear band morphology, which leads to a large amount 
of computation. In the present way, the dislocation density function 
need only to solve, and the length and direction of shear band can be 
obtained easily. In summary, this work provides a new idea to model 
shear bands and it has fundamental and potential applied values in 
predicting shear band morphology and fracture behaviors of MGs. 
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Appendix: Solution of an infinite elastic plane containing multiple dislocation strips 

The solution of an infinite elastic plane containing multiple dislocation strips will be presented based on the DDT. Firstly, an arbitrarily located 
dislocation strip is considered. As shown in Fig. A1(b), a local coordinate is established; dn is the distance between the origins of global and local 
coordinates; ln is the half length of the dislocation strip; θn is the orientation and αn is the inclined angle. The positive value of θn and αn is defined as the 
anticlockwise direction. 

Fig. A1.. (a) an infinite elastic plane containing multiple arbitrarily located dislocation strips; (b) an infinite elastic plane containing an arbitrarily located dislo
cation strip. 
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The stress components in the local coordinate induced by an edge dislocation located at the position (ξn, 0) with the Burgers vectors bxn and byn can 
be given by 

σij =
2m

π(κ + 1)
{

bxnGxij(xn, yn, ξn)+ bynGyij(xn, yn, ξn)
}

ij = xnxn, xnyn or ynyn. (A1)  

Here, m is shear modulus; κ is Kolosov’s constant, κ=(3-ν)/(1+ν) for plane stress and κ=(3-ν) for plane strain (ν is Poisson’s ratio). Gxij and Gyij are the 
dislocation influence functions, and their expressions can be obtained by 
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; (A2)  

r2 = (xn − ξn)
2
+ y2

n. (A3) 

The stress components due to an array of continuously distributed dislocations can be obtained by integrating over the zone of the dislocation strip. 

σij =
2m

π(κ + 1)

∫ ln

− ln

[
Bxn(ξn)Gxij(xn, yn, ξn)+Byn(ξn)Gyij(xn, yn, ξn)

]
dξn ij = xnxn, xnyn or ynyn. (A4)  

Here, Bxn and Byn are the components of dislocation density function. The local coordinate system and the global coordinate system can be related by 
Eqs. (A5) and (A6). 

xn = − dncos(αn − θn) + xcosαn + ysinαn, (A5)  

yn = dnsin(αn − θn) − xsinαn + ycosαn. (A6) 

The stress field in the global coordinate can be obtained by the Mohr stress transformation 
⎧
⎨
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⎭
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⎭
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The stress components induced by a dislocation strip have been obtained, and then the stress field due to multiple dislocation strips can be 
calculated by the superposition 

σtotal
ij (x, y) =

∑nd

n=1
σij
(
x, y, θn, αn, dn, ln,Bxn,Byn

)
ij = xxxy or yy. (A8) 

Where, nd is the number of the dislocation strips. 
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[7] R. Qu, D. Tönnies, L. Tian, Z. Liu, Z. Zhang, C.A. Volkert, Size-dependent failure of 
the strongest bulk metallic glass, Acta Mater. 178 (2019) 249–262. 

[8] S.-H. Joo, H. Kato, K. Gangwar, S. Lee, H.S. Kim, Shear banding behavior and 
fracture mechanisms of Zr55Al10Ni5Cu30 bulk metallic glass in uniaxial 
compression analyzed using a digital image correlation method, Intermetallics 32 
(2013) 21–29. 

[9] Y. Liu, C. Liu, A. Gali, A. Inoue, M. Chen, Evolution of shear bands and its 
correlation with mechanical response of a ductile Zr55Pd10Cu20Ni5Al10 bulk 
metallic glass, Intermetallics 18 (2010) 1455–1464. 

[10] S. Jiang, S. Guo, Y. Huang, Z. Ning, P. Xue, W. Ru, et al., In situ study of the shear 
band features of a CuZr-based bulk metallic glass composite, Intermetallics 112 
(2019), 106523. 

[11] Y. Gao, L. Wang, H. Bei, T.-G. Nieh, On the shear-band direction in metallic glasses, 
Acta Mater. 59 (2011) 4159–4167. 

[12] M. Jiang, W. Wang, L. Dai, Prediction of shear-band thickness in metallic glasses, 
Scr. Mater. 60 (2009) 1004–1007. 

[13] Y. Yang, J. Luo, L. Huang, G. Hu, K.D. Vargheese, Y. Shi, et al., Crack initiation in 
metallic glasses under nanoindentation, Acta Mater. 115 (2016) 413–422. 
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