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)e reliability assessment of the projectile-borne components in a high-speed penetrator is an important issue in the penetration field. In
this study, a scaling model embedded with a deceleration measurement device was used to investigate the overloading situation due to
the high cost of the prototype test.)e projectile could be scaled, while the decelerationmeasurement device needs tomaintain full scale.
)us, a nonproportional scaling design is proposed to represent the rigid-body deceleration of the prototype projectile. )is study,
considering themass of the decelerationmeasurement device, lays out the design criteria of the scalingmodel and carries out rigid-body
deceleration similarity verification tests of the prototype and the scaling model. In addition, the rigid-body deceleration similarity was
examined through model predictions and numerical simulation. )ese results show that the rigid-body deceleration of the non-
proportional scaling model is generally in agreement with that of the prototype for penetrating the semi-infinite concrete target. )e
deviations of rigid-body deceleration magnitude and duration are 6.76% and −12.1%, respectively.)is makes it reasonable and feasible
to investigate the overloading situation of prototype projectile through a nonproportional scaling model.

1. Introduction

)e kinetic energy (KE) penetrators are a powerful tool used
to strike hard targets such as multilayer buildings and deep
underground bunkers. )e fuze (or other projectile-borne
components) serves as the control unit of the KE penetrator
to record the acceleration data and then to control the
explosion of the warhead, which needs effective protection
against the shock. With the development of the KE pene-
trator toward high-speed and penetrating high-strength and
multilayer complex media, the survivability and reliability of
key components of the fuze are difficult to evaluate. )us, a
large number of experiments are required to obtain the
overloading situation for the key components of fuze during
the penetration event. To reduce the high cost from pro-
totype experiments, the scaling model projectile with pro-
jectile-borne measurement device has become an important
method to investigate and predict the overloading situation
of prototype projectile. In the design of the scaling model,

the projectile is scaled down, while the measurement device
needs to remain full scale. )e abovementioned issue does
not fit the condition of complete similitude.)us, we need to
consider the nonproportional scaling method, so that the
overloading situation of the model can accurately represent
that of the prototype projectile.

In the penetration tests of the projectile, the penetration
overloading is acquired by a projectile-borne measurement
device. Zhang et al. [1] published numerous studies on the
development of a missile-borne storage testing system under
high-speed impact. )ey adopted the anti-high-shock device
to achieve a deceleration measurement with a deceleration
magnitude of more than 104 g. Glößner et al. [2] acquired the
penetration overloading with a deceleration magnitude of
almost 70000 g using an onboard data recorder system. In
addition, the composition of overloading deceleration also
attracts many scholars to carry out research studies [3, 4]. It
is now generally accepted that the penetration overloading
consists of rigid-body deceleration, structural response of
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the penetrator andmeasurement sensor, and high-frequency
noise. )e rigid-body deceleration is a result of penetration
resistance [5]. )e structural response of the penetrator and
measurement sensor rises from the penetration resistance
transmitted from the projectile to the measuring sensor.
Zhang et al. [6] investigated the force transmission mech-
anism of the projectile-fuze system. Based on the wavelet
analysis, the frequency components of the structural re-
sponse of the projectile-fuze systemwere explored. Guo et al.
[7] studied the force transmission process based on the
revised SHPB (Split Hopkinson pressure bar) and proposed
that the structural response of composite structure consisted
of three terms, namely, structural vibration, forced vibration,
and shock response. In the abovementioned research, the
rigid-body deceleration is considered as the input condition
to investigate the structural response of the system. )us, to
simulate the penetration overloading inside the prototype,
the equivalent rigid-body deceleration between the proto-
type and model should be built.

)e scaling issues were developed in the past on a strong
theoretical basis [8]. Based on the similarity analysis or
dimensional analysis [9], numerous researchers proposed
some empirical formulas to predict the terminal effect of the
projectile. Anderson and Riegel [10] used the similarity
theory to represent the penetration response as a function of
a normalized impact velocity, which was the ratio of the
penetration pressure to the target strength, and the nor-
malized penetration depth was presented as a function of the
normalized impact velocity over a very large velocity range.
Li and Chen [11, 12] defined two dimensionless numbers,
the impact function and the projectile geometry function,
based on the similitude analysis and concrete penetration
model.)e penetration results can be expressed by these two
dimensionless numbers for various strengths of the concrete
target. Chai et al. [13] have demonstrated the similarities of
rigid-body penetration by three nondimensional but
physically meaningful quantities. It is shown that the ex-
perimental data of rigid projectile penetration, from shallow
to deep penetration, can be uniquely unified by these three
similarity quantities and their relationships. In addition, the
similitude laws have also been applied in other fields, such as
structural deformation [14], vibration [15, 16], and crack
propagation [17]. Unfortunately, the scaling model pa-
rameters from research do not always comply with the si-
militude laws perfectly. When the model and the prototype
cannot be associated with a single geometric scaling factor, it
is referred to as incomplete similitude (nonproportional
similitude) or a distorted model. )e shock response from
strain rate effect [18, 19] or geometrical distortions [20] is an
example.

Up to now, there have been a few works on the similarity
law of rigid-body deceleration. Most of them have concen-
trated on a complete-similitude scaling method according to
the dimensional analysis [21]. In general, once a scale factor λ
(λ> 1), the ratio of geometric dimensions, is defined, other
model variables can be expressed by those of the prototype, as
shown in Table 1. To further clarify the scaling laws listed in
Table 1, the deceleration-time curves of finite element
analysis with different scaling factors are shown in Figure 1.

)e rigid-body deceleration magnitude A and duration T of
the complete-similitude scaling model vary with different
scaling factors, and the variation amplitude depends on the
scaling factor λ. To assess the penetration fuze using a scaling
model, the overloading situation of the scaling model need to
agree with that of the prototype. )us, the complete-simil-
itude scaling model cannot meet the requirement.

Moreover, since the prototype and scaling model
projectile will be equipped with a deceleration measure-
ment device of the same size and mass, the complete-
similitude design cannot satisfy the structure require-
ments. )erefore, a nonproportional scaling method
should be applied to meet the equivalence of the inner
overloading situation between the prototype and the
model.

Here, a design method of the nonproportional scaling
model was proposed and evaluated, and the rigid-body
deceleration equivalence between the prototype and the
scaling model was investigated. In addition, the mass of the
deceleration measurement device was considered in the
design of the nonproportional scaling model, and design
conditions were investigated. Finally, the reliability of the
nonproportional scaling method was verified by the strat-
egies including the penetration test, FEM, and empirical
model prediction.

Table 1: Scaling factors of the small-scale model and prototype.

Variables Prototype Complete-similitude model
Length L L/λ
Time T T/λ
Mass M M/λ3

Deceleration A λA
Velocity V V
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Figure 1: Deceleration-time data and model prediction with
different scaling factors for projectiles penetrating the concrete
target (fc � 23MPa).
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2. The Design Scheme of Nonproportional
Scaling Projectile

2.1. Representation of Geometric Scaling Factors of the
Projectile. )e focus of this study is a hollow ogive-nose
projectile. Figure 2 shows the projectile structure. From [22],
the mass expression of the projectile is given by

M � ρ
πD

2

4
(lb + βD) − ρ

πD
2
(1 − 2ξ)

2

4
le, (1)

where β is the projectile head volume coefficient, which is
calculated by CRH [22]. )e projectile has density ρ, di-
ameter D, shank length lb, and internal cavity length le. )e
dimensionless wall thickness ξ is defined as ht/D.

)e scaling factors of mass, diameter, shank length, and
internal cavity length for the prototype and model are given
as follows:

λM �
Mp

Mm

,

λD �
Dp

Dm

,

λlb �
lbp

lbm

,

λle �
lep

lem

,

(2)

where subscripts p and m refer to the prototype and the
model, respectively. )e scaling factors (λD, λlb, and λle) are
not numerically identical in the design of nonproportional
scaling.

2.2. Penetration DecelerationModel. From cavity-expansion
analysis, Forrestal [23] described the form of rigid-body
deceleration during the projectile penetration process as
follows:

a �
cH

M
0<H< 2D, (3)

a �
πD

2

4M
R + Nρt]

2
􏼐 􏼑H> 2D, (4)

N �
8ψ − 1
24ψ2 . (5)

Here, H is the penetration depth and v is the instan-
taneous velocity. )e projectile is described by mass M and
CRH ψ. Target density is ρt and target resistance parameter is
R. )e calculation method is shown in [23]. For concrete
[24, 25] and limestone [26] targets, posttest target obser-
vations showed a conical entry crater with a depth of two or
more projectile diameters followed by a circular channel or
tunnel. Equation (3) describes the crater phase of pene-
tration. )e constant c is determined from the analysis [23],

and equation (4) describes the tunnel phase. In addition, the
rigid penetrator hypothesis and the semi-infinite thick target
should be satisfied to obtain equation (4).

For deep penetration, we ignore the effect of the crater
phase of deceleration, and only the tunnel phase is con-
sidered in the calculation. To achieve an equivalent rigid-
body deceleration for the prototype and the scaling model,
the following should be satisfied:

λa �
ap

am

� 1, (6)

where ap and am are the rigid-body decelerations of the
prototype and scaling model, respectively. Substituting
equation (4) into equation (6), the following is obtained:

λ2D
λM

�
R + Nmρtv

2
m

R + Npρtv
2
p

. (7)

)e scaling model is designed to have the same CRH,
striking velocity ]o, and target density ρt as those of the
prototype. )us, from equation (7), the relation of λD and
λM is expressed as

λM � λ2D. (8)

2.3. Design Condition of the Nonproportional Projectile.
)e deceleration measurement device consists of an accel-
erometer, an acceleration data recorder, protective equipment,
and data processing equipment. Due to the limitation of
launching mass under the laboratory conditions, the mass of
the deceleration measurement device cannot be ignored
compared to that of the projectile, and the effect of the
measurement device should be considered in the design of the
scaling model. Assume that the mass ratio of the deceleration
measurement device to the prototype projectile is mt/Mp � k,
the prototype and the scaling model adopt the deceleration
measurement device of the same size and mass, and the mass
scaling factor in equation (2) is revised as follows:

λM �
Mp + mt

Mm + mt

�
Mp + kMp

Mm + kMp

.

(9)

From equation (9),
Mp

Mm

�
λM

1 + k − λMk

� cλM ,

(10)
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Figure 2: Projectile structure.
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where

c �
1

1 + k − λMk
. (11)

Substituting equation (1) into equation (10) leads to

cλM( 􏼁 · ρm ·
π
4

D
2
m · lbm + βmDm( 􏼁 − cλM( 􏼁 · ρm ·

π
4

D
2
m 1 − 2ξm( 􏼁

2
· lem � ρp ·

π
4

D
2
p · lbp + βpDp􏼐 􏼑

− ρp ·
π
4

D
2
p 1 − 2ξp􏼐 􏼑

2
· lep.

(12)

In the design of a scaling model, the following three
parameters should be the same as those of the prototype: (a)
the head volume coefficient (i.e., βm � βp), (b) dimensionless

wall thickness (i.e., ξm � ξp), and (c) projectile density (i.e.,
ρm � ρp). )us, the equation (12) is simplified as follows:

cλM( 􏼁 ·
lbm

Dm

+ βp􏼠 􏼡 − cλM( 􏼁 · 1 − 2ξp􏼐 􏼑
2

·
lem

Dm

�
D

2
p

D
2
m

·
lbp

Dm

+ βp

Dp

Dm

􏼠 􏼡 −
D

2
p

D
2
m

1 − 2ξp􏼐 􏼑
2

·
lep

Dm

, (13)

where

lbp

Dm

�
lbp

Dm

·
lbm

lbm

�
lbp

lbm

·
lbm

Dm

� λlb ·
lbm

Dm

,

(14)

lep

Dm

�
lep

Dm

·
lem

lem

�
lep

lem

·
lem

Dm

� λle ·
lem

Dm

.

(15)

Substituting equations (2), (14), and (15) into equation
(13) leads to

cλM( 􏼁
lbm

Dm

+ βp􏼠 􏼡 − λ2Dλlb

lbm

Dm

− βpλ
3
D

− 1 − 2ξp􏼐 􏼑
2
φm cλM − λ2Dλle􏼐 􏼑 � 0.

(16)

)e dimensionless cavity length of the scaling model φm

is defined as lem/Dm. βp is the head volume coefficient of the
prototype projectile.

Substituting equation (8) into equation (16) leads to

βp λD − c( 􏼁 +
lbm

Dm

λlb − c( 􏼁 � 1 − 2ξp􏼐 􏼑
2
φm λle − c( 􏼁 , (17)

where

lbm

Dm

�
lbp/λlb

Dp/λD

�
λD

λlb

·
lbp

Dp

,

(18)

φm �
lem

Dm

�
lep/λle

Dp/λD

� φp ·
λD

λle

.

(19)

Substituting equations (18) and (19) into equation (17)
leads to

βp λD − c( 􏼁 +
λD

λlb

·
lbp

Dp

λlb − c( 􏼁

� 1 − 2ξp􏼐 􏼑
2

· φp

λD

λle

· λle − c( 􏼁,

c �
1

1 + k − λ2Dk
.

(20)

From equation (20), when k � 0 (or λD � 1), it shows the
design condition of the nonproportional scaling model
without considering the mass of the measurement device.
Figure 3 shows the flow diagram of formula derivation.

With the following prototype projectile parameters,
CHR � 3, ξp � 0.11, φp � 6, and (lhp + lbp)/Dp � 8, the
corresponding relation among λD, λlb, and λle is shown in
Figure 4, with increasing mass ratio k.

Figure 4(a) shows the relation curves of λD, λlb, and λle

when k� 0, which is the case of ignoring the mass of
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Eq. (1)
Eq. (10) Eq. (12) Eq. (13) Eq. (16) Eq. (17) Eq. (20)

Eqs. (2), (14), and (15)βm = βp ξm = ξ p
ρm = ρp

Eq. (8) Eq. (11), (18), and (19)

Figure 3: )e flow diagram of formula derivation.
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measurement device. When λD is less than 3, the curve dis-
tribution is sparse; λlb and λle are sensitive to the variation of
λD. However, when λD is greater than 3, the curve distribution
become dense.)e variation of λD causes aminor change in λlb

and λle. Figure 4(b) shows the relation curves of λD, λlb, and λle

when k� 0.001. When λD is less than 3, the relation curves of
λlb and λle are in general agreement with that in Figure 4(a).
Figure 4(c) shows the relation curves of λD, λlb, and λle when
k� 0.01. When λD is less than 1.5, the relation curves of λlb and
λle are consistent with that in Figure 4(a). )us, for a relatively
small k value, a critical value exists. When λD is less than the
critical value, the relation curves of λlb and λle exhibit agree-
ment with that in Figure 4(a), indicating that the mass of
measurement device could be ignored. However, once k in-
creases above a certain point, the relation curves show a sig-
nificant difference from those in Figure 4(a), indicating the
mass of measurement device should be considered in the
nonproportional scaling design (Figures 4(d) and 4(e)). In
addition, the curves converge toward the bottom right corner
as the value of k increases. )e value ranges of λD, λlb, and λle

(especially λle) become narrow. )us, the mass of internal
deceleration measurement device should be considered in the
structural design of the scaling model.

3. Equivalence Verification Tests of the Rigid-
Body Deceleration

)e experiments were conducted on a 152mm light-gas gun
launch platform. Due to the restriction of launch caliber and
mass, we designed the nonproportional projectile using a
moderate factor. In this study, the mass of the deceleration
measurement device and prototype projectile is 0.452 kg and
4.232 kg, respectively. )e mass ratio of the deceleration
measurement device to the prototype projectile is 0.1068.
After considering the scaling factor relation (equation (20)),
the center of mass, and the geometric dimension of the

deceleration measurement device, we determined the scaling
factors λD, λlb, and λle to be 1.28, 1.04, and 1.81, respectively,
as the design parameters of the scaling model.

3.1. Material and Structure of the Prototype and Model
Projectile. To verify the applicability and feasibility of the
nonproportional scaling method proposed in this study, a
prototype and scaling model projectile were designed and
machined based on the determined scaling factors. )e geo-
metric parameters and scaling factors for the prototype and the
nonproportional model are listed in Table 2. )e masses of the
deceleration measurement device and scaling model are
0.452 kg and 2.4 kg, respectively. Furthermore, as a prerequisite
for obtaining the relation of scaling factors (equation (20)), the
CRH, projectile material, striking velocity, dimensionless wall
thickness, and concrete target should be the same as the
prototype in the design of the scalingmodel.)e dimensionless
wall thickness of the prototype and the model projectile cannot
be completely consistent because of the same dimensions of the
built-in deceleration measurement device. )us, in the design
of the prototype and the model, we merely guarantee that the
dimensionless wall thickness is largely consistent in the in-
stallation area. Figure 5 shows the geometries of the prototype,
the nonproportional scaling model, and the deceleration
measurement device, respectively. To ensure the structural
strength, the projectile and measurement device were ma-
chined from 30CrMnSiNi2A high-strength steel, and necessary
heat treatment was performed. )e deceleration measurement
device was attached to the tail of the projectile by a threaded
connection.

)e sampling frequency and trigger threshold of the
sensor were set at 120 kHz and 8000 g, respectively. Fur-
thermore, a 50min sleep time was set to prevent accidental
triggers before formal sampling. As the subcaliber launch
mode was used, the projectiles were fitted with sabots that
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Figure 4: Corresponding relation of λD, λlb, and λle for the nonproportional scaling projectile: (a) k� 0; (b) k� 0.001; (c) k� 0.01; (d) k� 0.1;
(e) k� 0.5.
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were separated from the projectiles prior to impact. )e sabot
was made of a lightweight and brittle material so its effects on
the penetration ability could be ignored. )e final launch
masses of the prototype and the scaling model projectiles
(including the sabot) were 7.088 kg and 5.286 kg, respectively.

3.2. Testing Scheme. A 152mm compressed-gas gun (in
Figure 6) launched the prototype and model projectile to
strike the concrete target at the same speed of 320m/s. )e
projectile-target encounter condition, including the striking
velocity and incident attitude angle, was measured by Photron
SA5 high-speed camera, and the deceleration measurement
device was adopted to capture the penetration deceleration
data. )e projectile penetrated the concrete vertically. )e
dimension of the C40 concrete target was φ1.2m× 0.6m, and
the measured unconfined compression strength was 48MPa.
)e diameter ratios of the target to the projectile for prototype
and model are 18.75 and 24, respectively. So, the concrete
target plate can be regarded as a semi-infinite target. One
effective test was carried out for the prototype projectile and
the scaling model projectile, respectively.

4. Finite Element Analysis of the Prototype and
Scaling Model Projectile Penetrating Semi-
Infinite Concrete Target

)e penetration process of the prototype and scaling model
was simulated by explicit dynamic FEM (finite element

method). Figure 7 shows the finite element models of the
prototype and nonproportional model (including the de-
celeration measurement device). Without considering the
electronic parts inside the deceleration measurement device,
it was simplified to a hollow cylindrical structure (in Fig-
ure 7). Because of structural symmetry, 1/4 finite element
model of the projectiles and measurement device were
established to reduce the computational time. All entities
were discretized using 8-node solid hexahedral elements
with an average mesh size of 0.3 cm. Similarly, a 1/4 finite
element symmetrical model of the concrete target was
established based on the actual geometry. )e appropriate
mesh size of the interaction area of the target should be 0.5∼1
times that of the projectile nose [27, 28]. )us, the mesh size
of the interaction area of the target was determined to be
0.2 cm. Local mesh refinement was deployed in the mesh

Table 2: Geometric parameters and scaling factors of the prototype and scaling model.

Variable Prototype Model Scaling factor
D (mm) 64.0 50.0 1.28
le (mm) 159.0 88.0 1.81
lb (mm) 178.9 172.1 1.04

(a)

(b)

(c)

ϕ4
2

ϕ3
8

M
42

∗
2

ϕ6
4

33
80

159
285

R1
92

33
88

255

ϕ5
0

ϕ3
8

M
42

∗
2

R1
50

33 46

M
42

∗
2

Figure 5: Geometries of projectiles and deceleration measurement device: (a) prototype projectile; (b) nonproportional scaling projectile;
(c) deceleration measurement device (dimensions in mm).

Figure 6: Launch platform of the 152mm compressed-gas gun.
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division of concrete targets to guarantee the requirements of
computational precision and save computational cost (in
Figure 8). According to the mesh size, the concrete target
plate can be divided into three areas: zone I (0.2× 0.2 cm2),
zone II (0.4× 0.2 cm2), and zone III (0.6× 0.6 cm2). Zone I
was the projectile-target interaction area, which required a
finer mesh than other areas.

)e same linear elastic and kinematic plastic hardening
material model (∗MAT_PLASTIC_KINEMATIC) was
adopted for both the projectile and the deceleration mea-
surement device. )e material parameters of the projectile
are listed in Table 3.)e concrete target was described by the
Holmquist–Johnson–Cook (HJC) model (∗MAT_JOHNS
ON_HOLMQUIST_CONCRETE). )e HJC model is
commonly used to describe the dynamic response of brittle
material damage when that material is subject to large
strains, high strain rates, and high pressures [29]. Table 4
presents the material parameters of the HJC model for the
concrete. )e parameters are identical to those given in the
original reference [29]. )e crack modeling of concrete has
been investigated extensively [30, 31]. We pay more at-
tention to the target resistance, not the crack propagation.
)us, the concrete crack modeling will not be considered in
this work. )e contact between the projectile and the

deceleration measurement device was simplified as “TIED”
contact (∗CONTACT_TIED_NODES_TO_SURFACE),
and the contacts between the covers of the testing device
(including front cover and rear end cover) and housing were
also set as the “TIED” contact. In addition, the contact
between the projectile and the concrete target was set as
“ERODING” contact (∗CONTACT_ERODING_SURFACE
_TO_SURFACE).

5. Results and Discussion

5.1. Deceleration Signal Processing and Validation Based on
the Combination of the Modal Analysis and Spectrum
Analysis. Figure 9 shows the deceleration-time curve of the
prototype projectile. )e curve can be divided into two
phases: the acceleration phase in the barrel and the decel-
eration phase during target penetration. )e deceleration
signal is composed of the rigid-body deceleration, response
signal from stress wave loading/unloading inside the pro-
jectile during penetration, and measured noise [3]. )e
rigid-body deceleration signal is a low-frequency signal,
while other response signals are high-frequency signals.
)us, to extract the rigid-body deceleration signal, we first
determine the filter cutoff frequency.

X

(a)

(b)

YZ

X

YZ

Figure 7: Finite element models of the projectiles (including the deceleration measurement device): (a) prototype projectile; (b) nonproportional
scaling projectile.

Detailed diagram of target center area

Zone I : 0.2×0.2 cm2

Zone II : 0.4×0.2 cm2

Zone III : 0.6×0.6 cm2

Zone III Zone II Zone II

From dense to sparse

Figure 8: Finite element models of the concrete target.

8 Shock and Vibration



Numerous researchers have performed studies to deter-
mine the filter cutoff frequency of the signal and to effectively
extract rigid-body deceleration. Forrestal [32] installed two
accelerometers with different projectile positions. During data
analysis and processing, the deceleration data of the two test
points were gradually filtered with a certain frequency step
length from high to low. When the low-pass filter frequency
reached 1 kHz, there was no difference between the two fil-
tered curves. )erefore, the filtered waveforms were consid-
ered as rigid-body deceleration. Some other scholars have
evaluated a method to determine the filter cutoff frequency by
combining modal analysis and spectrum analysis [33]. Due to
its convenience and feasibility from [33], our study adopted
this method to determine the filter cutoff frequency.

)e finite element modal analysis is performed on the
prototype and the scaling model projectile (including the
deceleration measurement device), respectively. )e first
three orders of modal frequency are listed in Table 5. )e
first column in Table 5 provides the first-order modal

frequency of the prototype projectile and the scaling model
projectile. Figure 10 shows the spectrum of the deceleration
signal after the Fast Fourier Transformation (FFT). From the
first-order modal frequency and spectrum of deceleration
data, the first wave valley of the spectrum (3.5 kHz and
2.7 kHz) was selected as the filter cutoff frequency of the
prototype and the scaling model projectile, respectively.

With determined cutoff frequency, we obtained the rigid-
body deceleration signal by Butterworth low-pass filtering.
)e results are shown in Figures 11 and 12 (the red curves).
)en, integrations of the deceleration-time data were per-
formed to obtain the striking velocity, which can be compared
to the striking velocities measured by the high-speed camera.
)e blue curves in Figures 11 and 12 show single integrations
of deceleration versus time. With these integrations, striking
velocities were calculated as 314.8m/s and 317.6m/s. Table 6
lists the velocity results obtained using the two methods; Voi

represents the velocity obtained by integration, and Vot

represents the result captured by the high-speed camera.

Table 3: Material parameters for projectile.

Material Parameter Value Parameter Value

Projectile

Density, ρ (g/cm3) 7.8 Tangent modulus, Et (MPa) 2060
Young’s modulus, E (GPa) 220 Hardening parameter, β 1.0

Poisson’s ratio, μ 0.284 Failure strain, fs 3.0
Yield stress, σs (MPa) 1800

Table 4: Material parameters for concrete target.

Material Parameter Value Parameter Value

Concrete

Density, ρ (g/cm3) 2.44 Normalized maximum strength, Smax 7.0
Young’s modulus, E (GPa) 20.68 Crushing pressure, Pc (GPa) 0.016

Plastic volume modulus, K (GPa) 14.86 Crushing volumetric strain, μc 0.001
Normalized cohesive strength, A 0.79 Locking pressure, Pl (GPa) 0.80
Normalized pressure hardening, B 1.6 Locking volumetric strain, μl 0.10

Strain rate coefficient, C 0.007 Damage constant, D1 0.04
Pressure hardening exponent, N 0.61 Damage constant, D2 1.0

Uniaxial compressive strength, fc (MPa) 48 Pressure constant, K1 (GPa) 85
Maximum tensile hydrostatic pressure, T (GPa) 0.004 Pressure constant, K2 (GPa) −171

Plastic strain before fracture, εfmin
0.01 Pressure constant, K3 (GPa) 208

Failure strain, fs (MPa) 0.38

DecelerationLaunch acceleration
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Figure 9: Deceleration-time curve of the prototype projectile.
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Figure 10: Spectrum of the deceleration-time curve of the (a) prototype and (b) nonproportional scaling model.
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Figure 11: Curve of deceleration and velocity dependence on time for the prototype projectile.
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Figure 12: Curve of deceleration and velocity dependence on time for the nonproportional scaling projectile.

Table 5: First three orders of modal frequency of the prototype and scaling model projectile (including the deceleration measurement
device).

Structure 1st (Hz) 2nd (Hz) 3rd (Hz)
Prototype 4041.9 6952.3 8564.2
Scaling model 3905.0 6183.0 9239.9
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Comparing the two methods, the variations are 3.20% and
3.35%, respectively, which demonstrates the validity and
accuracy of the testing deceleration data.

5.2. Equivalence Validation of Rigid-BodyDeceleration for the
Prototype and Nonproportional Scaling Model. Based on the
validity and reliability of the test data, the verification of the
rigid-body deceleration equivalence of the prototype pro-
jectile and scaling projectile was performed in this section.
Figure 13(a) shows the comparison of the test, simulation,
and empirical model prediction (from equation (4)) of the
prototype. All the simulation results in Figure 13 are pro-
cessed by low-pass filtering, which represents the rigid-body
deceleration. )e rigid-body deceleration from the test and
simulation first increased rapidly, then maintained for a
period of time, and finally decreased slowly during the
penetration process. )e deceleration-time curve from the
simulation was in general agreement with that from the test.
)e rigid-body deceleration can be characterized by the
maximum deceleration (amax) during penetration and the
time to complete penetration (Tall). As shown in Table 7,
amax and Tall of rigid-body deceleration from the simulation
and test were extracted. )e deviations of the amax and Tall
were 11% and 3.27%, respectively, which indicated the ef-
fectiveness of simulation results. In addition, a deceleration-
time curve of the empirical model was obtained from
equation (4). )e maximum deceleration (amax) from the
model prediction was consistent with the test, and the de-
viation was −3.0%. )e empirical model cannot accurately
describe the process of the slow decrease of the overload

peak due to defects, so Tall from the model predicted cannot
accurately represent the penetration time. Figure 13(b)
shows the comparison of the test, simulation, and model
prediction (from equation (4)) of the scaling model. From
Figure 13(b), the rigid-body curves all show a rapid increase
and then a slow decrease trend. Compared with the test, the
errors of amax and Tall from the simulation are 6.26% and
11.2%, respectively, and the error of amax from model
prediction is −0.8%, indicating the reliability of the simu-
lation and model prediction.

Figure 14 shows the comparison of the experimental
deceleration-time curves of the prototype and the non-
proportional model.)e curve patterns are nearly consistent
after low-pass filtering, and they all exhibit a similar ten-
dency. )e detailed comparison is shown in the first two
columns of Table 8. Compared with the prototype projectile,
the relative deviations of amax and Tall from the scalingmodel
were 6.76% and −12.1%, respectively. )e results indicate
that the rigid-body deceleration of the nonproportional
model is in general agreement with that of the prototype
projectile. )is makes it reasonable and feasible to investi-
gate the reliability and survivability of the projectile-borne
components for the prototype projectile by using the
nonproportional scaling model.

)e FEM and empirical model were used to further
verify the equivalence of rigid-body deceleration (in
Figure 15). From simulation analysis, amax and Tall of the
prototype are in general agreement with the scaling model,
and the relative deviations were 2.18% and 5.4%, re-
spectively (in Table 8). From empirical model prediction,
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Figure 13: Comparison of the deceleration-time curves from test, simulation, and empirical model. (a) Prototype projectile; (b) non-
proportional model.

Table 6: Comparison of the initial striking velocity.

Structure Voi (m/s) Vot (m/s) Deviation (%)

Prototype 314.8 325.2 3.20
Model 317.6 328.6 3.35
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Figure 14: Experimental deceleration-time curves of the prototype and nonproportional scaling model.

Table 7: Detailed comparison of rigid-body deceleration for the test, FEM, and model prediction.

Structure
Test FEM Model prediction

amax (g) Tall (ms) amax (g) Tall (ms) Error (%) amax (g) Tall (ms) Error (%)
Prototype 27817 2.14 30882 2.21 11/3.27 26981 — −3.0
Mode 29698 1.88 31556 2.09 6.26/11.2 29465 — −0.8

Table 8: Detailed comparison of rigid-body deceleration between the prototype and scaling model.

Structure
Test FEM Model prediction

amax (g) Tall (ms) amax (g) Tall (ms) amax (g) Tall (ms)
Prototype 27817 2.14 30882 2.21 26981 —
Nonproportional 29698 1.88 31556 2.09 29456 —
Deviation (%) 6.76 −12.1 2.18 5.4 9.17 —

λ = 1.28 λD = 1.28; λlb = 1.81; λle = 1.04
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Figure 15: Rigid-body deceleration-time curves of the test, FEM, and empirical model for the prototype and nonproportional scalingmodel.
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the rigid-body deceleration magnitude (amax) of the
nonproportional model is slightly higher than that of the
prototype, while the duration (Tall) is slightly shorter. )e
relative deviation of amax was 9.17% (in Table 8). )e rigid-
body deceleration of the complete-similitude model shows
significant differences from that of the prototype (in
Figure 15). )us, compared with the complete-similitude
model, the rigid-body deceleration from the nonpropor-
tional model is basically equivalent with that from the
prototype. )e scaling model can be used to investigate the
reliability and survivability of projectile-borne compo-
nents inside the prototype projectile.

6. Conclusion

In summary, we have proposed a nonproportional scaling
model design for penetration test, to investigate the anti-
high impact ability of the fuze inside the prototype. )is
proposed method fulfills the requirements that the com-
plete-similitude scaling scheme is unable to meet, and
considers the influence of the mass of the deceleration
measurement device. Model predictions, FEM, and pene-
tration tests were used to verify the nonproportional design.
)e main conclusions are as follows:

(1) A design method of the nonproportional scaling
model was proposed. )e design criteria of the
scaling model projectile considering the mass of the
deceleration measurement device were evaluated.
)e diameter scaling factor and mass scaling factor
were adjusted; when λM � λ2D, the rigid-body de-
celeration of the scaling model was in agreement
with that of the prototype.

(2) In previous research, deceleration signals include
rigid-body deceleration, high-frequency response
associated with vibrations of the projectile body, and
testing noise. We proposed to determine the filter
cutoff frequency by combining the spectrum analysis
and modal analysis. An improved rigid-body de-
celeration data was obtained by low-pass filtering the
experimental data.

(3) Semi-infinite target penetration tests for both pro-
totype and scaling models were carried out, and
deceleration measurement devices of the same di-
mension were attached for deceleration measure-
ment.)e rigid-body deceleration similarity between
the prototype and the nonproportional scaling
model was verified. Compared with the prototype
test, the deviations of the rigid-body deceleration
magnitude and duration from the scaling model are
6.76% and −12.1%, respectively. )is indicates the
internal overloading situation of the nonpropor-
tional model is in general agreement with that of the
prototype projectile.

Abbreviations

M: Projectile mass in equation (1)
D: Projectile diameter in Figure 2

le: Internal cavity length of the projectile in Figure 2
lb: Shank length of the projectile in Figure 2
β: Head volume coefficient of the projectile, which is

calculated by caliber radius head (CRH) from reference
[22]

a: Penetration rigid-body deceleration
N: Projectile nose factor in equation (5)
ht: Wall thickness of the projectile in Figure 2
lh: Head length of the projectile in Figure 2
ξ: Dimensionless wall thickness ξ � ht/D in equation (1)
ξp: Dimensionless wall thickness of the prototype

projectile ξp � htp/Dp

ξm: Dimensionless wall thickness of the scaling model
projectile ξm � htm/Dm

λM: Mass scaling factors
λD: Diameter scaling factors
λlb: Scaling factor of shank length
λle: Scaling factor of internal cavity length
λa: Scaling factor of penetration deceleration
φm: Dimensionless cavity length of the scaling model

φm � lem/Dm

φp: Dimensionless cavity length of the prototype projectile
φp � lep/Dp

ρ: Density of the projectile
ρt: Density of the target
ψ: Caliber radius head (CRH) in equation (5)
R: Target resistance parameter
H: Penetration depth
v: Penetration instantaneous velocity in equation (4)
vo: Striking velocity of the projectile
mt: Mass of deceleration measurement device (or fuze)
k: Mass ratio of the measurement device to the prototype

projectile k � mt/Mp.
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