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A B S T R A C T   

Cutting aluminum films with micrometer-level thickness requires a full understanding of the mixed effect due to 
bending, buckling, and fracture. These three deformation patterns have a strong relationship with the tool size. In 
this study, we present experimental, numerical, and theoretical studies of the tool size effect on a fracture. Using 
the energy analysis during a cut, we first build up a cutting force model that takes both the tool size and film 
thickness into account. The proposed model differs from previous models that used the ratio of size to thickness 
as the only factor. Our results first show that tool size affects fracture morphology. Films cut with large tools fail 
in the form of sequenced concertina tears, while films cut with small tools fail in the form of curling flaps. 
Furthermore, the transition of the two failure modes is theoretically presented with the critical value being 
obtained by the cutting force model proposed. Additionally, we find that when predicting the cutting force of 
aluminum films with micrometer-level thickness, the effect of fracture energy cannot be neglected. Increasing 
film thickness will decrease the effect of fracture energy on cutting force.   

1. Introduction 

Thin films are widely used in electronic devices such as functional 
semiconductor devices (Park et al., 2012; Nie and Kumacheva, 2008), 
sensors (Yokota, 2015; Zheng et al., 2016), and capacitors (Pan, 2018; 
Li, 2019), as well as in electronic packaging (Su et al., 2006; van den 
Broek et al., 2015; Cazón et al., 2017). To obtain devices of a certain size, 
cutting the fitted pieces with the help of fracture theory is a common 
method. Because of bending and buckling, the fracture of thin films is 
significantly different from the fracture of bulk materials. When a thin 
film is cut with a cylindrical tool, the pattern may vary depending on the 
ductility of the film and the size of the tool (Hamm et al., 2020; Ghatak 
and Mahadevan, 2003; Audoly et al., 2005). 

For the cutting of a brittle thin film (Ghatak and Mahadevan, 2003; 
Roman, 2013; Roman et al., 2003), previous studies have shown that the 
oscillation of the crack path is attributable to the instability that occurs 
at the crack tip, which is controlled by the ratio of tool size to film 
thickness. This effect of tool size has been demonstrated by both 
experimental and numerical studies (Ghatak and Mahadevan, 2003; 
Audoly et al., 2005). When the tool diameter is smaller than the 

thickness, the stress profile is assumed to be a plane stress state for which 
the maximum hoop stress occurs ahead of the tool. As a result, the thin 
film is torn at the front of the tool so that a straight crack follows the 
trajectory of the tool. However, when the diameter of the tool is much 
bigger than the thickness, the interplay of the in-plane stretching and 
out-of-plane bending leads to an oscillatory fracture (i.e., going from a 
tensile fracture to a bending fracture). As a result, a path for this type of 
crack forms a regular tooth shape. This oscillatory fracture pattern has 
been confirmed by a numerical model (Audoly et al., 2005), which has 
demonstrated the geometrical origin. Overall, these studies share a 
common view that the crack path on brittle film will become straight 
when the size of the tool is reduced to the thickness of the film. In 
addition, some other studies have shown that the crack path is inde
pendent of cutting speed (Ghatak and Mahadevan, 2003; Reis et al., 
2008) and boundary conditions. Additionally, tooth amplitude and 
wavelength have been found to be proportional to tool width (Ghatak 
and Mahadevan, 2003). 

For the cutting of a ductile thin film, previous studies have suggested 
that the cutting mode changes with the tool sharpness (Zheng and 
Wierzbicki, 1996; Wierzbicki, 1995; Wierzbicki et al., 1998; Jin and 
Altenhof, 2011). The definition of sharpness—that is, whether a tool is 
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blunt or sharp—is similar to the study of brittle films (Ghatak and 
Mahadevan, 2003; Audoly et al., 2005), and the definition refers to the 
ratio of the shoulder width or tool diameter over the film thickness. 
When a tool is blunt, the cutting failure mode is concertina tearing (see 
Fig. 6), in which the film folds plastically and piles up ahead of the tool 
(Vandenberghe and Villermaux, 2013). Two diverging cracks are 
developed as the “concertina”, which is named after the collapse pattern 
of circular tubes (Abramowicz and Jones, 1984; Guillow et al., 2001; 
Linul and Khezrzadeh, 2021). To clarify parallel concertina tearing, 
Wierzbicki et al. (Wierzbicki, 1995) assumed that at any instant the 
power input by the cutting force was related to the energy dissipation 
rate into plate bending, plate stretching, plate shearing, and plate frac
ture/tearing. Based on this assumption, they proposed a simplified 
model to predict the quasi-static cutting force on mild steel sheets 
(0.75–1.143 mm thick). Furthermore, they (Wierzbicki et al., 1998) 
developed the diverging concertina tearing theory and verified the 
theory with experiments on 0.4 mm-thick mild steel sheets. However, 
the tool geometries (e.g., shape and size) were not considered in these 
models. 

When a sharp tool (wedge) cuts a ductile thin film, the failure mode 
becomes either braided (unstable) curling or clean (stable) curling 
(Magliaro and Altenhof, 2020) (see Fig. 6). The similarity between these 
two failure modes is that the fracture appears ahead of the tool. The 
difference is that for the former, the film is bent in an alternating 
manner, while for the latter, the film uniformly buckles and curls into 
flaps on each side of the tool. Zheng and Wierzbicki (Zheng and 
Wierzbicki, 1996) first assumed that a bent flap was composed of two 
cylindrical surfaces connected by a toroidal transition zone. Then, they 
postulated a curling flap model which showed that the cutting process 
had three different mechanisms of energy absorption. Imonsen and 
Wierzbicki (Simonsen and Wierzbicki, 1997) assumed two alternative 
deformation modes in the tip zone ahead of a cutting edge (i.e., the 
plastic flow mode and the crack-tip deformation mode) and proposed 
two curling flap theories for mild steel sheets with thicknesses in the 
range of 0.75–20.0 mm. However, these models did not consider frac
ture energy. 

The three failure modes of ductile films mentioned above
—concertina tearing, braided curling, and clean curling—are all steady- 
state responses. Before reaching a steady state, the pattern of cutting 
deformation has a transient feature (Zheng and Wierzbicki, 1996). The 
transient response usually causes a sheet to fracture at the wedge tip, 
which is characterized by the bending of the sheet along an inclined 
moving hinge. To understand the transient response process, Lu and 
Calladine (Lu and Calladine, 1990), Wierzbicki and Thomas (Wierzbicki 

and Thomas, 1993), Paik (Paik, 1994), and Ohtsubo and Wang (Ohtsubo 
and Wang, 1995) theoretically investigated mild or high-tensile steel 
sheets with millimeter-level thicknesses subjected to quasi-static wedge 
cutting. Additionally, Jones et al. (Jones and Jouri, 1987), Vaughan 
et al. (Vaughan, 1980), and Woisin (Woisin, 1982) investigated the 
dynamic effects of sheets subjected to the impact of a falling hammer. 
The assumptions, scope of application, and deficiencies of the above 
models are summarized in Table 1. 

In general, previous experimental and theoretical studies have been 
conducted for ductile films or sheets with thicknesses at the millimeter 
level or above. However, there is a lack of systematic research on films 
with micrometer-level thicknesses. Specifically,  

1) There is a lack of cutting experiments for ductile films with tools of 
different diameters.  

2) For the concertina tearing model, the effect of tool shape and size on 
the cutting force has not been considered.  

3) For the curling flap model, the contribution of fracture energy to 
cutting force has not been considered. As we find in our experiment, 
this effect cannot be ignored when the film is ultrathin. 

In this study, we focus on the steady-state cutting of a ductile thin 
film. As can be seen in the experiments shown in Fig. 1, the branching of 
the tearing fracture appears rather than the typical concertina in pre
vious studies of ductile film (Zheng and Wierzbicki, 1996; Wierzbicki, 
1995). The reason for the bifurcation of the fracture has not been 
studied. Furthermore, previous studies considered that the sheet frac
ture pattern only depended on the ratio of tool size to sheet thickness, as 
in studies of a tool with a wedge (Zheng and Wierzbicki, 1996). How
ever, by analyzing the energy contributions of stretching, bending, and 
fracture during the cut, we find that the above conclusion is suitable for 
thick films and not for thin films. This is because both fracture and 
stretching energies scale like sheet thickness t, while the bending energy 
(Audoly and Pomeau, 2010) scales like t4. Therefore, the dominant en
ergy term should switch from bending energy to fracture or stretching 
energy as the film becomes thinner. This switch will depend not only on 
the ratio of tool diameter to film thickness but also on film thickness. 

To investigate how the fracture pattern switches during the cutting of 
thin aluminum films, we first perform experimental and numerical 
studies and then develop a new cutting force model with energy anal
ysis. By comparing the energy contributions during cutting, we build up 
a force model that takes both tool size and film thickness into account. 
The proposed model differs from previous models, which used the ratio 
of tool size to thickness as the sole factor. By using this new model, we 

Nomenclature 

List of symbols 
v Cutting velocity 
t Film thickness 
D Cutting tool diameter 
D/t Ratio of tool size to film thickness 
(D/t)cr Critical ratio of tool size to film thickness 
Ltongue Tongue length 
β Deviation angle 
R Rolling radius 
Fcurl Force required to form the curling flap 
Ėbending Energy dissipation rate of film bending 
Ėmembrane1 Rate of membrane energy in the near-tip zone 
Ėmembrane2 Rate of membrane energy in the tension–compression 

transition zone 
Ėfracture Rate of fracture energy 

Rf Specific work of fracture 
θ Wedge semi-angle 
M0 Fully plastic bending moment 
σ0 Flow stress 
μs Friction coefficient 
λ Wavelength of curling flap 
λexp, λtheory Experimental and theoretical wavelengths 
Findentation Normalized axial indentation force 
Ftongue Tearing force perpendicular to concertina folds 
b, b0, bt Normalized tear width, initial tear width, and ultimate tear 

width 
x Normalized coordinate along the symmetry line 
(Findentation)ave Average tear force 
(Findentation)min Minimum value of force required for a concertina tear 

to occur  
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Table 1 
Assumptions and application scope of various cutting models.  

Cutting tool Exp 
method 

Material t (mm) Failure modes Model/Assumptions Cutting force Remarks Ref. 

Round-nosed wedge 
r = 15 mm, 2θ = 60◦

– – – Transient (or 
initial) wedge 
penetration 

Based on an empirical formula proposed 
for ship collision problems. 

F=(33900 t + 190tltanθ)/cosα – Vaughan ( 
Vaughan, 
1978) 

Wedge, θ = 5◦,15◦ , 30◦ , 
α = 10◦

Drop- 
hammer 
tests 

Unstiffened mild 
steel plate 

0.75–1.9 – Assumption: Energy is absorbed in two 
ways: plastic deformation and the creation 
of new surfaces with a fracture. 

F=(5500 t1.5 + 8.8lt2tanθ)/cosα For small penetrations, 
the formulas did not 
correspond to actual 
forces. 

Vaughan ( 
Vaughan, 
1980) 

Wedge, 
θ = 15◦ ,35◦,50◦, 
α = 0◦

Drop- 
hammer 
tests 

Mild steel plate 2–4 – Assumption: energy absorption. F = 2500 t2[0.5+(0.05 + 0.004 l/t)(θ-20◦)/ 
15◦] for 20◦≤θ ≤ 50◦ and 24 ≤ l/t ≤ 60 

– Woisin ( 
Woisin, 1982) 

Wedge, 
2θ = 15◦,30◦,45◦,60◦, 
α = 0◦

Drop- 
hammer 
tests 

Unstiffened mild/ 
high-tensile steel 
plate 

1.501–5.95 – Assumptions: Energy-absorbing 
mechanisms-cutting, curling, or distorting, 
elastic, and frictional energy. The bending 
and friction energies were found to 
amount to about 10% each, and the 
elasticity effect was ignored. 

(1) F = 3900 t1.44 for t = 1.501 mm, 
σ0 = 255 MPa 
(2) F = 7200 t1.305 for t = 3.25–5.95 mm, 
σ0 = 398.5 MPa 

For the plate cutting 
problem, the 
geometrically similar 
scaling principle was 
not satisfied. 

Jones (Jones 
and Jouri, 
1987) 

Wedge, 2θ = 20◦,40◦, 
α = 0◦

Quasi- 
static 
cutting 
tests 

Unstiffened high- 
tensile steel plate 

0.72–2.0 Transient (or 
initial) wedge 
penetration 

A simple empirical formula based on 
Buckingham’s dimensional analysis. 
Assumption: The yield stress is the only 
relevant material property. 

F = 1.3C1.3σ0l0.3t1.7 for 5 < l/t < 150 C1.3 is a purely 
empirical constant 
depending on cutting 
conditions. 

Lu (Lu and 
Calladine, 
1990) 

Wedge, 10◦≤θ ≤ 30◦ Quasi- 
static 
cutting 
tests 

– – Transient (or 
initial) wedge 
penetration 

An approximate kinematic model 
combines the effects of plasticity, fracture, 
and friction into a single-term formulation. 
Assumption: The plate material curls up 
into two inclined cylinders when the 
wedge advances into the plate. 

F = 3.28σ0μ0.4l0.4t1.6δt
0.6for 0.1 ≤ μ ≤ 0.4 – Wierzbicki ( 

Wierzbicki and 
Thomas, 1993) 

Wedge, 
2θ = 15◦,30◦,45◦,60◦, 
α = 0◦

Quasi- 
static 
cutting 
tests 

Longitudinally 
stiffened steel 
plate 

3.4–7.8 Transient (or 
initial) wedge 
penetration 

Based on dimensional analysis. 
Assumptions: 
(1) Longitudinal stiffeners are included by 
using an area equivalent plate thickness teq 

(2) The inertia effect is negligible. 

F = 1.5C1.5Cfσ0teq
1.5l0.5/cosα, where the 

coefficient C1.5 = 1.112–1.156θ + 3.76θ2, the 
dynamic correction factor 
Cf = 1.0–0.042v + 0.001v2, and the initial 
impact velocity v 

C1.5 might change for 
different materials 
or test conditions. 

Paik (Paik, 
1994) 

Wedge Quasi- 
static 
cutting 
tests 

– – Steady-state 
(with the 
stable flap 
buckled) 

A kinematic model with only one free 
parameter, the plate rolling radius R. 
Assumptions: 
(1) A bent flap is composed of two 
cylindrical surfaces connected by a 
toroidal transition zone 
(2) Energy-absorbing mechanisms: a) plate 
bending in moving hinge lines, b) 
membrane deformation (near the wedge 
tip and tension–compression transition 
zone). 

F = 2Btσ0(1 + μscotθ)[2(B + R)/ 
R + 1.46Rcosθ/t + 1.28θ2(B + R)2cos(0.5θ) 
/Rt], where the rolling radius 
R = [(2 t/B + 1.28θ2cos(0.5θ))/ 
(1.46cosθ + 1.28θ2cos(0.5θ))]0.5 

The fracture effect was 
not considered. 

Zheng (Zheng 
and 
Wierzbicki, 
1996) 

Wedge Quasi- 
static 
cutting 
tests 

– – Transient (or 
initial) wedge 
penetration 

A kinematic model is proposed. 
Assumptions: 
(1) No separation between the wedge tip 
and crack tip. (2) The plate material 
separates ahead of the wedge tip and then 
curves into two surfaces of variable 
curvature. 
(3) Energy-absorbing mechanisms: 
membrane plastic flow in the near-tip field 
and bending of the plastic hinges. 

F = 1.51σ0t1.5l0.5(sinθ)0.5(1 + μ/tanθ) – Ohtsubo ( 
Ohtsubo and 
Wang, 1995) 

Wedge Mild steel plate 0.75–1.143 F = 4.33σ0t5/3b1/3 + 8/3Rt 

(continued on next page) 

X. Ye et al.                                                                                                                                                                                                                                       



InternationalJournalofSolidsandStructures241(2022)111514

4

Table 1 (continued ) 

Cutting tool Exp 
method 

Material t (mm) Failure modes Model/Assumptions Cutting force Remarks Ref. 

Quasi- 
static 
cutting 
tests 

Parallel 
concertina 
tearing 

Based on the concept of stationary 
tension/compression, shear and bending 
hinge lines with slope discontinuities and 
rigidly displacing and rotating plate 
elements. 
Assumption: Energy-absorbing 
mechanisms: plate bending, stretching 
(membrane action), shearing, and 
fracture/tearing. 

The actual punch shape 
and size were not 
considered. 

Wierzbicki ( 
Wierzbicki, 
1995) 

Wedge, 
θ = 10◦ ,30◦,45◦, 
α = 10◦

Quasi- 
static 
cutting 
tests 

Mild steel plate 0.75, 1.6, 
20.0 

Steady-state 
cutting 

Assumptions: 
(1) Energy dissipation mechanisms: a 
plastic-tip zone, moving bending hinge 
lines, and a membrane deformation zone 
(2) The membrane deformation zone is 
dominated by plastic shear strains 
(3) Two alternative deformation modes in 
the tip zone in front of the cutting edge: a 
purely plastic flow mode and a plastic 
fracture mode. 

(1) plastic flow mode: F = g(μ,θ,α)[0.64/ 
30.5σ0tR(cosθ)2(1 + 0.55θ2) 
+2*3-0.5σ0tBθ + σ0t2/30.5(B + R)/R/cosθ], 
R=…, R ≤ 1.75B 
(2) crack-tip deformation mode: F = g(μ,θ,α) 
[Gct + 2*3-0.5σ0tBθ + 1.57σ0t2/30.5/cosθ] 

The contribution of the 
tip zone in cutting and 
tearing was not clear. 
Dynamic effects were 
not included. 

Simonsen ( 
Simonsen and 
Wierzbicki, 
1997) 

Blunt/rounded wedge Quasi- 
static 
cutting 
tests 

Mild steel plate 
(with an initial 
precut width) 

0.4 Diverging 
concertina 
tearing 

Assumptions: 
(1) Energy dissipation mechanisms: 
uncoupled plate bending, plate membrane 
action, shear action, and plate fracture/ 
tearing 
(2) The plate resistance is independent of 
the punch geometry and friction 
coefficient. 

F = M0(9.35b1/3 + 0.56b2/3 + 4*31/2R/σ0/t), 
where width b = 0.32H2 + 0.8H1.5 

The actual punch shape 
and size were not 
considered. 

Wierzbicki ( 
Wierzbicki 
et al., 1998)  
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predict the cutting forces for the three film thicknesses, and we verify 
them with corresponding experiments. 

2. Experimental results 

In this study, we cut aluminum films (from 10 μm to 25 μm thick) 
with a tool at a constant velocity v. The tool is a cylinder with a diameter 
approximately 1 to 500 times the thickness. As shown in Fig. A1 in the 
Appendix, the film has a rectangular shape, with dimensions of 
100 mm × 40 mm. The two long edges of the film are clamped on a U- 
shaped frame with double-sided tapes, and one short edge of the film is 
fabricated with an initial crack (5 mm) in the middle. The direction of 
the crack is parallel to the long edge, and during the experiments, the 
middle crack is extended by a cylindrical tool cutting in the vertical 
direction. 

As we found in our experiment for ductile film, the branch of tearing 
appeared rather than the traditional concertina tearing from the previ
ous studies (Tallinen and Mahadevan, 2011; Zheng and Wierzbicki, 
1996; Wierzbicki, 1995). In previous studies, as shown in Fig. 1a, 1d, 
two stable cracks propagated during the cut, generating a folded tongue 
along the centerline. With a different crack pattern, our experiments 
(aluminum films with a 10 μm thickness cut by a 5.22 mm cylindrical 
tool) show concertina tearing with periodic branches (Fig. 1b). In this 
case, one crack of the tongue stops, forming the branch of the tear. For 
better observation, we smooth the tongues of the branched concertina 
shown in Fig. 1b. The smoothed structure is shown in Fig. 1c. This 
pattern indicates that the wavelength of the folding increases during the 
formation of each tongue. In addition, the force–displacement curve 
during this branched tear is recorded, with the peak force indicating the 
initial tear of each new concertina (marked with blue numbers in Fig. 2a, 
b). Additionally, we observe the force variation for a single concertina, 
e.g., tongue #3 in Fig. 2a. In this case, the force–displacement curve 
shows that a complete fold is formed at the beginning of the cut, and two 
small folds converge into a single fold as the displacement increases; at a 
later stage of the cut, three or even four small folds converge into a single 
fold (Fig. 2c). 

During a single cut with other tool sizes, as shown in Fig. A2 of the 

Fig. 1. Different types of fracture morphology. (a) A traditional type of concertina tearing found in the references (Wierzbicki, 1995; Tallinen and Mahadevan, 
2011), where two stable cracks propagate, generating a folded tongue. Reproduced with permission (Tallinen and Mahadevan, 2011). Copyright 2011, American 
Physical Society. (b) Our experiments show periodic concertina tearing in 10 μm-thick aluminum film cut by a 5.22 mm cylindrical tool, where one crack of the 
tongue stops, forming the branch of the tear. (c) The same image as in (b) with the folds smoothed. (d) Simulations that reproduce the experimental concertina 
tearing shown in (a). The colors indicate the intensity of the elastic energy. Reproduced with permission (Tallinen and Mahadevan, 2011). Copyright 2011, American 
Physical Society. (e) Our simulation of the branched concertina tearing in (c). 

Fig. 2. (a) Branched tear and (b) force–displacement curve for a 5.22 mm cy
lindrical tool. #1-#5 represent the starting positions of each tongue. (c) Force- 
displacement curve for tongue #3 in Fig. 2a and 2b. 
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International Journal of Solids and Structures 241 (2022) 111514

6

Appendix, we smooth the tongues and measure their lengths. The result 
shows a linear relationship between the tongue length and the tool 
diameter. Moreover, we carry out a numerical analysis by finite element 
method (FEM) that combines the finite elastic–plastic deformation with 
the damage to reproduce the observed fracture morphologies in the 
experiment. Simulation details can be found in Appendix A. By taking 
the same input parameters as those in the experiment, the finite element 
simulation (Fig. 1e) reproduces similar results to the experimental 
concertina tearing shown in Fig. 1c. 

Unlike the concertina tearing that occurs when the film is cut with a 
large cylindrical tool (D/t = 135, Fig. 3a), a periodic stick–slip phe
nomenon is observed in experiments with very small tools (D/t less 
than 8; see the movie in the Support Information). During the cut with 
small tools, the film fails with a central crack and forms curling flaps on 
both sides of the crack (Fig. 3c-d). However, the in-situ experiment 
shows that both concertina tearing and a periodic stick–slip phenome
non can appear when D/t = 14, as shown in Fig. 4 (Fig. 3b is part of 

Fig. 4). This fact confirms that the critical D/t corresponding to the 
transition when the failure mode occurs is around 14. Another piece of 
evidence is the force history. When the tool size is smaller than the 
critical size, both the average and the fluctuation of the cutting force 
decrease rapidly (Fig. 5). 

For a traditional concertina tear (Fig. 1a), as the tool advances, two 
steady-state cracks propagate with inclined angles; as a result, the 
tongue length and the cutting force also increase (Wierzbicki et al., 
1998). By contrast, in our experiment, we observe a sequence of 
branched concertina tears during the cut (Fig. 2a and Fig. A2). The width 

Fig. 3. Tool size-dependent morphologies of cracks in 10 μm-thick aluminum film with in-situ experiments in the SEM and atmospheric environments. (a) Tool 
diameter D = 135 t. (b) D = 14 t. (c) D = 8 t. (d) D = t. When the ductile film is cut with large cylindrical tools (with large D/t), the film fails with multiple concertina 
tears. When the film is cut with small tools (with small D/t), the film fails with curling flaps. 

Fig. 4. In-situ cutting experiments of thin films performed with a 140 μm- 
diameter cylindrical tool. (a) Load-displacement curve. (b) SEM image and (c) 
Optical image. 

Fig. 5. Typical force–displacement curves for cutting 10 μm-thick film using 
tools of different sizes. (a) Original and (b) averaged force–displacement curves. 
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of the tongue is limited by the tool diameter. Furthermore, the length of 
the tongue does not increase indefinitely with the increasing displace
ment of the cutting tool. In a different way, the tongue stops stacking at a 
distance where the next concertina tear initiates (Fig. A3). This is caused 
by the instability of the crack propagation during concertina tearing. 
Taking tongues #1 and #2 as examples, when the width of tongue #1 
reaches half of the tool diameter (Wtongue =D/2), tongue #1 stops, and 
tongue #2 initiates (Fig. A3). Assuming that the outer contour of the 
tongue is triangular, the theoretical length of the tongue can be obtained 
as Ltongue =D/2/sinβ according to the geometric relationship, where β is 
the deviation angle. Through the image processing of the results shown 
in Fig. A2, it can be determined that the deviation angle is in the range of 
β ∈ (11◦

,15◦

) . Therefore, the theoretical Ltongue is between 1.93D and 
2.62D. Specifically, for the traditional cutting of ductile films 

(Wierzbicki et al., 1998), since the prefabricated crack width is greater 
than the tool size (diameter), two cracks can only propagate continu
ously forward along the fixed angle and finally form a symmetrical 
tongue. 

Through image processing for the results shown in Fig. A2, the 
experimental average tongue length (shown by the hollow circles in 
Fig. 6) can also be obtained. For a deeper understanding of the failure 
mode, we draw a schematic diagram of the average tongue length Ltongue 
and the failure mode for tools with different diameters (Fig. 6). The 
experimental results show a linear relationship between Ltongue and the 
tool diameter D, which can be fitted as 

Ltongue = 2.02D (1) 

Furthermore, the tongue length can be obtained with numerical 
simulation, as shown by the solid circles in Fig. 6. We compare the 
theoretical and numerical predictions and the experimental measure
ments of the average tongue lengths, and we find that the theoretical 
results agree well with the experimental and FEM results. 

3. Theoretical model for cutting force 

Figs. 3 and 6 show that the fracture pattern of micron-thickness film 
depends on the tool size. When cut with a sharp tool, the film fails 
mainly with curling flaps; when cut with a blunt tool, the film breaks 
with branched concertina tears. As an extreme case, when the tool is 
very blunt, the film fails with a traditional concertina tear (β = 0). This 
fact indicates that the failure of the film is different with the different 
tool sizes. Therefore, corresponding theoretical models are required for 
the specific failure modes. By analyzing the energy contribution of all 
components during the cut, we propose two force models: the curling 
flap model for small D/t is described in Section 3.1 and the branched 
concertina tearing model for large D/t is described in Section 3.2. 
Furthermore, we obtain the critical (D/t)cr corresponding to the transi
tion of the two failure modes that are described in Section 3.3. In 
addition, we find that the self-similarity (Zheng and Wierzbicki, 1996) of 
the ratio is questionable when the film thickness is reduced to micron 
size; this discussion is in Section 3.4. 

Fig. 6. Linear dependence of tongue length and tool size, shown by the blue 
circles. The inset shows the size-dependent fracture pattern on the film (film 
thickness is 10 μm). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 7. Comparison of theoretical predictions, experimental measurements, and 
numerical simulations of the normalized curling flap wavelength with different 
tool diameters. The inset is an example of D/t = 14 (D = 140 μm, t = 10 μm), and 
the experimentally measured curling flap wavelength is λexp = 215 μm (~1.5D), 
which is close to the theoretical wavelength λtheory = 1.41D. 

Fig. 8. Comparison of theoretical predictions and experimental results for the 
cutting forces required for aluminum films with thicknesses of 10–25 μm with 
different tool diameters. There is a critical (D/t)cr ~ 15. When D/t<(D/t)cr, the 
failure mode is a curling flap; when D/t≥(D/t)cr, the failure mode is sequenced 
concertina tearing. Inset: enlarged view of the relationship between the cutting 
force and the tool diameter. The error bars represent the standard deviation. 
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3.1. Curling flap model for small D/t 

In the Appendix, Fig. A4 shows the morphology of the original 
curling flap formed after cutting the film with a sharp cylindrical tool 
(Fig. A4a) and after the smoothing treatment (Fig. A4b). From Fig. A4b, 
we find that the size and the period of the curling flap are related to the 
tool size (red circles in the enlarged view of Fig. A4b). As described in 
reference (Zheng and Wierzbicki, 1996), the periodic transition zone 
between each two curling flaps is caused by film deformation. The 
transient flap is first stretched to form the transition zone, and then 
compressed to form the stable curling flap. Also, the in-plane compres
sion force causes the film to buckle near the ridge of stable curling flap. 
In addition, the FEM results also confirm the similar phenomenon of a 
curling flap near the cylindrical tool (Fig. A5). A curling flap model was 
proposed by Zheng et al. (Zheng and Wierzbicki, 1996) for cutting film 
using a wedge-shaped tool. Based on their model, we assume a loop of a 
plastic hinge at a distance R from the surface of the cylindrical tool 
(Fig. A5c). The difference is that our model includes the fracture energy, 
whereas previous study (Zheng and Wierzbicki, 1996) did not consider 
the effect of the fracture energy. 

The fracture energy needs to be considered in this research. This is 
because both the fracture energy and the stretching energy scale like t, 
while the bending energy scales like t4. Therefore, as the film becomes 
thinner, the dominant energy term should switch from bending to 
fracturing or stretching. The thin film in this research has a thickness of 
only 0.01 mm, while the films in the previous study (Zheng and 
Wierzbicki, 1996) had thicknesses in the range of 0.75 mm to 20 mm. 
Our later discussion in Section 3.4 shows that the fracture energy cannot 
be neglected for a film with a micro size thickness. 

During the cutting, the external input work is assumed to be equal to 
the dissipation energy of the bending, membrane, and fracture 

Fcurlv = Ėbending + Ėmembrane1 + Ėmembrane2 + Ėfracture (2) 

where Fcurl is the external force required to form the curling flap, 
Ėbending is the energy dissipation rate of the film bending. Ėmembrane1 and 
Ėmembrane2 are the rates of the membrane energy in the near-tip zone and 
the tension–compression transition zone, respectively. The expressions 
of these three components of the energy dissipation rate are from the 
literature (Zheng and Wierzbicki, 1996) and listed in Appendix B. Ėfracture 

is the rate of the fracture energy, which can be expressed as (Wierzbicki 
et al., 1998) 

Ėfracture = Rf tv (3)  

where Rf is the specific work of the fracture at the crack tip, and the 

value of Rf is 3 N/mm for aluminum film. We assume that the cylindrical 
tool approximates a wedge-shaped tool with a wedge semi-angle θ = π/4 
and a wedge semi-width D/2, and we normalize the external force Fcurl 
with the fully plastic bending moment (Zheng and Wierzbicki, 1996; 
Wierzbicki et al., 1998) M0, defined by: 

M0 =

(
2̅
̅̅
3

√ σ0

)
t2

4
(4)  

where σ0 is the flow stress. Then the dimensionless external force 
required to form the curling flap can be written as 

Fcurl =
Fcurl

M0
= 2

R+D
2

R
+1.268

R
t

cosθ+1.28θ2

(

R+D
2

)2

Rt

cos
(

θ
2

)

cosθ
+2

̅̅̅
3

√ Rf

σ0t
(5)  

where R is the unknown rolling radius. Moreover, considering the fric
tion effect between the cutting tool and the film, the normalized cutting 
force can be rewritten as 

Fcurl=

⎡

⎢
⎢
⎢
⎣

2
R+D

2

R
+1.268

R
t

cosθ+1.28θ2

(

R+D
2

)2

Rt

cos
(

θ
2

)

cosθ
+2

̅̅̅
3

√ Rf

σ0t

⎤

⎥
⎥
⎥
⎦
⋅(1+μscotθ)

(6)  

where μs is the friction coefficient with a value of 0.2. The assumption 
that the rolling radius R is adjustable to minimize the normalized cutting 
force gives 

∂Fcurl

∂R
= 0 (7) 

After substituting Eq. (6) into Eq. (7), the solution of Eq. (7) is 

R
D

= 0.5

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4( t
D) + 1.28θ2cos

(
θ
2

)

1.268cosθ + 1.28θ2cos
(

θ
2

)

√
√
√
√
√
√
√

(8) 

Additionally, by combining the theory with the schematic diagram in 
Fig. A5c, the normalized wavelength λ of the curling flap can be calcu
lated as 

Fig. 9. Effect of fracture energy on cutting force in (a) curling flap and (b) sequenced concertina failure modes. For both failure modes, the effect of the fracture 
energy on the cutting force decreases with the increasing film thickness. When Et/Rf > 20000 the contribution of the fracture energy to the total energy is (a) less than 
1.2% for the sharp tools and (b) less than 0.33% for the blunt tools. Additionally, for the sequenced concertina failure mode, the energy ratio is insensitive to D/t. 
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λ =
λ
D

=
1
4 π(D + 2R)

D
=

1
4

π

⎛

⎜
⎜
⎜
⎝

1+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4( t
D) + 1.28θ2cos

(
θ
2

)

1.268cosθ + 1.28θ2cos
(

θ
2

)

√
√
√
√
√
√
√

⎞

⎟
⎟
⎟
⎠

(9) 

In summary, we provide a theoretical prediction of the wavelength of 
the curling flap in Eq. (9). Then, with two different tool diameters, we 
compare the theoretical predictions, experimental measurements, and 
numerical results of the normalized curling flap wavelength, and we find 
that the theoretical results agree well with the experimental and FEM 
results, as shown in Fig. 7. The inset is an example with D/t = 14. The 
measured wavelength of the curling flap is λexp ~ 1.5D, which is close to 
the theoretical wavelength λtheory = 1.41D. 

3.2. Branched concertina tearing model for large D/t 

The traditional concertina tearing model proposed by Wierzbicki 
et al. (Wierzbicki et al., 1998) indicates that the cutting force is deter
mined by the fracture toughness, flow stress, and thickness of a film and 
that the cutting force increases continuously with the increase of the 
cutting displacement. Furthermore, in their model, the cutting force or 
the concertina tearing length is independent of the tool size. Our 
experimental results show that there is a limit to the tongue length 
(Fig. 6), so the cutting force cannot increase infinitely with the 
increasing tool displacement. When the tongue length reaches the crit
ical length (provided by Eq. (1)), the current tearing stops, and the next 
new concertina tearing starts (as shown in Fig. 1b and 1e). 

In the sequenced concertinas, with the deviation angle β from the 
cutting direction (Fig. A3), the normalized axial indentation force 
(cutting force) can be expressed as  

Findentation =
Findentation

M0
=

⎛

⎜
⎜
⎝

Ftongue

cos

(
β
2

)

⎞

⎟
⎟
⎠

M0
(10)  

where the tearing force perpendicular to the folds of a single concertina 
is defined as (Wierzbicki et al., 1998) 

Ftongue =

(

9.35b1/3
+ 0.56b2/3

+ 4
̅̅̅
3

√ Rf

σ0t

)

M0 (11) 

The normalized tear width b is denoted as 

b =
(

3x + b4/3
0

)3/4
(12)  

where x = x
t is the normalized coordinate along the symmetry line 

originating from the tear start point, and b0 is the normalized initial tear 
width defined in reference (Wierzbicki et al., 1998). Here, the initial tear 
width equals to the prefabricated crack width in experiments. The 
starting point or starting criterion for each new concertina tear is 

x = 0 (13) 

At this beginning of a new concertina tear, the normalized tear width 
is: b = b0. In consequence, the initial axial indentation force (cutting 
force) can be expressed as 

Findentation|x = 0 =

(

9.35b1/3
0 + 0.56b2/3

0 + 4
̅̅̅
3

√ Rf
σ0 t

)

cos
(

β
2

) (14) 

By considering the critical tongue length in Eq. (1), the ending length 
xt for this concertina tear can be derived as 

xt =

Ltonguecos
(

β
2

)

t
= 2.02D

cos
(

β
2

)

t
(15) 

By substituting Eq. (15) into Eq. (12), the ultimate tear width can be 

obtained as bt =
(

3xt + b
4/3
0

)3/4
. Similarly, by substituting bt into Eq. 

(10), the normalized axial indentation force at the ending point can be 
obtained as 

Findentation|x=xt
=

(

9.35
(

3xt + b4/3
0

)1/4
+ 0.56

(
3xt + b4/3

0

)1/2
+ 4

̅̅̅
3

√ Rf
σ0 t

)

cos
(

β
2

)

(16) 

Since the conventional concertina tearing model (Wierzbicki et al., 
1998) shows that the cutting force varies approximately linearly with 
the tool displacement during concertina tearing, an average of the cut
ting force during the whole tearing process can be taken. The averaged 
cutting force can be expressed with 

(Findentation)ave = 0.5(Findentation|x = 0 + Findentation|x = xt ) (17) 

The deviation angle is β ∈ (11◦,15◦), so the variation of cos(β
2) in the 

range is within 0.4%. As a result, β = 11◦ can be taken for simplification. 
We compare the theoretical predictions and the experimental results 

for the cutting forces required for aluminum films with thicknesses of 
10 μm to 25 μm. As shown in Fig. 8, the results with the tool size D up to 
500 t agree well with the theoretical predictions in Eq. (6) and Eq. (17). 
Additionally, Fig. 8 shows a critical transition at around (D/t)cr ~ 15. 
When D/t<(D/t)cr, the failure mode is a curling flap; when D/t≥(D/t)cr, 
the failure mode changes to sequenced concertina tearing. 

3.3. Critical (D/t)cr corresponding to the transition of the failure mode 

Fig. 8 shows that the fracture pattern of the film changes from a 
curling flap to branched concertina tearing as D/t increases. The tran
sition of the failure mode can be obtained with 

(Fcurl)ave = (Findentation)min (18) 

The right side of Eq. (18) is the normalized initial axial indentation 
force Findentation|x = 0 , as shown in Eq. (14). With D = D/t, R = R/t, and 
α = R/D, the normalized expression of Eq. (8) is 

α =
R
D
= 0.5

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4/D + 1.28θ2cos(θ/2)
1.268cosθ + 1.28θ2cos(θ/2)

√

(19) 

Then with μs = 0, Eq. (18) can be reduced to 

2+
1
α + 1.268αDcosθ+ 1.28θ2cos(θ/2)

cosθ
(α + 0.5)2

α D

= 9.35b1/3
0 + 0.56b2/3

0 + 2
̅̅̅
3

√ Rf

σ0t

(20) 

By substituting Rf = 3 N/mm, σ0 = 110 MPa, θ = π
4 and b0 = 50 into 

Eq. (20), and expanding the left side of Eq. (20) with first-order Taylor 
series, the following expression can be obtained 

6.24+ 3.048(D)+O(D − 1)2
= 42.05+

0.06 (mm)

t
(21) 

The final approximation is: 
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D =
D
t
≈ 12.75+

0.06(mm)

t
(22) 

For films with thickness t≫0.06 mm, the second term in Eq. (22) can 
be neglected, so the critical (D/t)cr corresponding to the onset of the 
failure mode transition is equal to 12.75. However, for the films with 
thickness t≪0.06 mm, the second term in Eq. (22) cannot be neglected 
because of its larger value, so (D/t)cr is>12.75. For instance, we use the 
films with thicknesses of 0.01 mm and 0.025 mm in our experiment, 
which correspond to 18.75 and 15.15 for (D/t)cr, respectively. This 
observation is consistent with the experimental results shown in Fig. 6, 
for which the critical transition for D/t is around 15.0. 

3.4. Discussion of the effect of the fracture energy 

In this work, the fracture energy is considered in both the curling flap 
and branched concertina tearing models, as shown in Eqs. (2), (6), and 
(17). We further analyze the effect of the fracture energy on the film 
cutting force. By using Eqs. (6) and (17), we calculate the energy 
partition during the cut. When the tool is sharp (D/t<(D/t)cr), the curling 
flap mode occurs. In this situation, Fig. 9a shows the relationship be
tween the energy ratio (Efracture/Etotal)curl and the dimensionless film 
thickness (Et/Rf), where Efracture and Etotal are the fracture energy and the 
total energy (sum of film bending energy and membrane energy), 
respectively. However, when the tool is blunt (D/t>(D/t)cr), the 
branched concertina mode occurs. In this situation, Fig. 9b shows the 
relationship between (Efracture/Etotal)concertina and Et/Rf. 

Fig. 9 shows that the ratio D/t has a different effect on the two 
fracture modes. The ratio D/t plays an important role in the curling flap 
mode, where the energy ratio (Efracture/Etotal)curl decreases as D/t in
creases, as shown in Fig. 9a. In contrast, as shown in Fig. 9b, the ratio D/t 
has little effect on (Efracture/Etotal)concertina for the failure of the branched 
concertina tear. Moreover, we observe that the effect of the fracture 
energy on the cutting force gradually decreases with the increase of the 
film thickness. When Et/Rf > 20000, the contribution of the fracture 
energy to the total energy is less than 0.33% for the branched concertina 
model (Fig. 9b) and less than 1.2% for the curling flap model (Fig. 9a). 
This fact is consistent with the previous studies for thick plates, which 
have not considered the fracture energy during the cutting of thick 
plates (Zheng and Wierzbicki, 1996). 

4. Conclusion 

In conclusion, experiments and numerical simulations are carried 
out to study the size effect of tools on the cutting of thin aluminum films. 
The results show that the failure modes of the cut films are dependent on 
the tool size: films cut with large tools (large D/t) fail in the form of 
branched concertina tears, while films cut with small tools (small D/t) 
fail in the form of curling flaps. The major conclusions are as follows:  

(1) We develop a theoretical model (Eq. (6) and Eq. (17)) to predict 
the cutting force of the two failure modes. For the aluminum film 
in this study, the critical tool size for the transition of two modes 
has a value of approximately 15 times the film thickness. This 
transition is verified by cutting aluminum films with thicknesses 
in the range of 10 μm to 25 μm.  

(2) The two modes have different geometrical features. In the curling 
flap mode, the wavelength of the curling flap can be determined 
from Eq. (9). In the branched concertina mode, the length of the 
tongue Ltongue is proportional to the tool diameter D with a co
efficient of approximately 2.02.  

(3) The contribution of fracture energy to total energy increases with 
decreasing film thickness. The dependence of Efracture/Etotal on 
thickness is insensitive to tool size for the branched concertina 
mode, but this dependence is very sensitive to tool size for the 
curling flap mode. As a result, the effect of fracture energy cannot 
be neglected for aluminum films with micrometer-level 
thicknesses. 
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Appendix A 

Experimental setup. The dimensions of the aluminum film (length ×width × thickness) are 100 mm × 40 mm×(0.01–0.025) mm. Prior to the 
cutting experiments, two long edges of the film are firmly clamped to a rigid frame with double-sided tape (3 M, USA), while the two short edges are 
left free (Fig. A1). In addition, an initial 5-mm-long crack is prefabricated in the centerline of one short edge, along which the film is laterally cut with a 
cylindrical tool driven by a macroscopic material testing system (MTS) (Instron 5942, Instron, USA) in an atmospheric environment, a microscopic 
MTS (Microtest 200, Gatan, USA) with an optical microscope (HIScope KH-3000, Hirox, Japan), and with scanning electron microscopy (SEM) 
(SU1510, Hitachi, Japan). The velocity is set to 1 mm/s and the diameter of the cutting tool is controlled in the range of t–500 t. During the cutting 
experiments, the load–displacement curves are recorded with the MTSs, and the crack propagation process is recorded with a camera. After the 
experiments, the fracture morphology of the films is observed with SEM. 

Simulation details. The cutting of the ultrathin film is simulated using Abaqus/Explicit FEM, for which we use a phase field model with damage 
(Wang et al., 2020; Wang et al., 2020) to model the thin film. The film is meshed with the four-node quadrilateral shell element with reduced 
integration (S4R), and the cutting tool is meshed with the eight-node linear solid element with reduced integration (C3D8R). The loading has a 
smoothed amplitude to mimic the quasi-static process. The mesh size is 0.1 μm in the cracked region of the film where large deformations and damages 
(cracks) may occur, and the mesh size is 0.5 μm away from the cracked region. We have checked the mesh sensitivity and the results are found to be 
robust. The materials of the film and the cutting tool are aluminum and steel, respectively, which are for the isotropic elastic–plastic material model. 
The aluminum film has an elastic modulus of 70 GPa, a yield strength of 110 MPa, and a plastic linear hardening modulus of 1.93 GPa. The steel tool 
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has an elastic modulus of 162.67 GPa, a yield strength of 247.26 MPa, and a plastic linear hardening modulus of 1.93 GPa (Ye et al., 2020). The 
fracture energy is determined by trouser-tests (Audoly et al., 2005), and the obtained value is 3 N/mm. The failure process of the aluminum film is 
simulated using the Abaqus built-in ductile damage model with an initial failure strain of 0.2 and a critical fracture energy of 3 N/mm. In the model, a 
general contact definition is used for the contact interaction between the film and the cutting tool. The model uses the contact property of a normal 
hard and tangential friction coefficient of 0.2 for all interactions. 

Fig. A1. Schematic diagram of the front view of the cut film experiment. Two 
long edges of the film are clamped, while the two short edges are left free. 

Fig. A2. Experimental results for cylindrical tools with different diameters. (a) D = 5.22 mm. (b) D = 3.43 mm. (c) D = 1.35 mm.  

Fig. A3. Configurations of the tongue during the cut.  

Fig. A4. (a) Morphology of the original curling flap formed after cutting the 
film with a sharp cylindrical tool and (b) morphology after smooth
ing treatment. 
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Appendix B 

The rates of the energy dissipation for bending Ėbending and membrane Ėmembrane can be expressed as (Zheng and Wierzbicki, 1996; Magliaro and 
Altenhof, 2020) 

Ėbending = 2M0v
(

1+
B
R

)

Ėmembrane = Ėmembrane1 + Ėmembrane2  

Ėmembrane1 = 1.268M0v
R
t

cosθ  

Ėmembrane2 = 1.28M0vθ2(R + B)2

Rt

cos
(

θ
2

)

cosθ
(B.1)  

where Ėmembrane1 and Ėmembrane2 are the rates of the membrane energies in the near-tip zone and the tension–compression transition zone, respectively. B 
and θ are the semi-width and the semi-angle of the wedge, respectively. R is the unknown rolling radius, and M0 is the fully plastic bending moment. 
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