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Abstract: Recently, flexible organic light-emitting devices (OLEDs) have become more and more
popular. However, the force distribution and deformation are very complex during the bending
process, and it is difficult to analyze the stress and strain by theoretical analysis and direct experiment.
In this paper, finite element analysis of the bending model for the flexible screen was performed.
For common U-shaped bending, it was shown that the maximum Mises stress increases rapidly as
the bending radius decreases, and the redistribution of the tensile zone and the compression zone
should be the key to the layer material selection. The results were verified by an imaging experiment.
Further, a water-drop-shaped bending mode was analyzed to reduce the risk of structure failure.

Keywords: OLED flexible screen; bending radius; thickness of the shape; water-drop-shaped

1. Introduction

In recent years, flexible organic light-emitting devices (OLEDs) have played an im-
portant role in flexible displays, smart wear and other fields. Compared with traditional
liquid crystal display (LCD) screens, flexible OLEDs have excellent characteristics, such as
self-illumination, wide viewing angle, light weight, low energy consumption and flexibility.
With the increasingly wide use of OLEDs in display products, the structural optimiza-
tion and stability of the OLED flexible screen have become important metrics to meet the
considerations of portability and economy.

The OLED display module is a composite stacked structure composed of different thin
optical films, and each layer is bonded by an optical clear adhesive (OCA) material with
both hyperelasticity and viscoelasticity. During the bending process, the small bending
radius causes the device to be overstressed, meanwhile, the inconsistent deformation
between various thin films leads to the viscous flow of the OCA, which tends to make the
devices peel off and cause permanent damage to the screen. Because the force distribution
and deformation are very complex during the bending process, it is difficult to analyze
the stress and strain by theoretical analyses. It is also difficult to observe and measure the
stress and strain distributions directly during the whole bending process in experiments.
Therefore, the finite element method which can obtain the stress and strain results was
employed to further reveal the damage mechanism and adhesive layer peeling of the
flexible OLED screen.

Based on the level of basic materials, a new type of hole-transport layer for host
material was developed by using a new method (ball milling process) and green halogen-
free solvent [1,2], which not only improved the photoelectric response level of the optical
monomer thin film device, but also showed good stability under continuous stress. Kru-
caite et al. [3] studied the use of the carbazole rings or substituted carbazole-containing
compounds, so that the prepared single optical thin film device had better optical and
mechanical properties. The performance optimization of OLED flexible screen monomer
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devices was studied [4–10]. It is concluded that the improvement of the bending perfor-
mance for the single component is beneficial to the performance optimization of the overall
module. However, the stress situation of the stack is quite different when it is bonded with
OCA. Based on the constitutive equation and superposition of OCA, some scholars [11–26]
have also carried out extensive research using finite element analysis, and the stress neutral
layer phenomenon is proposed. However, there is a certain gap between the stacking
structure and the actual flexible screen module, for example, the influence of the material
parameters of key laminated OCA and colorless polyimide (CPI), and the bending radius
and bending angle of the flexible screen module on the structure is not well understood.

In this study, finite element software ABAQUS (2020, Dassault Systemes Simulia Corp.,
Johnston, RI, USA) was introduced to establish the real stacking model of the flexible screen
module. The influence of the bending radius, OCA thickness-shape and bending mode
(including U-shaped and water-drop-shaped) on the mechanical behavior of the OLED
flexible screen are discussed. To verify the results of the analysis, an imaging experiment
was performed.

2. Finite Element Model

In this paper, the finite element model was established using ABAQUS to simulate
the mechanical behavior for the flexible screen. As shown in Figure 1, the screen module
and a fixture board were glued together, and the bending of the screen was driven by the
movement of the fixture board. For a common U-shaped bending mode, the bending angle
was set to be π, the bending radius was R, the initial lateral gap was πR and the bending
was completed in t seconds.

Figure 1. Geometric structure model of U-shaped bending mode. The left reference point was fixed,
and the bending was performed by moving the fixture board from position A to position B within
the bending time t seconds. The lateral gap was πR since the bending angle was π and the bending
radius was R.

A typical OLED flexible screen is stacked with a BMS (support), CPI, BP (back-plane),
OCA, POL (polarizer), TW (touch-writing), PD (prevent-damage) and an OLED light-
emitting surface. Among them, OCA is mainly made of acrylic material. Foam glue is often
used in the test, the core light-emitting layer of OLED is complex in composition, mostly
composed of minerals, organics, metal oxides, etc., and the remaining film layers are mostly
optical engineering films composed of PET, TAC, and PVA. The stacking order and the
corresponding thickness from the top to the bottom of the flexible screen module are given
in Table 1. The fixture board was regarded as a rigid body in this simulation as it is not
the focus of the analysis. The glue layer binds the screen module and the fixture board.
Although the OLED, PD and TW layers are all composed of multiple layered materials,
they can be taken as a composite material layer based on the composite material mechanical
laminate theory, which would simplify the finite element model.
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Table 1. Sequence of stacking.

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Layer name PD OCA TW OCA POL OCA OLED OCA BP OCA CPI OCA BMS Glue
Thickness/µm 55 25 62 50 31 15 38 25 25 25 100 25 150 100

Mesh 6 4 5 5 4 4 5 4 4 4 6 4 6 8

3. Constitutive Equations and Material Parameters

The flexible screen module was composed of multilayered films with different me-
chanical properties. The film layers were bonded by OCA, and the deformation of each
layer during the folding process was co-ordinated which plays a key role in the structure of
the flexible screen module.

As discussed in [27], OCA has hyperelastic and viscoelastic properties. In order to
describe these OCA attributes reasonably, the Ogden constitutive equation and Prony
constitutive equation were introduced [27]. The hyperelastic Ogden constitutive equation
is described as follows:

U =
N

∑
i = 1

2µi

α2
i
(λ

αi
1 + λ

αi
2 + λ

αi
3 − 3) +

N

∑
i = 1

1
Di

(J − 1)2i (1)

where λi is the principal tensile deviator, λi = J −
1
3 λi, J = (λ1λ2λ3)

1
2 is the ratio of

total volume, λi is the principal tensile, αi and µi are strain hardening exponent and shear
modulus, respectively, Di is the compressible parameter and N is the order. Due to uniaxial
tensile deformation and incompressibility, the sum of the latter term in Equation (1) is set
to be zero. Thus, the stress is given by the following equation:

σUT =
∂U

∂λUT

=
N

∑
i = 1

2µi
αi
· J −

αi
3 (λ

αi − 1

UT
− λ

− αi + 2
2

UT
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The viscoelastic behavior of the time domain is determined by the time-dependent
shear modulus GR(t) and its normalized Prony equation is shown in Equation (3) [28]:

GR(t)
G0

= 1 −
N

∑
i = 1

gP
i (1 − e −

t
τi ) (3)

where G0 is the instantaneous shear modulus, gP
i is the expression coefficient and τi is the

state variable to control the stress relaxation.
The material parameters of the OCA used in the Ogden and Prony equations are

shown in Tables 2 and 3, respectively. The corresponding fitting curves were obtained from
Figure 2 which were in good agreement with the experimental results.

Table 2. OCA parameters of forth-order Ogden equation.

i µi/MPa αi

1 −1.721 × 10−2 7.8758
2 6.675 × 10−3 2.5374
3 2.826 × 10−2 −0.4974
4 3.443 × 10−2 −15.7517

Table 3. OCA parameters of the second-order Prony equation.

i gi τi

1 0.29652 15.445
2 0.25903 124.29
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Figure 2. (a) The fitting result of the OCA for the Ogden model; (b) the fitting result of the OCA for
the Prony model.

Further, the elastic modulus of the OLED, PD and TW layers were estimated according
to the composite material mechanical laminate theory using the following formula [29]:

E =
∑ Ei · ti

∑ ti
=

E1 · t1 · n1 + E2 · t2 · n2 + · · · + En · tn · nn

t1 · n1 + t2 · n2 + · · · + tn · nn
(4)

where Ei, ni and ti are the elastic modulus, number of layers and thickness of the i-th
material, respectively.

A plastic linear strengthening model was employed for the CPI. The corresponding
stress and strain parameters are shown in Table 4. For other layers in the stack model, the
relevant material parameters are listed in Table 5.

Table 4. Plasticity parameters.

Yield Stress/MPa Plastic Strain Increment

65 0
90 0.02

231 0.7

Table 5. Material parameters of each film.

Layer Name Elastic Modulus/MPa Poisson Ratio

PD 4000 0.33
TW 5600 0.33
POL 3769 0.33

OLED 16,355.43 0.3
BP 3500 0.33
CPI 2500 0.34
BMS 6750 0.275

4. Results and Discussion
4.1. Influence of the Bending Radius

At present, screen manufacturers and consumers have imposed demanding require-
ments for the thickness of flexible screens. Thus, the bending radius plays a key role in the
foldability of the flexible screen components. In this paper, the bending radii were set to be
3 mm, 2.5 mm, 2 mm, 1.5 mm and 1 mm, respectively, and the bending time t = 18 s was
used for a 180-degree folding simulation.

Figure 3 shows the Mises stress distribution in the case of R = 2 mm. As the bending
radius decreases: the curvature radius is inversely proportional to the normal bending
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stress under the differential geometry; the Mises stress of each film layer increases non-
linearly; and the maximum value is located at the outermost position of the symmetrical
central axis (hereinafter referred to as the central axis, marked by the red box in Figure 3
after folding). Therefore, the decrease in the bending radius makes the risk of film damage
gradually increase.

Figure 3. Mises stress distribution after downward bending.

If the slight displacement of the central axis is ignored, the Mises stress distribution
along the central axis for each bending radius can be obtained from Figure 4a in which the
inner end point of the axis is taken as the origin. It can be seen that, in the film layers other
than the OCA adhesive layer, the Mises stress first drops and then rises while the stress of
the OCA layer approaches 0 and the outermost edge of the BMS layer stress reaches the
maximum. As the bending radius decreases, the Mises stress of each layer along the central
axis gradually increases non-linearly. Therefore, the small bending radius requires high
film material strength to support the entire bending process.

Figure 4. (a) Mises stress distribution along the central axis at different bending radii; (b) contrast
curve of normal bending stress of the central axis at different bending radii.

Figure 4b shows the normal bending stress along the central axis. Each film layer
appears to be compressed and then stretched. The position of the local neutral layer is the
position where the normal stress is 0. Since the normal bending stress near the neutral layer
is the lowest, it is speculated that if the position of the OLED and BP layers are interchanged,
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the risk of damage to the OLED layer is reduced. Figure 5a,b show the comparison graphs
of normal bending stress after the OLED and BP layers are interchanged at R = 3 mm and
2.5 mm, respectively.

Figure 5. (a) Contrast curve of normal bending stress along the central axis before and after the
interchange of the OLED and BP layers under R = 3 mm; (b) contrast curve of normal bending stress
along the central axis before and after the interchange at R = 2.5 mm.

It can be seen from Figure 5 that for R = 2.5 mm, the maximum tensile stress is reduced
by 23.99% and the maximum compressive stress is increased by 15.82%. When R = 3 mm,
the tensile stress is reduced by 27.54% and the maximum compressive stress is increased
by 20.22%. This indicates that after the interchange, the demand for compressive load-
bearing increases while the demand for tensile load-bearing decreases. After the OLED
and BP layers are interchanged, the risk of strength failure increases. Therefore, for the
composite stack model, a single local optimization may not have a positive effect on the
overall structure.

Due to the plastic nature of CPI, the CPI layer has not yet undergone plastic de-
formation with R = 3 mm. When the bending radius is reduced from 2.5 mm to 1 mm,
the maximum equivalent plastic strain is 6.234 × 10−4, 6.108 × 10−3, 1.498 × 10−2 and
3.708 × 10−2. Figure 6 shows the maximum equivalent plastic strain area with R = 1 mm.

Figure 6. Distribution of equivalent plastic strain after bending with R = 1 mm.
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When the bending radius is 2.5 mm, the plastic strain occurs first from the inside of the
CPI layer, that is, the plastic strain occurs first in the compressed area. The plastic strain in
the outer tension area does not occur until the bending radius is 2 mm. When the bending
radius is 1.5 mm, the plastic strain occurs in the outer tension area. As the bending radius
continues to decrease, the inner compression and outer tension areas expand. Because the
compression zone inside the CPI first enters the plastic phase, if the CPI lamination stress
reaches or exceeds the critical stress of buckling, it will cause the film to buckle, which is an
unstable form of film failure. The buckling of two types of films with different physical
forms, such as wrinkles and delamination, is mainly caused by compression effects. This
is one of the reasons why the central axis position of the flexible screen module is raised
inward after multiple bending. In order to prevent irreversible damage to the flexible screen,
if the bending radius changes during the product design, the stacking layer sequence and
material selection should be adjusted accordingly, and the product use process should
avoid external factors that cause the bending area to be too small. In Section 4.3, water-drop
shaped folding was discussed to avoid the restriction of the bending area.

4.2. Influence of the OCA Profile

Since the film materials and the stacking sequences of the flexible screens are tending
to become well-established, the OCA layer has become the preferred optimization object
under the current engineering background. In order to study the influence of the OCA
layer profile on the light-emitting layer of the OLED during the folding process, five OCA
profiles, shown in Figure 7, were carried out for the finite element analysis when the total
thickness of the OCA layers remained unchanged.

Figure 7. Five OCA layer profiles (units shown in µm).

The stacking sequence is shown in Table 1. The profiles of the OCA adhesive layer
in Figure 7 corresponds to the thickness of the OCA layers in Table 1: the 2nd, 4th, 6th,
8th, 10th and 12th layers. The seven functional layers and six adhesive OCA layers were
alternately stacked, the bending radius was set to be R = 3 mm and the bending time was
t = 18 s.

The Mises stress distribution along the central axis under the five OCA profiles is
shown in Figure 8. The maximum Mises stress is at the outermost position of the structure,
and the selected part in the figure is the Mises stress of the OLED light-emitting layer.

It can be seen that the profiles S3, S4 and S5 share similar effects on the OLED light-
emitting layer; the maximum difference ratios of S3/S5 and S4/S5 are 1.27% and 3.61%,
respectively. On the other hand, compared with S5, the maximum stress of the OLED layer
caused by profiles S1 and S2 increased by 13.53% and 24.04%, respectively. Further, the
increase in the stress in the tension or compression zone on one side of the layer would
correspondingly decrease the stress in the compression or tension zone on the other side.
In other words, the profile of the OCA layer can be used to optimize the dominant bending
tension or compression of the OLED layer.
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Figure 8. Mises stress distribution under the different OCA profiles. The Mises stress of the circled
area is the stress of the OLED light-emitting layer.

In order to investigate the influence of the OCA profiles on the normal bending
stress of the OLED and BP layers, a comparison diagram of the normal bending stress
along the central axis under the five OCA profiles is shown in Figure 9. The abbreviation
C-S means compression stress, and T-S means tensile stress and T/C-S means tensile or
compression stress.

Figure 9. Contrast of normal stress in bending of the central axis with different thickness shapes.

In the OLED, areas S3, S4 and S5 share a similar stress distribution while S1 and
S2 are different, which proves that the adhesive layer profile will change the tension or
pressure dominance of the OLED light-emitting layer. On the other hand, the BP layer is
completely dominated by compressive stress under S2, S4 and S5, while S1 and S3 create
tensile stress. Therefore, to reduce the probability of yield failure, normal stress of the
flexible screen module can be modulated according to the material characteristics of the
laminated stack structure.

The impact of the OCA layer on the OLED layer should be investigated. Because
of its superelasticity, the OCA has an obvious strain response during the folding process.
Considering its impact on the OLED layer, the strain of the OLED layer in the same
direction as the central axis was used to draw the sample-strain diagram in Figure 10.
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The abbreviation C-strain in Figure 10 means compression strain and T-strain means
tensile strain.

Figure 10. Strain comparison of OLED layer in the axial x direction with different profiles.

It can be seen from Figure 10 that the maximum increment ratio of S1/S5 is 13.07%, the
maximum increment ratio of S2/S5 is 18.56%, the absolute strain increment ratios of S1/S5
and S2/S5 are 1.0053% and 1.0042%, respectively. Therefore, the change of the profile does
not have a critical effect on the absolute difference of the strain along the x direction of the
OLED layer, but it will offset the neutral layer to the left or right, which is still dominated
by changing the tensile strain or compressive strain of the OLED layer.

4.3. Influence of the Water-Drop Folding Shape

At present, U-shaped full-path folding is adopted by most producers and companies.
However, different folding forms are employed gradually in order to reduce the bending
internal stress, among which, the water-drop-shaped folding is introduced into the flexible
electronics field due to its superior load-bearing capacity of the structure and increased
ability to reduce the gap between the two folded screens [30,31]. The water-drop shape
means that the shape of the folded flexible screens is like a water-drop, which is shown in
Figure 11a. Therefore, the shape of the water-drop in the final bending state was used as
the design blueprint. The design bending radius was R, the distance between the center
of the water-drop semicircle and the tip of the water-drop was L and the gap between the
two screens was Gy. The folding process was controlled by the parameters R, L, Gy and
the motion. In order to ensure the evenly distribution of the bending stress in the bending
area of the flexible screen, the bending area was in a symmetrical bending state at all times.
At the same time, the servo control equation was used to control the water-drop-shaped
bending process. The geometric relationship of the water-drop-shaped bending process is
shown in Figure 11b.

Figure 11. (a) Simplified water-drop geometry; (b) geometric relationship of the water-drop-shaped.
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In order to derive the water-drop-shaped servo control curve equation, the co-ordinate
system xAy was first obtained as shown in Figure 11b. Since the tangent angles are equal at
two points of symmetry on the arc AC at any time, the following equations can be derived
from geometric relations: 

α = 2θ

AB = BC
ρ(α) · α = πR

AB = tan α
2 · ρ(α)

cos∠ABC = AB2
+ BC2 − AC2

2AB·BC

(5)

The trajectory equation of point C is expressed as follows with the polar co-ordinate
in the co-ordinate system xAy by solving Equation (5):

r(θ) = πR · sin θ

θ
; θ ∈ (0,

π

2
] (6)

The water-drop-shaped bending path is described by the trajectory equation of point
D. In the co-ordinate system xOy, the additional geometric parameters of the water-drop
shape can be obtained from Figure 11a. Since the servo control equation is a function of
time t and the total control time is set to be T, to ensure a uniform rotation angle per unit
time, the following expressions are obtained by combining geometric relationship:

OA = CD =
√

1
4 (2R − Gy)

2 + L2

θ = πt
2T ; t ∈ [0, T]

β = γ = t
T · arctan 2R − Gy

2L ; t ∈ [0, T]

(7)

Thus, the drop-shaped bending servo control curve (Equation (8)) can be derived to
obtain the servo co-ordinates of point D at any time t within the total time T by converting
Equation (6) under the co-ordinate system xAy into xOy co-ordinate and taking Equation (7)
into account:

lx(t) = R
t · (πt − T · sin πt

T ) + OA · (2 − cos( t
T ·

(π + arctan 2R − Gy
2L )) − cos( t

T · arctan 2R − Gy
2L ))

ly(t) = R
t · (T − T · cos πt

T ) + OA · (sin( t
T ·

(π + arctan 2R − Gy
2L )) − sin( t

T · arctan 2R − Gy
2L ))

; t ∈ (0, T] (8)

Thus, the U-shaped bending and the water-drop-shaped bending were simulated
under L = 3 R, Gy = 0.2 mm and R was set to 3 mm, 2.5 mm, 2 mm, respectively; and
the results were shown in Figure 12. The Mises stress distribution for two types under
R = 2 mm is shown in Figure 12a.
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Figure 12. (a) Mises stress distribution for two types; (b) Mises stress comparison curve.

It can be seen from Figure 12a that the most dangerous position of the flexible screen
after the water-drop-shaped and U-shaped folding, that is, the maximum Mises stress, is
marked by the red box at the position of the central axis of the bending. The Mises stress
diagram of six types of samples along the bending axis is shown in Figure 12b. It can be
seen from Figure 12b that for each functional layer of the flexible screen, under the different
bending radii, the water-drop-shaped bending results in a smaller stress response than
the U-shaped bending. The smaller the bending radius, the more obvious the water-drop
folding is at reducing the maximum Mises stress since the light-emitting layer of the OLED
layer, the flexible substrate of the CPI layer and the BMS layer are the core concern about
failure of the structure. Table 6 shows the maximum stress response for the three types
of core membranes under the two folding types. The increment ratio refers to the ratio of
the difference between the maximum stress of the U shape and the maximum stress of the
water-drop shape to the maximum stress of the U shape.

Table 6. Maximum stress increment ratio of the core layer.

Core Layer OLED CPI BMS

Incremental ratio
R2 17.993% 8.892% 14.671%

R2.5 13.397% 16.879% 10.883%
R3 5.798% 13.922% 5.453%

From Table 6 and Figure 12b, it can be seen that, compared with the classic U-shaped
bending, the water-drop-shaped folding could not only reduce the maximum stress of the
whole structure but also the core layers. There are two reasons for this. Firstly, according
to the micro-element stress state of the material mechanics, the main stress distribution of
the U-shaped normal bending stress is in the bending semicircle, while the water-drop-
shaped design increases the length of the spline curve by L which is two times compared
to the U-shape. Thus, the main stress distribution after the bending is not limited to the
semicircular area which could reduce the stress concentration. Secondly, because there is no
direct control of the droplet forming a semicircle, the radius of the rounded part is slightly
larger than the initial design R. For the bending radius R = 2 mm, the rounded droplet is
approximately equal to 2.286 mm. Thus, the stress is reduced by the inverse relationship
between the radius of curvature and the normal bending stress. On the other hand, the
reason why the stress reduction effect is not obvious for the large radius is that the final
state water-droplet circle is close to the U-shaped circle. Therefore, for OLED flexible screen
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equipment which continues to pursue a small bending radius, water-drop-shaped folding
is preferred because it can not only save space but also reduce the risk of structure failure.

4.4. Experimental Results

In previous research, Saleh et al. [32] systematically described the various bending
methods of flexible electronic devices and the corresponding bending test devices, which
has a certain significance for the design and selection of experiments.

Currently, it is difficult to detect the internal stacked structure stress. Instead, the
maximum displacement distance of the flexible screen was measured to verify the accuracy
of the model, because the three basic variables in the finite element can be expressed based
on the nodal displacement matrix. Therefore, the finite element simulation results can be
verified by the maximum slip distance during bending.

Before the experiment, the corresponding film was marked by laser engraving and
other methods on the flexible screen module section. When the flexible screen module was
bent, a CCD camera with a high-magnification telephoto lens was employed to continuously
take photographs to obtain a complete record of the film layer dislocation. Due to the
optical imaging function, a micro-range lens with an accuracy of 0.1 mm was placed on
the side of the flexible screen. Adobe Illustrator were used to obtain the frame numbers
at the beginning and end of bending, and the images were overlapped to measure the
slip distance of the designated mark. The experimental equipment and result are shown
in Figure 13. The maximum sliding distance of bending was recorded after the bending
experiments, as shown in Table 7. In this experiment, the bending radius of the fixture
board was set to 3 mm.

Figure 13. (a) Experimental schematic; (b) ranging before bending (units shown in µm); (c) ranging
after bending (units shown in µm).

Table 7. Comparison of ranging results.

Experimental
Ranging/mm

Mathematical
Expectation/mm

Simulation
Ranging/mm Difference Ratio

0.7

0.698 0.694418 0.513%
0.698
0.695

0.7
0.697

In order to reduce the influence of reading error during ranging, the mathematical
expectation was calculated. Compared with the simulated ranging under the same bending
radius, the difference ratio was less than 1%, which confirms the accuracy of the finite
element model and the experimental results.
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5. Conclusions and Suggestion

In this paper, finite element analysis of the bending model for the flexible screen
was performed. For the common U-shaped bending, the maximum Mises stress increases
rapidly as the bending radius decreases. The stack sequence of the OLED and BP layers,
the most dangerous single layer and the profiles of the OCA layer were optimized. The
optimization suggests the redistribution of the tensile zone and the compression zone
are the key to the layer material selection. In order to validate the analysis, an imaging
experiment was conducted to measure the maximum slip distance during bending. Further,
a recently popular water-drop-shaped bending model was also discussed. The analysis
implies that the bending would not only perform well with a small bending radius but also
reduce the structure failure risk.
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