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ABSTRACT

In this paper, a measure–correlate–predict (MCP) model based on neural networks (NN) and frozen flow hypothesis, which is abbreviated as
the MCPNN-frozen model, is proposed for wind resource assessment and tested using turbulent channel flows with three different surface
roughness lengths, i.e., k0 ¼ 0:001, 0.01, and 0.1m. The predictions from the MCPNN-frozen model are compared with the real data for dif-
ferent separations (s) between the reference point and the target point. The results show that the correlation coefficients C.C. between the
model predictions and real data are roughly higher than 0.5 for small separations s=d � 3 (where d is the boundary layer thickness), and the
coefficients of determination (R2) are approximately higher than 0.3 when s=d � 2. The generalization capacity of the MCPNN-frozen model
is tested for different roughness lengths and different velocity components. Further analyses show that, even though C.C. and R2 decrease
when increasing s, the large-scale variations of velocity fluctuations are well captured by the MCPNN-frozen model especially for the one
trained using the data filtered in time. Furthermore, it is found that the model trained using the filtered data without a spanwise offset can
well predict the large-scale variations at the target point when the spanwise offsets between the target point and the reference point are small
(e.g., 0:1d and 0:2d). The proposed model leverages the power of neural networks and physical understanding. Further development of the
model for complex scenarios will be carried out in the future work.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086354

I. INTRODUCTION

Wind resource assessment is an important prerequisite for the
planning and operation of wind farms to achieve the maximal perfor-
mance.1 With further penetration of wind into the world’s energy
portfolio to achieve the goal of net zero emission, the levelized cost of
energy (LCOE) needs to be further reduced.2,3 Wind resource assess-
ment at high spatial and temporal resolutions plays an important role
in the reduction of LCOE.4,5 This work is devoted to developing a
measure–correlate–predict (MCP) model based on neural networks
and Taylor’s frozen flow hypothesis for predicting wind speed varia-
tions at a location using wind data from its nearby locations.

The MCP method estimates the long-term wind variations of the
target site using the short-term on-site data and concurrent data at
nearby meteorological stations (which have long-term data) with simi-
lar topographic and climatic conditions.6 Building a correlation
between the reference site and the target site is at the center of different

MCP methods, which is often in the form of a statistical model
obtained from the short-term data. A general description of the MCP
methodology can be found in the papers by Burton7 and Letcher.8 A
large variety of MCP methodologies have been proposed and summa-
rized in the literature,6 such as (i) linear regression, (ii) variance ratio,
(iii) Weibull scale, (iv) artificial neural networks (ANNs), (v) support
vector regression (SVR), and (vi) Mortime. Wind varies at different
time scales, e.g., diurnal, seasonal, and inter-annual variation. The
MCP method is often applied to predict the long-term wind behavior
at the target point (TP) for more than ten years based on short-term
measurements (longer than a year is, in general, required) at the refer-
ence point. In later work, the MCP methods for predicting wind char-
acteristics at smaller time scales (an hour or less) were developed.6,9–11

Carta et al.12 reviewed a wide range of MCP methods using data at a
single reference site and multiple reference sites based on machine
learning. In addition, the authors commented on the limitations when
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using the MCP models, the uncertainties associated with them, and
the different reference data sources that have been used. Liu et al.13

proposed a temporal interpolation extrapolation method for missing
wind speed data, which considers all mixing uncertainties, to address
the problem of ignoring wind speed mixing uncertainties by the tradi-
tional method. Sharma et al.11 used remote sensing techniques to mea-
sure wind data, and the MCP methods of linear regression and
variance ratios were employed to predict long-term wind index distri-
butions. Diaz et al.14 applied for the first time an MCP model with
support vector machines and multiple linear regression to predict
wind energy density, the model considered not only the variability of
wind speed at the reference sites, but also the wind direction and air
density. Addison et al.15 applied linear neural networks (multi-layer
perceptrons) to long-term energy prediction of wind direction and
speed data at the target site. They found that considering the time-
lagged wind speed improves the accuracy of the prediction.

The machine learning method, which has become an increasingly
powerful tool in scientific computing,16 provides a new opportunity
for developing MCP models for predicting temporal fluctuations of
wind turbulence. The machine learning method has been applied to
various turbulent flow problems,17 e.g., the development of turbulence
models in Reynolds-averaged Navier–Stokes simulation18–20 and
large-eddy simulation (LES),21–25 reconstruction of the turbulent flow
fields,26,27 turbulent flow control,28–30 and temporal prediction of
turbulence.31–33 Qin et al.34 proposed a training-based method for
wind turbine signal forecasting by utilizing the mixed convolutional
neural networks (CNNs) and long short-term memory (LSTM) net-
work and a multi-task learning ideas. Lee and You31 compared the
performance of generative adversarial networks (GANs) and multi-
scale CNNs with and without physical loss functions in the training
and prediction of unsteady flow fields over a circular cylinder. They
found that all the four techniques well predict the flow fields in the
near future, but for the long-term flow predictions, the techniques
with the physical loss function perform better. The GAN-based net-
works can be applied to problems without prior knowledge on the
underlying flow physics. Deng et al.35 proposed an LSTM-based
proper orthogonal decomposition (POD) model to reconstruct the
time-resolved turbulent flow fields from non-time-resolved particle
image velocimetry measurements. The results demonstrated that the
model can successfully recover the temporal revolution of POD coeffi-
cients. Mohan et al.32 evaluated the convolutional GAN (C-GAN) and
compressed convolutional LSTM (CC-LSTM) network in the tempo-
ral prediction of homogeneous isotropic turbulence and scalar turbu-
lence. Their results showed that the CC-LSTM is able to predict the
flow dynamics, while the C-GAN cannot. Nakamura et al.36 combined
the CNN autoencoder and LSTM to represent the spatiotemporal
high-dimensional dynamics of turbulent channel flow by integrating
the temporal evolution of the low-dimensional latent dynamics. Eivazi
et al.37 assessed the recurrent neural networks and newly developed
Koopman with non-linear forcing (KNF) in the prediction of temporal
dynamics of the low-order model of near-wall turbulence and showed
that the KNF framework outperforms the LSTM in the short-term
predictions.

How velocity fluctuations at different locations and temporal
instants are correlated with each other is an active research area in
turbulence.38–40 Taylor’s frozen flow model41 is the most classic one
describing the space-time correlations of turbulence, which suggests

that the velocity fluctuations at a fixed point is simply due to the
unchanging turbulent flow structures advected from upstream due
to the mean flow. Advanced space-time correlations models including
the elliptic approximation model42,43 can be found in the review by He
et al.44 To leverage the power of the machine learning method and our
prior knowledge on the space-time correlation of turbulence, in this
work we propose to develop a MCP model based on neural networks
(NN) and frozen flow hypothesis, which is abbreviated as the
MCPNN-frozen model, for predicting the temporal fluctuations of
wind turbulence at the target site using the short-term on-site data
and the long-term data at the reference sites. The data from turbulent
channel flows with three different surface roughness lengths are
employed to train and test the model.

The rest of the paper is organized as follows. The proposed
MCPNN-frozen model is first introduced in Sec. II. Then the training
of the model is presented in Sec. III. The predictions from the model
are analyzed in Sec. IV. At last, conclusions are drawn in Sec. V.

II. THE MCPNN-FROZEN MODEL

In this section, we present the proposed MCPNN-frozen model,
which leverages the power of Taylor’s frozen flow hypothesis and neu-
ral networks. In Taylor’s frozen flow hypothesis, it is assumed that the
spatial patterns of turbulent motions are carried past a fixed point at a
convection velocity without any changes, such that the velocity fluctu-
ation at one location can be computed using the velocity at the other
location as follows:

u0ðx; tÞ ¼ u0 x1; t � ðx � x1Þ=Uð Þ; (1)

where u0 is the velocity fluctuation, x and x1 are the streamwise coordi-
nates, and U is the convection velocity. Neural networks are capable of
recognizing patterns in complex datasets. The idea of the MCPNN-
frozen model is to utilize neural networks to bridge the knowledge gap
between Taylor’s frozen flow hypothesis and the actual spatial and
temporal variations of turbulent flows.

The idea of the MCP method is described in Fig. 1. As seen in
Fig. 1, the MCP procedure includes three steps, i.e., step (1) measure
the short-term data at both reference points and target points, step (2)
correlate the velocity at the target point with that at the reference

FIG. 1. Procedure of the measure–correlate–predict method.
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points, and step (3) predict the long-term velocity variations at the tar-
get point using the obtained correlation. In this work, the following sit-
uation is considered: (1) the time series of velocity at the two reference
points x1 and x2 are known for both short-term and long-term; (2) at
the target point x, only the short-term time series of velocity exist; and
(3) the objective is to predict the long-term velocity variations at the
target point using the available short-term data. In almost all the cases,
the reference points x1 and x2 are located directly in the upstream or
downstream of the target point x, except for several cases, in which the
model is evaluated for cases with spanwise offsets.

We propose to employ neural networks and Taylor’s frozen flow
hypothesis to build the correlation between the reference points and
the target point to predict the velocity at the target point. Specifically,
the neural networks are employed to build the correlation between the
velocity at the target point and the input features, and the Taylor’s fro-
zen flow hypothesis is employed for constructing the input features. A
schematic of the employed neural network is given in Fig. 2. In this
method, the velocity data at two reference points are employed as
input features. At each reference point, the velocity data at five equally
spaced time instants, i.e., t0, …, t4, are set as input features. Let t
denotes the time at which the velocity needs to be predicted. The time
instants for the input features are determined based on Taylor’s frozen
flow hypothesis as follows:

t0 ¼ t2 � 2Dt;
t1 ¼ t2 � Dt;

t2 ¼ t � ðx � xiÞ=U ;
t3 ¼ t2 þ Dt;
t4 ¼ t2 þ 2Dt;

(2)

where xi (i¼ 1, 2) and x denote the streamwise coordinates of the ref-
erence point and target point, respectively, and U is convection veloc-
ity (which is taken as the mean streamwise velocity at 100m above the
ground for the considered cases). It is noted that the number of refer-
ence points and the number of time instants can be easily changed
if needed. In Appendix A, how different parameters of the

MCPNN-frozen model affect the model performance is examined. In
Appendix B, the effect of the convection velocity computed using dif-
ferent ways on the performance of the model is tested.

III. TRAINING OF THE MCPNN-FRONZENMODEL

In this section, we describe the data generation and preparation,
and the training of the MCPNN-frozen model.

A. Data generation and preparation

The data employed for training and testing the MCPNN-frozen
model are from wall-modelled large-eddy simulation of turbulent
channel flows. The virtual flow simulator (VFS-Wind) code,45,46 which
has been successfully applied to different flow problems,47–53 is
employed to carry out simulations of turbulent channel flows. In the
LES module of the VFS-Wind code, the spatially filtered Navier–Stokes
equations are solved. The governing equations are discretized in space
using a second-order central difference scheme, and advanced in time
using a second-order fractional step method.54 The dynamic
Smagorinsky model is employed for modeling the subgrid scales.55

More details on the numerical methods of the VFS-Wind code can be
found in the literature.45

In the simulated cases, three different surface roughness lengths,
i.e., k0 ¼ 0:001, 0.01, 0.1m, are considered. The Reynolds numbers
based on the mean streamwise velocity Uh at z ¼ zh and the thickness
of the atmospheric boundary layer (d) are Re ¼ Uhd=� ¼ 4.89, 4.71,
4.44� 108 for the cases with k0 ¼ 0:001, 0.01, 0.1m, respectively,
where zh ¼ 100m denotes the typical hub height of the wind turbine
and � is the viscosity of the air. The streamwise length and spanwise
length of the computational domain are 22:50d and 14:87d, respec-
tively, where d¼ 1000m is the thickness of the atmospheric boundary,
as shown in Fig. 3. The number of grids nodes are 1126� 1488� 152
in the streamwise, spanwise and vertical directions, respectively.
Periodic boundary conditions are applied in the horizontal directions.
The free-slip boundary condition is applied at the top boundary. At
the bottom boundary, a wall model for rough wall, which provides the
outer flow simulation with the wall shear stress boundary condition
for the wall-parallel velocity component, is employed (Fig. 3). For the
wall-normal velocity component, the non-penetration boundary con-
dition is enforced at the wall. The wall shear stress employed in the

wall model is computed using the logarithmic law, i.e., UðzÞ
us

¼ 1
j ln

z
k0

� �
,

where us is the friction velocity. Specifically, in the present implemen-
tation, the wall-parallel velocity component at the second off-wall
point is employed to compute the wall shear stress with the logarith-
mic law in an iterative way. The obtained wall shear stress is then
enforced when solving the momentum equation. The size of time step

FIG. 2. Schematic of the neural network employed for building the correlation
between the velocities at the target point (the output layer) and the reference points
(the input layer).

FIG. 3. Schematic of the computational domain for the turbulent channel flow and
the reference and target points for testing the MCPNN-frozen model.
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is 0.01 Ub=d, where Ub is the bulk velocity maintained as a constant in
the simulation by enforcing a mean pressure gradient term in the
streamwise direction. The total number of time steps is 30000. The ver-
tical profiles of the flow statistics are shown in Fig. 4 for different surface
roughness lengths, where ru, rv, and rw are the standard deviations of
velocity fluctuations in the streamwise, spanwise, and vertical directions,
respectively. Significant differences are observed in terms of the mean
streamwise velocityU and the turbulence statistics ru, rv, and rw.

From the simulations, the instantaneous velocity fields on the
horizontal plane located at z ¼ zh are saved for all time instants.
Employing all the data for training and testing the model will be
extremely time-consuming. In this work, the time series of data at 15
streamwise lines, which are located at 15 different spanwise locations,
i.e., y=d ¼ 0:4, 1.4, …, 13.4, 14.4, are employed for the task of this
work. For the cases with the spanwise offset, additional time series of
data are extracted for different offsets. There are 1125 grid points
on each line for 30 000 instantaneous snapshots. In total, we have
15� 1125� 30 000 sample points. With these data, pairs of input and
output are prepared for 20 target points with their streamwise location
x=d ¼ 8:5, 9, …, 17.5, 18, with the corresponding reference points
determined by the distance from the target point (s). With the use of
Taylor’s frozen flow hypothesis, to predict the velocity at a time instant
at the target point requires the velocity at the reference point at
instants some time earlier or later based on the relative location

(downstream or upstream) with the target point, such that not all of
the time instants can be employed for the training and testing of the
model. After the whole process, a dataset (pairs of input and output)
with the size of 15� 20� 28 000 is obtained and is divided based on
the locations into three sets of 60%, 20%, and 20% for model training,
validation, and testing, respectively. It should be noted that the above
procedure for data partition does not exactly follow the way of MCP,
where the model should be trained based on the short-term data and
applied to predict the long-term variations. This is mainly caused by
the nature of the data we have in this work, which is statistically steady
as a result of the relatively simple LES cases for data generation, that
the data partition in time does not have a clear benefit. On the other
hand, the employed data partition also brings a challenge to the model,
as it will be trained using the data at one location and tested at the
other different location. It is noted that the models for different rough-
ness lengths and different separations are trained separately. The gen-
eralization capability of the trained model for different roughness
lengths, different velocity component, and cases with different span-
wise offsets between the target and the reference point will be tested.

B. Training of the MCPNN-Frozen model

A neural network contains an input layer, one or more hidden
layers of neurons and an output layer. In this work, a simple neural

FIG. 4. Flow statistics of the channel flow with different ground roughness lengths.
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network with one hidden layer is employed with details shown in
Table I. Different numbers of hidden layers as well as different number
of neurons in each layer have been tested without seeing significant
differences for the considered cases. The activation function used in
this paper is the rectified linear unit (ReLU). The details of the
employed neural network are shown in Table I.

In this work, we train the MCPNN-frozen model for different
separations between the reference point and the target point sepa-
rately. The loss functions for different cases are shown in Fig. 5. As
seen, the loss decreases for about two orders of magnitude at about
15 000 to 25 000 epochs being different for cases with different k0 and
s values. For cases with different k0, it is seen that the loss from the
cases with smaller s are smaller when the training is converged.

IV. RESULTS AND ANALYSIS

In this section, we evaluate the prediction accuracy and generali-
zation capacity of the MCPNN-frozen model using the test data from
the same roughness length and those from different roughness lengths

TABLE I. Details of the employed neural network.

Number of inputs 10
Number of outputs 1
Number of layers 1
Number of neurons in layer 15
Training methodology Error backpropagation

(BP) scheme56

Batch size 1000
Learning rate 0.000 01
Epochs 2000
Loss function Mean squared error (MSE)
Activation function ReLU
Optimizer Adam
Percentage of training dataset 75%
Percentage of verification dataset 25%

FIG. 5. Loss functions for training the MCPNN-frozen model for different roughness lengths and different separations between the reference point and the target point.
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for ten different spacings between the reference point and the target
point, i.e., s=d ¼ 0:2; 0:5; 1; 2; 3; 4; 5; 6; 7; 8. Particularly, the predic-
tions from the MCPNN-frozen model are compared with the predic-
tions using only Taylor’s frozen flow hypothesis.

First, we show in Fig. 6 the velocity fluctuations at the target point
with those constructed from the reference points based on Taylor’s
frozen flow hypothesis. It is seen that the flow patterns change over
time. For the cases with small separations between the reference point

and target point, i.e., s=d ¼ 1, it is observed from Figs. 6(a), 6(c), and
6(e) that the temporal variations at the target point are similar with
those predicted based on Taylor’s frozen flow hypothesis especially for
the large scale fluctuations for different surface roughness lengths.
Whereas for the cases with large values of s (i.e., s=d ¼ 8) as shown in
Figs. 6(b), 6(d), and 6(f), the temporal patterns at the target point are
different from those predicted based on Taylor’s frozen flow hypothe-
sis, with less similarities in both large and small scale fluctuations.

FIG. 6. Comparison of the velocity fluctuations at the target point with those predicted from the reference points using Taylor’s frozen flow hypothesis for (a) k0 ¼ 0:001 m,
s=d ¼ 1, (b) k0 ¼ 0:001 m, s=d ¼ 8, (c) k0 ¼ 0:01 m, s=d ¼ 1, (d) k0 ¼ 0:01 m, s=d ¼ 8, (e) k0 ¼ 0:1 m, s=d ¼ 1, and (f) k0 ¼ 0:1 m, s=d ¼ 8. TP: the target point
datasets, RP1: predictions using the data at the upstream reference point, and RP2: predictions using the data at the downstream reference point.
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We then compare the time series of velocity fluctuations pre-
dicted from the MCPNN-frozen model with the real data in Fig. 7 for
two different separations between the reference point and target point
(i.e., s=d ¼ 1; 8). It is seen that the MCP model in general predicts
the large-scale variations of the velocity fluctuations for both val-
ues of s. The peaks of the unresolved scales, on the other hand,
are significantly underpredicted. When increasing s=d from 1 to
8, the scale resolved by the MCPNN-frozen model decreases as
expected. After comparing the temporal variations of the model
predictions and real data, the accuracy of the MCPNN-frozen
model is examined via three performance metrics: the mean
square error (MSE), the correlation coefficient (C:C:), and the
coefficient of determination (R2). Their definitions are given as
follows. The MSE, which is one of the commonly used metrics to
detect any departure from the real datasets in residual analysis, is
defined as

MSE ¼ 1
N

XN
i¼1

u0P � u0R
� �2* +

; (3)

where u0R and u0P are velocity fluctuations from real data and model
predictions, respectively, h�i represents the ensemble averaging, and N
is the length of the dataset. The correlation coefficient between the
model predictions and the real data C.C., which is often used to assess
the success rate of model learning,24,57 is computed via the following
expression:

C:C: u0ð Þ ¼ hu0Ru0Piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h u0Rð Þ2i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h u0Pð Þ2i

q : (4)

The coefficient of determination, which is frequently used to
measure the prediction accuracy of the model, is formulated as

FIG. 7. Comparison of the predictions from the MCPNN-frozen model with the real data at the target point for (a) k0 ¼ 0:001 m, s=d ¼ 1, (b) k0 ¼ 0:001 m, s=d ¼ 8, (c)
k0 ¼ 0:01 m, s=d ¼ 1, (d) k0 ¼ 0:01 m, s=d ¼ 8, (e) k0 ¼ 0:1 m, s=d ¼ 1, and (f) k0 ¼ 0:1 m, s=d ¼ 8.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045107 (2022); doi: 10.1063/5.0086354 34, 045107-7

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0086354/16611716/045107_1_online.pdf

https://scitation.org/journal/phf


R2 ¼ 1� h u0P � u0R
� �2i

h u0R � hu0Ri
� �2i : (5)

The MSEs of the MCPNN-frozen predictions are shown in Fig. 8 and
compared with those of the predictions based on Taylor’s frozen flow
hypothesis. First, it is seen that the MCP-frozen model reduces the
MSE for more than 30% when compared with the predictions based
on Taylor’s frozen flow hypothesis. With the increase in the separation
between the reference point and the target point s, the MSE increases
at a high rate for s=d < 1, while increases gradually at a low rate when
further increasing s=d. Furthermore, it is seen that the MSE is higher
for higher surface roughness lengths.

The prediction accuracy is further examined in Fig. 9 by plotting
the correlation coefficients (C.C) between the predicted velocity fluctu-
ations and the real data. For all the three cases with different ground
roughness lengths, it is observed that the values of C.C. from the
MCPNN-frozen predictions are higher than those predicted based on

Taylor’s frozen flow hypothesis, indicating that neural networks’ capa-
bility in compensating the physics beyond Taylor’s frozen flow
hypothesis. For different separations between the reference point and
the target point (s), the correlation coefficient C.C. gradually decreases
with the increase in s as expected. It is seen that the value of C.C. is
higher than 0.5 for s=d < 3 for k0 ¼ 0:001, 0.01m, which is somewhat
lower than 0.5 at s=d ¼ 3 for k0 ¼ 0:1 m. When further increasing
the value of s, C.C. reduces to approximately 0.3 and 0.25 at s=d ¼ 8
for k0 ¼ 0:001, 0.01m and k0 ¼ 0:1 m, respectively.

Figure 10 shows the coefficient of determination (R2) computed
using Eq. (5). It is clearly seen that in all cases, the R2 values for the
MCPNN-frozen model are greater than those based on Taylor’s frozen
flow hypothesis, demonstrating that the capability of the neural net-
work in compensating for the turbulence physics, which is not
described by Taylor’s frozen flow hypothesis. As expected, the coeffi-
cient of determination gradually decreases when increasing the separa-
tion (s) between the reference point and the target point. When

FIG. 8. MSE of the predictions from the MCPNN-frozen model (blue diamond symbols) and those based on Taylor’s frozen flow hypothesis (red square symbols) for different
separations between the reference point and the target point for (a) k0 ¼ 0:001 m, (b) k0 ¼ 0:01 m, and (c) k0 ¼ 0:1 m.
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s=d < 2, the value of R2 is higher than 0.3 for k0 ¼ 0:001, 0.01m, and
it is slightly lower than 0.3 for k0 ¼ 0:1 m. Finally, with the increase in
s, the value of R2 decreases to about 0.05 for k0 ¼ 0:001, 0.01m, and
about −0.1 for k0 ¼ 0:1 m when s=d ¼ 8.

To further examine the characteristics of the velocity fluctuations
predicted by the MCPNN-frozen model, we plot the time correlation
function Ru0u0 in Fig. 11, which indicates the degree of correlation of
velocity fluctuations for different time separations and is defined as
follows:

Ru0u0 ðt; t þ sÞ ¼ hu0ðtÞu0ðt þ sÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h u0ðtÞð Þ2i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h u0ðt þ sÞð Þ2i

q ; (6)

where s represents the separation between two temporal instants. It is
observed in Fig. 11 that the overall variations of Ru0u0 are well predicted
by the MCPNN-frozen model. For small temporal separations (s), it is

seen that the values of Ru0u0 from the model predictions are higher
than those of the real data before Ru0u0 reaches zero for all three rough-
ness lengths, which indicates the predicted small scales do not possess
the structures of the real data. Decreasing the separation between the
reference point and the target point (s) does not improve the predic-
tion of Ru0u0 for small temporal separations (s). The most important
and interesting observation is that the velocity fluctuations predicted
by the MCPNN-frozen model decorrelates at approximately the same
temporal separation s (where Ru0u0 reaches zero), which implies that
the large-scale patterns are well captured by the MCPNN-frozen
model.

To further examine the generalization capacity of the MCPNN-
frozen model. We apply the MCPNN-frozen model trained using the
data with k0 ¼ 0:001m to the cases with k0 ¼ 0:01, 0.1m. The perfor-
mance metricsMSE and C.C. and R2, and the temporal correlation func-
tion Ru0u0 are examined in Fig. 12. It is seen in Figs. 12(a) and 12(b) that

FIG. 9. Correlation coefficients C.C. between the predictions and the real data for the MCPNN-frozen model (blue diamond symbols) and the model only using Taylor’s frozen
flow hypothesis (red square symbols) for different separations between the reference point and the target point for (a) k0 ¼ 0:001 m, (b) k0 ¼ 0:01 m, and (c) k0 ¼ 0:1 m.
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the MSE values predicted by the MCPNN-frozen model trained
using the data with k0 ¼ 0:001m are slightly higher than those pre-
dicted by the model trained using the data with the same k0. As
shown in Figs. 12(c) and 12(d), the C.C. values from the MCPNN-
frozen model trained using a k0 different from the test data, on the
other hand, are collapsed with the model trained using k0 the same
as the test data. In Figs. 12(e) and 12(f), the coefficients of determi-
nation R2 for the MCPNN-frozen model trained using the data with
k0 ¼ 0:001 m are compared with the one trained using the data with
the same k0, showing that the latter performs better, even though no
significant differences are observed for the correlation coefficients C.
C. The time correlation functions Ru0u0 from cases with different sep-
arations between the reference point and the target point are further
examined in Figs. 12(g) and 12(h). It is seen that Ru0u0 predicted by
the MCPNN-frozen model with k0 different from the test data

reaches zero at approximately the same value of s when compared
with the real data, indicating that the employed model is able to pre-
dict the large-scale variations of the velocity fluctuations.

Here, the generalization capacity of the MCPNN-frozen model is
tested by applying the model trained using the streamwise velocity
fluctuations to the spanwise velocity fluctuations (k0 ¼ 0:001m). The
temporal variations of the predictions are shown in Fig. 13 and com-
pared with the real data. It is seen that large-scale variations in time
are well predicted by the MCPNN-frozen model, while the small-scale
fluctuations are underpredicted, which is also observed when predict-
ing the streamwise velocity fluctuations.

The MSE, C.C., R2, and Rv0v0 are further examined in Fig. 14 to
quantitatively examine the performance of the model trained using the
streamwise velocity fluctuations in predicting the spanwise velocity fluc-
tuations. It is observed in Figs. 14(a)–14(c) that the MCPNN-frozen

FIG. 10. Coefficients of determination (R2) for the MCPNN-frozen model (blue diamond symbols) and the model only using Taylor’s frozen flow hypothesis (red square sym-
bols) for different separations between the reference point and target point for (a) k0 ¼ 0:001 m, (b) k0 ¼ 0:01 m, and (c) k0 ¼ 0:1 m.
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model, even though it is not trained using the spanwise velocity fluctua-
tions, outperforms the model based on Taylor’s frozen hypothesis. As
for the time correlation function Rv0v0 , it is observed in Fig. 14(d) that
the values of Rv0v0 of the predictions are higher than that of the real data,
which is also observed for the streamwise velocity. The decorrelation
time, when Rv0v0 reaches zero, is observed being higher for the predicted
velocity fluctuations, which is improved for smaller separation s between
the reference point and the target point.

To confirm that the MCPNN-frozen model is capable of predict-
ing the large-scale patterns of the temporal variations of velocity
fluctuations, two scenarios are considered: (1) we compare the time-
filtered velocity fluctuations from the model predictions and the real
dataset; and (2) we train a new model using the time-filtered data and
test the new model. In Fig. 15, the results from the first scenario are
presented. One additional case [case 2 as shown in Fig. 15(a)] is car-
ried out, which employs the filtered velocity as the input features, in
comparison with case 1, where the original velocity is employed as the

input features (as done in other cases). For both case 1 and case 2, the
MCPNN-frozen model is trained using the original velocity data with-
out additional filtering. For the filtered velocity shown in Fig. 15(a),
the filter width is tf Uh=d ¼ 5:650. It is seen that MCPNN-frozen
model captures the large-scale variations in an acceptable way for
s=d ¼ 8, even though the correlation coefficient C.C. without filtering
is approximately 0.3. The values of C.C. for different filter widths are
shown in Fig. 15(b). As seen, the correlation C.C. is significantly
increased from approximately 0.3 to 0.55 for filter width
tf Uh=d � 5:650. The results from the second scenario, where the
model is trained and tested using the filtered datasets, are presented in
Fig. 16. The MSE, C.C., and R2 are examined to quantify the perfor-
mance of the model. Compared with the performance of the model
trained using the unfiltered data, it is seen that the performance is
greatly improved especially for the MCP-frozen model in terms of all
the three metrics. Specifically, the figure shows that the correlation
coefficient C.C. is higher than 0.7, and the coefficient of determination

FIG. 11. Time correlation functions of the real data and the model predictions for different separations between the reference point and the target point for (a) k0 ¼ 0:001 m,
(b) k0 ¼ 0:01 m, and (c) k0 ¼ 0:1 m.
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is close to 0.5 when the size of filter tf Uh=d is approximately higher
than 2, indicating that the MCPNN-frozen model captures well the
large-scale variations for a large separation between the reference point
and the target point, e.g., s=d ¼ 8.

So far, the target point is located on the same line as the reference
points. It is very likely that a spanwise offset (d) exists in real-life appli-
cations either because of the relative locations of the reference point
and the target point or the difference of wind directions between the

FIG. 12. Performance test of the MCPNN-
frozen model trained using the data with
the k0 (i.e., k0 ¼ 0:001 m) different from
the test data (i.e., k0 ¼ 0:01; 0:1 m) for (a)
and (b) MSE, (c) and (d) C.C., (e) and (f)
R2, and (g) and (h) Ru0u0 .

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045107 (2022); doi: 10.1063/5.0086354 34, 045107-12

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0086354/16611716/045107_1_online.pdf

https://scitation.org/journal/phf


FIG. 13. Temporal variations of the spanwise velocity fluctuations predicted by the MCPNN-frozen model trained using the data of the streamwise velocity fluctuations for (a)
s=d ¼ 1 and (b) s=d ¼ 8.

FIG. 14. Performance test in predicting the spanwise velocity fluctuations using the MCPNN-frozen model trained using the streamwise velocity fluctuations for (a) MSE, (b)
C.C., (c) R2, and (d) Rv0v0 . In figures (a)–(c), blue diamond symbols and red square symbols are for the predictions from the MCPNN-frozen model and the predictions based
on Taylor’s frozen flow hypothesis, respectively.
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training data and the testing data (or actual application). It has been
shown in Fig. 16 that the proposed MCPNN-frozen model can predict
well the large-scale temporal variations. Here, we examine the perfor-
mance of MCPNN-frozen model trained using the filtered data with-
out a spanwise offset for cases with different spanwise offsets.
Specifically, the model, which is trained using the k0 ¼ 0:001 m data
filtered with tf Uh=d ¼ 5:180 for s=d ¼ 8 without a spanwise offset, is
evaluated for cases with different spanwise offsets. In these cases, the
two reference points are located at d from the target point in the oppo-
site spanwise direction. Four different values of d, i.e., d=d ¼ 0:0, 0.1,
0.2, 0.5, 0.8, are considered. The results from the case with d=d ¼ 0:1
are shown in Fig. 17. As seen in Fig. 17(a), the large-scale variations
are well predicted by the MCPNN-frozen model. It is shown in
Fig. 17(b) that the correlation coefficient C.C. is higher than 0.65 for
d=d ¼ 0:1, 0.2. For higher values of spanwise offsets, the values of C.
C. are approximately higher than 0.45 even for d=d ¼ 0:8. Compared

with the model using only Taylor’s frozen flow hypothesis, the
performance of the MCP-frozen model is observed being significantly
better.

V. CONCLUSIONS

In this work, a measure–correlate–predict model, which is based
on neural networks and Taylor’s frozen flow hypothesis and dubbed
as MCPNN-frozen model, was proposed for wind resource assessment
and tested using turbulent channel flows with different surface rough-
ness lengths.

In the proposed MCPNN-frozen model, the velocity fluctuation
data at the two reference points, which are located upstream and
downstream of the target point, respectively, are employed to predict
the velocity fluctuation at the target point. A neural network is trained
to correlate the velocity fluctuations at the reference point and the tar-
get point. In the employed neural network, the velocity fluctuations
from the reference point at five successive time instants (Ni ¼ 5) with
the temporal separation Dt are employed as the input features.
Taylor’s frozen flow hypothesis is employed to process the velocity
fluctuations at the reference points before they are employed as input
features in the neural network. In the employed neural network, one
hidden layer with fifteen neurons is employed. The effects of the num-
ber of hidden layers (NL), the number of temporal instants (Ni), the
size of Dt, and the number of reference locations on the performance
of the model are tested (in Appendix A). The test results confirm that
the employed parameters of the MCPNN-frozen model are appropri-
ate for the considered cases.

The proposed MCPNN-frozen model was tested using the test
data from turbulent channel flows with different surface roughness
lengths, i.e., k0 ¼ 0:001; 0:01, 0.1m, for different separations (s)
between the reference point and the target point. The prediction accu-
racy and generalization capacity were evaluated with the mean square
error (MSE), the correlation coefficient between the predictions and
the real data (C.C.), the coefficient of determination (R2), and the time
correlation function (Ru0u0 ). The results show that the performance of
the MCPNN-frozen model is significantly higher than the model
based on Taylor’s frozen flow hypothesis. For small separations
between the reference point and the target point (roughly s=d � 3,
where d is the boundary layer thickness), the correlation coefficient C.
C. is higher than 0.5, and the coefficient of determination R2 is approx-
imately higher than 0.3 when s=d � 2. When increasing the values of
s, C.C. gradually decreases and reaches approximately 0.3 and 0.25 at
s=d ¼ 8 for k0 ¼ 0:001, 0.01m, and k0 ¼ 0:1 m, respectively, and the
value of R2 decreases to 0.05 for k0 ¼ 0:001, 0.01m and approximately
−0.1 for k0 ¼ 0:1 m. The generalization capacity of the MCPNN-
frozen model was tested using the test data with roughness lengths dif-
ferent from the training data, showing performance similar with the
model trained using the data with the same roughness length as the
test data. The generalization capacity of the MCPNN-frozen model
was further tested by applying the model trained using the streamwise
velocity fluctuations to predict the spanwise velocity fluctuations.
Performance similar to that of the streamwise velocity fluctuations is
observed. Further analyses show that the MCPNN-frozen model is
able to capture the large-scale patterns of velocity fluctuations
although the correlation coefficient C.C. is low. The performance of
the MCPNN-frozen model trained using the filtered data is also exam-
ined. The results show that the correlation coefficient C.C. is higher

FIG. 15. (a) Comparison of the filtered velocity fluctuations (width of the temporal
filter tf Uh=d ¼ 5:650) between the predictions from the MCPNN-frozen model and
real data; (b) correlation coefficient C.C. of the filtered velocity fluctuations for differ-
ent filter widths. In figure (a): in case 1, the original velocity fluctuations are
employed as the input; in case 2, the filtered velocity fluctuations are employed as
the input. In both case 1 and case 2, the MCPNN-frozen model is trained using the
original data without filtering.
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than 0.7, and the coefficient of determination R2 is higher than 0.5
when the size of the filter tf Uh=d is approximately higher than 2.
Furthermore, it is found that the MCPNN-frozen model trained using
the filtered data without a spanwise offset can well predict the large-
scale temporal variations for different spanwise offsets between the tar-
get point and the reference points.

The idea of the proposed MCPNN-frozen model is to leverage
the power of Taylor’s frozen flow hypothesis and neural networks.
From the neural network side, Taylor’s frozen flow hypothesis pro-
vides a way for selecting the most related data as the input features.
From the side of Taylor’s frozen flow hypothesis, the neural network
supplements the missing flow physics in a black box way. Obviously,
more needs to be done especially for those high frequency, small-scale
fluctuations. Furthermore, the proposed MCPNN-frozen model was
focused on relatively simple cases, in which the terrain is flat, and the

thermal stratification is neutral. Developing models accounting for
more effects in atmospheric turbulence will be carried out in our
future work.
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FIG. 16. Performance test of the MCPNN-frozen model trained using the filtered streamwise velocity fluctuations for (a) MSE, (b) C.C., and (c) R2, for different filter sizes tf,
for the cases with s=d ¼ 8 and k0 ¼ 0:001. Blue square symbols: the MCPNN-frozen model; red square diamond symbols: the model only using Taylor’s frozen flow
hypothesis.
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APPENDIX A: EVALUATION OF DIFFERENT MODEL
PARAMETERS

In this appendix, we test the effects of the number of hidden
layers employed in the neural network, the number of temporal
instants (Ni), the time increment Dt between two successive time
steps for the data employed for prediction at the reference point,
and the number of reference points on the performance of the
MCPNN-frozen model. The data from the case with k0 ¼ 0:001 m
(if not otherwise specified) are employed for the test carried out in
this appendix. When evaluating the effect of one particular

parameter, other parameters are kept the same as those of the
model employed throughout the paper. The performance of the
MCPNN-frozen model with different numbers of hidden layers is
compared in Fig. 18. It is observed that although the MSE slightly
decreases when NL increases from 1 to 2, the correlation between
the predictions and real data also slightly decreases. When further
increasing NL, improvements are not observed either.

How the number of temporal instants (Ni) selected at the ref-
erence point affects the model performance is examined in Fig. 19.
It is seen that MSE gradually decreases and C.C. gradually increases
with the increase in the number of temporal instants until Ni ¼ 5,
after which no significant improvement is observed. In the rest of
paper, Ni ¼ 5 is employed.

The effects of Dt on the performance of the MCPNN-frozen
model are evaluated in Fig. 20 by plotting the MSE and correlation
coefficients (C.C.). It is seen that the MSE first decreases and then
increases when increasing the value of Dt, that there is an optimal
Dt for the maximal performance. The values of the optimal Dt are
slightly different for different surface roughness lengths, which,

FIG. 17. Performance test of the MCPNN-frozen model for different spanwise off-
sets between the reference point and target point for (a) time series for d=d ¼ 0:1,
and (b) correlation coefficient C:C:. The MCPNN-frozen model is trained using the
filtered data for s=d ¼ 8 without a spanwise offset. The ground roughness length
k0 ¼ 0:001 m. The testing data are filtered with tf Uh=d ¼ 5:180 the same as the
training data. In (b), blue square symbols and red diamond symbols are for the
MCPNN-frozen model and the model using only Taylor’s frozen flow hypothesis,
respectively.

FIG. 18. Effects of different numbers of hidden layers on the performance of the
MCPNN-frozen model.

FIG. 19. Effects of different numbers of temporal instants at the reference point on
the performance of the MCPNN-frozen model.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045107 (2022); doi: 10.1063/5.0086354 34, 045107-16

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0086354/16611716/045107_1_online.pdf

https://scitation.org/journal/phf


however, nearly fall into the same range (i.e., DtU=d
2 ½0:075; 0:10�) for different cases. In the test of the model through-
out the paper, the corresponding optimal value of Dt is employed
for each roughness length.

Figure 21 shows how different schemes for choosing the refer-
ence points affect the model performance. Six different schemes as
listed in Table II are examined. As shown in Fig. 21, the perfor-
mance of the model with reference points at both upstream and
downstream locations (i.e., schemes C, D, E, and F) is significantly
better than that with reference points located on one side of the

FIG. 20. Effects of different time intervals D on the performance of the MCPNN-frozen model.

FIG. 21. Effects of different choices of reference points on the performance of the
MCPNN-frozen model using the test data with ks ¼ 0:001 m.

TABLE II. Different schemes for choosing the reference points.

Scheme
Different numbers and locations

of the reference points

A Downstream two at x þ d and x þ 2d
B Upstream two at x � d and x � 2d
C Upstream one at x � d, downstream one at x þ d
D Upstream two at x � d and x � 2d,

downstream one at x þ d
E Upstream two at x � d and x � 2d,

downstream two at x þ d and x þ 2d
F Upstream three at x � d; x � 2d, and x � 3d,

downstream two at x þ d and x þ 2d
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target point (i.e., schemes A and B), and that MSE is about 30%
smaller and C.C. is approximately 1.2 times higher. The differences
between schemes C, D, E, and F, on the other hand, are minor, indi-
cating that further increasing the number of reference points does
not improve the model performance. In the rest of paper, the
scheme C for is employed for choosing the reference points.

APPENDIX B: TEST OF DIFFERENTWAYS FOR
COMPUTING THE CONVECTION VELOCITY

To train the MCPNN-frozen model, the convection velocity
has to be given in order to determine the time instants [Eq. (2)]
employed as the input features at the reference point. For the
model trained in this paper, the mean streamwise velocity at z ¼ zh
is employed as the convection velocity. For real-life applications,
the convection velocity cannot be known in advance. In this appen-
dix, we examine the effect of different ways for computing the con-
vection velocity on the performance of the MCPNN-frozen model.
Two approaches for computing the convection velocity U are
tested and compared, i.e., (i) U is taken as the streamwise velocity
averaged in time and in the horizontal directions (the approach
employed in the main text); and (ii) U is computed as the stream-
wise velocity averaged over the time instants employed as the
input.

Figure 22 compares the performance of the MCPNN-frozen
model trained using the convection velocity U computed using
approach (i) and approach (ii). It is observed that the correlation
coefficients C.C. are fairly close to each other for the two different
ways of computing the convection velocity. The approach (ii) will
work well in real-life applications as the data at those time instants
for input are readily available. The good agreement between the two
approaches indicates the proposed MCPNN-frozen model is not
sensitive to the convective velocity. As more than 1 (which is 5 in
this work) time instants are employed as the input features, it is
expected the most appropriate input feature can be constructed
with the neural network.
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