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A B S T R A C T   

The fragment field distribution of shell-bearing explosives is important to ensure safety during the production 
and storage of inflammable and explosive materials. This study uses the continuous-discontinuous element 
method (CDEM) for the first time to solve the problems encountered when simulating shell-bearing explosives 
such as natural fragment generation and cross-scale calculation. With the coupling computation of the finite- 
discrete element as its core, we design the natural fragment discrete unit generation algorithm by utilizing the 
shell equivalent layer-detonation product dissipation model based on continuous mechanics, dynamic drag flight 
calculations, and efficient point-face and face-face contact algorithms. Thus, a method has been established for 
the complete simulation of a full time-space field for natural fragments (from burst to fragment landing) of 
shelled explosives. In particular, CDEM, takes into account the complex situation wherein multiple explosions are 
initiated due to the shelled explosives being stacked on one another during storage. Comparisons with com-
mercial software (AUTODYN) calculations and test data validate the accuracy and efficiency of the method, 
thereby providing adequate conditions for performing a refined study on fragment distributions and safe dis-
tances associated with shell explosives.   

1. Introduction 

In explosion accidents, shell-bearing explosives (e.g., natural war-
heads and explosive storage containers) often produce a large number of 
fragments, and the problems associated with fragment safety are a sig-
nificant concern. A numerical study on full time-space fragment field of 
a warhead is necessary for determining the fragment safety distance and 
designing the protection measures [1]. 

According to the distance from the explosion center, the surrounding 
region could be roughly categorized as a short-distance or long-distance 
fragment field [2]. The short-distance fragment field generally lies 
within the dense lethal radius. Previous studies have mainly focused on 
the generation and acceleration of fragments, while utilizing the 
fluid-solid coupling algorithm and the crack growth model based on the 
finite element method. For instance, explicit nonlinear finite element 
analysis software programs such as LS-DYNA and AUTODYN couple the 
Eulerian fluid calculation with the Lagrangian rigid body calculation to 
describe the interaction between the shell and detonation products 

[3–9]. For simulating shell fragmentation, the above two programs 
comprise a built-in Stochastic random failure model based on erosion 
algorithm. Furthermore, Hopson et al. [10] used the CTH software, 
which is developed by Sandia National Laboratories and based on the 
Eulerian method, to calculate the explosion process of the 
AerMet-shelled warhead. Rabczuk et al. [11] described an approach for 
modeling discrete cracks using meshfree methods, in which the crack 
was modeled by splitting particles located on opposite sides of the 
associated crack segments. Other methods for crack growth calculation, 
such as explicit phase field model, peridynamics with shear deforma-
tion, nonlocal operator method, dual-support smoothed particle hy-
drodynamics, have also been reported [12–19]. 

A high accuracy is achieved when describing fragmentation using 
crack growth calculations; however, this approach is also time- 
consuming. To perform efficient calculations for actual applications, 
scholars have proposed finite element method based on continuum 
mechanics to describe the process that drives the shell [20], including 
the continuous-discontinuous element method (CDEM) [21, 22] and the 
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fragmentation safety distance calculation program (PAFRAG) proposed 
by V. M. Gold and E. L. Baker [23]. The governing principle of these 
methods is to distinguish the deformation failure of the material from 
the fragmentation process during simulation, thereby circumventing the 
time-consuming fluid-solid coupling process and crack growth calcula-
tions, while improving the computational efficiency and convergence. 

The long-distance fragment field is usually located outside the dense 
lethal radius. Because of the large space-time distribution and the low 
efficiency of meshing, the iterative calculation method is often adopted 
in this field. For instance, TNO-PML [24] developed the shot-line tech-
nique; Qian et al. [25] proposed an algorithm based on fragment path-
line fields. By using parameters such as the mass, shape, and initial 
motion vector of the fragment, the real-time resultant force of gravity is 
calculated stepwise along with the fragment resistance; subsequently, 
the trajectory of the fragment group is determined. Currently, the initial 
parameters of the fragment group are usually assigned through theo-
retical formulations [25, 36], stochastic methods (e.g. Monte Carlo 
method) [26, 27], or experimental data on explosions [28]. 

Hence, the finite element method is suitable for fragmentation and 
short-distance fragment field calculations, but it also exhibits certain 
insufficiencies, namely: the calculations associated with fluid-solid 
coupling-crack growth are time-consuming, and the high-efficiency 
method based on the continuous media algorithm cannot effectively 
simulate natural fragment explosives at present. The meshless iterative 
calculation method can effectively describe the fragment trajectory in a 
long-distance field; however, the initial parameters of the fragment 
group cannot be assigned efficiently due to low accuracies (theoretical 
formula, stochastic methods) and high costs (static explosion experi-
ments). Additionally, the following factors should be taken into account: 
shell-bearing explosives are generally stacked during storage; there ex-
ists a strong interaction between projectiles, and a significant number of 
calculations (maybe tens of thousands fragments) are also required 
along with a wide computational domain. Thus, the cross-scale 
computing capacity, simulation accuracy, efficiency, and convergence 
of the relevant simulation methods are indispensable. 

The study is based on CDEM, which is suitable for fragment field 
calculation of prefabricated warheads. Herein, we have established a 
method for simulating the full-scale fragment field of shell-bearing ex-
plosives (natural fragments) by designing an algorithm that determines 
discrete units of natural fragments based on coupled FEM and DEM, 
while developing a shell equivalent layer-detonation product dissipation 
model, inventing efficient point-face and face-face contact algorithms, 
and performing dynamic drag flight calculations. 

2. Algorithm description 

2.1. Description of CDEM method 

CDEM includes the finite element module, continuous-discrete 
transition module, and discrete element module. The finite element 
module is used to calculate the deformation and failure of the shell after 
explosive ignition. When the velocity of the shell units stabilizes (ac-
celeration complete), discrete element units (fragments) are generated 
at the corresponding finite element units by using the continuous- 
discrete transition module, and the velocity inheritance between the 
finite-discrete element units is conducted as well; finally, all the finite 
element units are passivated, and the discrete element module is acti-
vated to iteratively calculate the flight trajectory of the fragments sub-
jected to gravity resistance in real time. The basic principle of the finite 
element and discrete element calculation has been elucidated elsewhere 
[21,22]. This paper will focus on the key innovative algorithm to realize 
the efficient simulation of full time-space field of natural fragments of 
shell-bearing explosives. 

2.2. Finite element module 

CDEM adopts the incremental method to calculate the finite element 
unit stress and node deformation force. As is shown in Eq. (1). 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δεi = BiΔue

Δσi = DΔεi

σt
i = σo

i + Δσi

σn
i = f (c1, c2,…)

Fe =
∑N

i=1
Bi

T σn
i wiJi

(1) 

Where BiΔεiΔσiwiJi are the strain matrix, incremental strain tensor, 
incremental stress tensor, integral coefficient and Jacobian determinant, 
respectively; σn

i andσo
i are the stress tensors of the current moment and 

the previous moment of Gaussian point i; σt
i is the trial stress tensor on 

Gaussian point i; D, Δue, Fe represent the elastic matrix of unit, the node 
incremental displacement vector, and the node deformation force 
tensor, respectively; and N represents the number of Gaussian points. 

The large deformation and motion of unit are simulated by updating 
the strain matrix (B matrix) in real time. After the node deformation 
force is calculated, the node resultant force can be calculated: 

F = FE + Fe + Fc + Fd (2) 

Where F is the node resultant force, FE is the node exterior force, Fe is 
the node force contributed by finite element unit deformation, Fc is the 
node force contributed by the contact interface, Fd is the node resis-
tance. Then, the node motion is calculated according to the forward 
Euler method: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a(t) = F(t)/m v(t + Δt) =
∑Tnow

t=0
a(t)Δt

Δu(t + Δt) = v(t + Δt)Δt u(t + Δt) =
∑Tnow

t=0
Δu(t + Δt)

(3) 

Where a is the node acceleration, v is the node velocity, Δu is the 
node displacement increment, u is the total node displacement, m is the 
node mass, and Δt is the time step. Based on iterative calculation of Eqs. 
(1)-(3), the explicit solution can be realized. 

2.2.1. Ignition model and equivalent leakage algorithm of detonation 
products 

Considering the huge fragment field of stacked ammunition, we 
establish the equivalent leakage algorithm of detonation products. 
Instead of using the fluid-solid coupling calculation, this algorithm could 
improve calculation efficiency. 

CDEM uses the Landau model to describe the adiabatic expansion 
process of detonation gas. Assuming that the ignition time of an explo-
sive (including several units) is t0, the distance from the body center of 
an explosive unit to its ignition position is d, and the detonation velocity 
of the explosive is D, then the ignition time of the unit is t1 = d/D+ t0. 
When the explosion time t > t1, the unit calculates the explosion pres-
sure according to Eq. (4), wherePr is the real explosion pressure, f(P) is 
the function of the detonation product state according to the Landau- 
Stanukovich formula [21,22]. ξ is the energy release rate, which can 
be obtained by Eq. (5). Here, Ve is the initial volume of unit and Ae− max is 
the maximum area of unit. 

Pr = ξf (P) (4)  

ξ =

⎧
⎪⎨

⎪⎩

min
(

2(t − t1)DAe− max

3Ve
, 1
)

if t > t1

0 if t ≤ t1

(5) 

When considering the dissipation phenomenon of the detonation gas 
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after the shell disintegrates, a need arises to correct the pressure value. 
The correction method is obtained by Eq. (3), as shown in Fig. 2.1. 

The explosive is divided into N parts along the axis. Radial 
displacement of the outermost explosive node in each part is calculated, 
and average current radius ri is determined using Eq. (6). 

ri = r0 +
1
M

∑M

k=1
uk (6) 

Where M is the total number of outermost unit nodes in the i th 
explosive part. uk is the radial displacement of the outermost k-th node 
and r0 is the initial radius of the explosive in i th part. According to the 
average current radius of the explosive unit, the phenomenon of pres-
sure reduction caused by the dissipation of detonation gas of all the 
explosive units in this part is calculated. 

Pn = Pr × α(rcr/ri)
β (7) 

Where rcr is the leakage critical radius, Pn is the corrected pressure of 
an explosive unit, α and β are pressure correction coefficients. The values 
of α and β depend on the characteristics of inner charges, for common 
condensed phase explosives, it can be taken as α=1 and β=1. 

2.2.2. Equivalent layer model of shell 
After detonation, the shell is severely deformed by the impact of 

detonation products, especially when stacked ammunitions are 
exploded. During explosion, the material strain and strain rate are both 
significantly large; therefore, the conventional finite element method 
often leads to inferior efficiency and convergence. To solve this problem, 
the equivalent layer model based on continuum mechanics is used to 
describe the deformation and failure of the shell under a strong dynamic 
load impact. 

The Tresca elastoplastic model, which considers the effect of strain 
softening, is used to describe the equivalent shell layer, and the initial 
parameters of layer are consistent with those of the real material. The 
Tresca model includes two aspects of shear and tension, as shown in Eq. 
(8), whereτc is the shear strength and σt is the tensile strength. 
{

0.5(σ1 − σ3) ≥ τc
σ1 ≥ σt

(8) 

Meanwhile, the shear strength and tensile strength are reduced ac-
cording to the equivalent plastic shear strain and the equivalent plastic 
volumetric strain of the current time step. As is shown in Eq. (9). 

τc(t + Δt) = − τc0 × γp
/

γlim + τc0

σt(t + Δt) = − σt0 × εp
/

εlim + σt0

}

(9) 

Where τ c (t + Δ t) and σ t (t + Δ t) are the shear and tensile strengths 
of the next time step, respectively; Δ t is the time step; τc0 and σ t0 are 

initial shear and tensile strengths, respectively; γ p and ε p is the equiv-
alent plastic shear strain and equivalent plastic volumetric strain at the 
current time, respectively; γ lim and ε lim are the shear fracture and tensile 
fracture strains, respectively. The equivalent plastic volumetric strain 
can be calculated by: 

εp = εp
xx + εp

yy + εp
zz (10) 

The equivalent plastic shear strain is represented by γ p. The value of γ 
p is obtained by Eq. (11). 

γp=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
εp

xx − εp
/

3
)2
+
(
εp

yy − εp
/

3
)2
+
(
εp

zz − εp
/

3
)2
+2(εp

xy)
2
+2(εp

yz)
2
+2(εp

xz)
2

√

(11) 

The equivalent shell layer model, which is combined with the above- 
mentioned detonation product dissipation algorithm, can replace the 
complex crack growth and fluid-solid coupling algorithm for effectively 
describing the response of the shell to the impact of the detonation 
products, while improving efficiency and convergence. 

2.2.3. Face-face contact and point-face contact algorithms 
The interactions between the charges, shell, and adjacent shell after 

the detonation of stacked ammunition are considerably complex, and a 
well-performed contact model is the prerequisite to accurately and 
efficiently describe the collision processes. In this paper, Face-face 
contact and point-face contact algorithms have been established. 

Due to the close contact between the explosive and the shell, the co- 
node method is commonly adopted for mesh; thus, the face-face contact 
model is suitable for describing the contact between the explosive and 
the shell. Prior to performing calculations, the shared face must be 
discretized to form contact faces, and a contact spring is added to the 
contact face to accomplish the transfer of force and displacement. The 
common face is split into contact faces, as shown in Fig. 2.2. In the face- 
face contact model, the contact force can be calculated using Eq. (12). 

Fn− i = knΔun− iAi
Ft− i = ktΔut− iAi

}

(12) 

Where Fn-i and Ft-i are the normal and tangential spring forces of the i 
th node on the contact face, respectively; kn and kt are the normal and 
tangential stiffness values in unit area, respectively; Δun-i and Δ ut-i are 
the normal and tangential displacement differences of the i th nodes of 
units on both sides of the contact face, respectively; and Ai is the area of 
the i th node on the contact face. In order to ensure that the embedding 
amount is not too large, the above contact stiffnesses is generally 
required to be more than 10 times of the element characteristic stiffness, 
and the value of kn and kt in this paper is set to 100. Where Δ un-I and Δ ut-i 
is calculated using Eq. (13): 

Δun− i = uE1
n− i − uE2

n− i

Δut− i = uE1
t− i − uE2

t− i

}

(13) 

Where uE1
n− i and uE2

n− i are the normal displacements of the i th nodes of 
units on both sides of the contact face; uE1

t− i and uE2
t− i are tangential dis-

placements of the i th nodes of units on both sides of the contact face. Ai 
can be calculated using Eq. (14): 

Ai = Ac/N (14) 

Where Ac is the contact area and N is the number of nodes on the 
contact face. Since there is a certain bonding strength between the 
explosive and the shell, the tensile criterion and Mohr-Coulomb crite-
rion are used to correct the contact force. 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)If − Fn− i ≥ T⋅Ai Fn− i = Fs− i = 0
next step c = 0, T = 0
(2)If Ft− i ≥ Fn− i × tan(ϕ) + c⋅Ai
Ft− i = Fn− i × tan(ϕ) + c⋅Ai,

next step c = 0, T = 0

(15) 

Fig. 2.1. Detonation gas dissipation algorithm.  
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Where T is the tensile strength of current time step, c is the cohesion 
force of the current time step, and ϕ is the internal friction angle. When 
two adjacent warheads detonate, shells tend to collide with each other. 
The point-face contact model is used to calculate the contact collision 
force (see Fig. 2.3). 

The contact force of the point-face contact model is basically calcu-
lated in the same manner as that of the face-face contact model, with the 
relative displacement difference and the contact area being different. In 
the point-face contact model, relative displacement differences can be 
calculated using Eq. (16): 

Δun = uE1
n − uE2

n− p

Δut = uE1
t − uE2

t− p

⎫
⎬

⎭
(16) 

Where uE1
n and uE1

t are normal and tangential displacements of the 
first unit contact point, respectively; uE2

n− p and uE2
t− p are normal and 

tangential interpolation displacements of the unit on the second contact 
face, respectively; uE2

n− p, uE2
t− p can be described using Eq. (17): 

uE2
n− p =

∑N

i=1
wiuE2

n− i

uE2
t− p =

∑N

i=1
wiuE2

t− i

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(17) 

Where uE2
n− i and uE2

t− i are the normal and tangential displacements of 
each node on the second unit contact face and wi is the weight coefficient 
of each node on contact face. In the point-face contact model, contact 
area Ac can be calculated using Eq. (18): 

Ac =
(
VE1

v

)2/3 (18) 

Where VE1
v is the volume of the first unit contact node. When the 

shells of two warheads collide with each other, there is no bonding; thus, 
the cohesion force and tensile strength are set to 0. Considering that 
there is a certain friction effect in the collision process of the warhead, 
the collision friction angle is set to 20◦. 

2.3. Continuous-discrete transition module 

2.3.1. Generation of natural fragments 
After the finite element module calculates the shell deformation, 

there is a need to use this module to generate reasonable random groups 
of natural fragments (discrete units). The quantity-mass-initial flight 
direction distribution of fragment group is key to simulating the frag-
ment field of shell-bearing explosives. 

Numerous experiments show that the natural fragments driven by 
detonation pressure are in accordance with the Mott distribution [29]. 
The stochastic failure model, which has been commonly used in com-
mercial softwares, is based on the Mott distribution and an erosion al-
gorithm [30]. The quantity of the fragments generated from stochastic 
failure model is relatively accurate; however, inaccuracies are observed 
with regard to mass conservation and calculation of efficiency. To solve 
the above-mentioned problems, this study considers the continuum 
mechanics and the FEM-DEM coupling solution as the core, and estab-
lishes an algorithm to generate discrete units of natural fragments based 
on the Mott distribution:  

(1) The Mott distribution theory 

The Mott theory is usually used to describe the crushing result of 
shells under internal explosion. The quantity-mass distribution of frag-
ments can be described using Eq. (19): 

N
(
mf

)
= N0e− (mf/μ)

0.5

(19) 

Where N (mf) is the number of fragments whose mass is greater than 
mf (kg), N0 is the number of fragments, μ (kg)  is the Mott crushing 
parameter. N 0 and μ are the key parameters of the Mott distribution, 
which need to be calculated according to the geometric parameters and 
material parameters of the warhead. N0 can be calculated using Eq. (20): 

N0 = M
/

mf (20) 

Where M is the total mass of the shell (kg),mf is the average mass of 
the fragments (kg). The mf can be described using Eq. (21): 

mf = 381.5
ρ1/3

f a4/3
f W2/3δ

v4/3
0

(21) 

Fig. 2.2. Preparation of the face-face contact model.  

Fig. 2.3. Schematic diagram of the point-face contact model.  
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Where ρf is the initial density of the shell (kg•m − 3), af is the outer 
radius (m), δ of the shell thickness when the shell is fragmented (m), W is 
the crushing specific energy of the shell (14.7•104–168•104 J•m − 2, 
usually (14.7•104 J•m − 2), and v0 is the initial velocity of the fragment 
when the shell is fragmented (m•s − 1). af and δ can be calculated using 
Eq. (22): 
{

af = (1 + εc)a0
δ = δ0/(1 + εc)

(22) 

Where A0 is the initial outer radius of the shell (m), δ 0 is the initial 
thickness of the shell (m), and ε is the critical strain (for steel shells, it is 
set to 0.5–1.0). v0 at different positions of the projectile can be derived 
by the finite element iterative calculation described in Section 2.2 or is 
calculated using Eq. (23): 

v0 =
̅̅̅̅̅̅
2E

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

β
1 + 0.5β

√

(23) 

Where β is the charge ratio (explosive mass / mass). The 
̅̅̅̅̅̅
2E

√
is the 

Gurney coefficient, which can be calculated using: 
̅̅̅̅̅̅
2E

√
= 0.52 + 2.8⋅10− 4⋅De (24) 

Where De is the detonation velocity (m•s − 1). The value of the 
crushing parameter μ is related to the average mass mf of the fragments 
and the crushing dimension i of the shell. 

μi =
mf

i
(25) 

Steel shell-bearing explosives with thin sidewalls are generally 
fragmented in a two-dimensional mode, while thick-shell-bearing ex-
plosives tend to be fragmented in a two- and three-dimensional mixed 
mode [29].  

(1) Segmentation of shell-bearing explosives: 

For simple cylinder-shaped explosives, since the charge ratio and 
other parameters at different positions are basically the same, the entire 
shell can be analyzed to produce fragments that satisfy the Mott distri-
bution. However, when the shape of the explosive is complex and if the 
thickness and shape of the shell change significantly, a significant error 
is observed for the entire calculation associated with natural fragment 
generation. Therefore, this coagulation must be divided into segments 
according to the geometry of the shell-bearing explosives. 

According to the Mott distribution formula, when the shell radius, 
shell thickness, and charge radius change, they need to be calculated 
separately. Nevertheless, to simplify the calculation, the segment dis-
tance can be enlarged appropriately (Fig. 2.4); therefore, the natural 
fragment warhead is divided into 6 segments.  

(1) Generate natural fragments that satisfy the Mott distribution: 

Five steps are used to generate natural fragments. The specific pro-
cess is as follows:  

1) Calculate the key parameters (N0 and μ) of the Mott distribution.  

2) Calculate the shell volume V to form the shell finite unit list of this 
segment.  

3) Calculate the total mass M of the shell.  
4) Calculate the natural fragments that satisfy the Mott distribution; 

obtain the number, mass and equivalent volume (calculated ac-
cording to mass and density) of each fragment; and form a list of 
natural fragments.  

5) For each fragment, a unit is randomly obtained from the shell finite 
unit list; subsequently, a spatial position in this unit is selected 
randomly as the center to place the fragment. (see Fig. 2.5). This step 
is repeated for all the fragments and shell units, until fragments are 
exhausted or units are completely filled. 

Step 4) is relatively complex and has been described in detail. In this 
step, to simplify the generation process, the quantity-mass relationship 
of natural fragments is discretized into several grades; the natural 
fragments between different grades satisfy the isometric sequence of 
mass: 

mi = m0 + Δm × i (26) 

Where mi is the mass of the i th grade natural fragment, m0 is the 
mass of the 0-th grade natural fragments, and Δ m is the mass difference 
between grades. Therefore, when forming the list of natural fragments, it 
is necessary to input m0 and Δm. Generally, the value of those parame-
ters should be less than 0.1 g to ensure the accuracy of simulation. The 
number of fragments of the i th grade is calculated according to the Mott 
distribution, as shown in Eq. (27). Subsequently, the total mass of the 
fragments from the first grade to the i th grade is calculated by Eq. (28). 
⎧
⎨

⎩

Ni− 0.5 = N0e− (mi − 0.5Δm/μ)0.5

Ni+0.5 = N0e− (mi+0.5Δm/μ)0.5

ΔNi = [Ni− 0.5 − Ni+0.5]

(27)  

Mi =
∑i

j=1
miΔNi (28) 

If Δ Ni is greater than or equal to 1 and Mi is less than or equal to the 
total shell mass M during calculation. The number of fragments of the i 
th grade is Δ Ni. 

If Δ Ni is greater than or equal to 1 and Mi is greater than the total 
shell mass M, then the number of fragments in this grade ΔNlast needs to 
be corrected according to the total shell mass (Eq. (29)). When the 
fragments are in the last grade, the grade addition calculation is stopped 
after correcting the number of fragments. 

ΔNlast = [(M − Mi− 1) /mi] (29) 

3) If Δ Ni is less than 1. The grade addition calculations should be 
stopped. 

Compared with the Stochastic method that employs AUTODYN, the 
discrete units generated by CDEM can better satisfy the conservation of 
mass as there is no need for calculating unit erosion. The comparison 
between the results of the quantity-mass distribution of fragments and 
the theoretical values is shown in Fig. 2.6. 

2.3.2. Velocity inheritance of discrete fragments 
After the random generation of fragments, the velocity of the finite 

element units on the equivalent fragment layer (where the acceleration 
process is completed) should be mapped to the fragment discrete units. If 
the body center of a fragment is located inside a finite element unit, the 
following inheritance formula can be implemented: 

vdem
i =

∑n

k=1
wkvfem

k (30) 

Where vdem
i is the velocity vector of a fragment, vfem

k is the velocity 
vector of the k-th node of the finite element unit, wk is the weight 

Fig. 2.4. Segmentation schematic of shell-bearing explosives.  
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coefficient of the k-th node, and n is the node quantity. Taking the tri-
angle unit as an example,wk is the shape function of node k of the tri-
angle unit. 

wk =
1

2Δ
(ak + bkx+ cky) (31) 

Where Δ is the area of the triangular unit. As presented in Fig. 2.7, 
the velocity of fragment i can be inherited from the finite element unit j. 

2.4. Discrete element calculation module 

After mapping, all fragments are observed to inherit initial velocities; 
thus, the finite element unit is passivated, and the movement of frag-
ments under a combined action of gravity and resistance will be quan-
tified using the discrete element module. According to Newton’s law, the 
dynamic calculation (Eq. (32)) can be carried out to calculate the 

acceleration, velocity, and displacement of the fragments at different 
times. 

F = G + Fc (32) 

Where F is the resultant force of fragment, G is gravity, and FC is the 
air resistance of fragments. The air resistance FC can be calculated using 
Eq. (33): 

Fc =
1
2

ξρv2A (33) 

Where ρ is the air density, A is the equivalent frontal area of the 
fragment, ξ is the resistance coefficient. To express the influence of 
resistance on fragment velocity and trajectory more accurately, the 
velocity-dependent resistance coefficient is used to determine the 
resistance FC in this study [21]. 

The equivalent frontal area A of a natural fragment mainly depends 

Fig. 2.5. Schematic representing random generation of fragments in unit.  

Fig. 2.6. Comparison between theoretical (Mott formula) and numerical solutions of natural fragments.  
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on the density, mass, shape, and motion state of the fragment. Previous 
experimental statistics show that the shapes of fragments generated by 
metal shells exhibit a certain regularity, and for common steel shell 
fragments, the average ratio of length, width, and thickness is 5:2:1 
[37]. 

Fragments driven by implosion tend to tumble during flight [16]. At 
this time, the frontal area can be expressed using the Cauchy area (AT) 
[33]: 

A = AT = 0.25S = 8.5
(

mfg

10ρf

)2/3

(34) 

Where S is the fragment surface area and mfg is the single fragment 
mass (obtained using the algorithm that generates discrete units of 
natural fragments in Section 2.3.1). In this way, the trajectory calcula-
tion model for fragment flight is established. 

3. CDEM algorithm verification 

3.1. Short-distance fragment field verification 

A grenade is a typical shell-bearing explosive. Huang [34] et al. 
studied the explosion process of large-caliber grenades by using simu-
lations (AUTODYN) and experimental methods (such as the well method 
that can recover fragments). In this study, we also conduct a trial 
calculation as an example to compare the velocity-quantity-mass dis-
tribution of generated fragments. Thus, the effectiveness of the CDEM 
for calculations associated with shell deformation (finite element) and 
fragment generation (finite element-discrete element transformation) 
should be verified. 

3.1.1. Modelling and parameter selection 
The shell is composed of steel and is 660 mm long, with a diameter of 

155 mm, a mass of 40 kg, an average wall thickness of 45 mm, and an 
average inner diameter of 110 mm. The charge powder is TNT with a 

mass of 8 kg, charge density is 1.63 g•cm− 3, and detonation velocity is 
6.94 km. The material parameters of the shell are listed in Table 3.1. The 
modeling parameters of each part of the explosive are shown in 
Table 3.2. 

The time step of CDEM is set to 1e-8 s and the grid width is 3 mm. 
According to previous research, this size is sufficient to attain grid in-
dependence. Based on the geometric parameters, the projectile is 
divided into 5 segments, and fragment generation is carried out subse-
quently. The finite element model and the fragment discrete element 
model (showed as spherical) are shown in Fig. 3.1. 

3.1.2. Calculation results and analysis 
Summary of the deformation of the projectile after denotation is 

shown in Fig. 3.2. In order to show the shell expansion process clearly, 
the end cover is cut off. 

The calculation results of the shell acceleration process obtained 
using AUTODYN and CDEM are almost the same; the shell expansion 
accelerates after being driven by the detonation product, and the ac-
celeration ends at 120 μs. The projectile is in the shape of a drum and the 
maximum diameter is approximately 330 mm (about 2.13 times of the 
initial projectile diameter) at this time, which is primarily consistent 
with the previous experimental results [1]. 

There is a difference in fragment quantity between the two figures 
(AUTODYN and CDEM), which is mainly due to the different degrees of 
shell fragmentation calculated by the two methods (this will be analyzed 
later). Fig. 3.3 summarizes the distribution of the maximum initial ve-
locity of the fragments along the projectile at 120 μs: 

The distribution of the maximum initial velocity obtained by the two 
programs is very similar. The average initial velocity of the fragments is 
approximately 1100 m s − 1; the initial velocity of the fragments is faster 
when they are in the front and middle (at the 25%− 50%) of the pro-
jectile. This is due to the thinner shell, larger diameter of the projectile, 
and the higher local charge ratio. The average deviation of the fragment 
velocity is less than 10%, as obtained using CDEM and AUTODYN. The 
quantity-mass distribution relationship of fragments calculated using 
CDEM and AUTODYN (from the literature[34]) and the results of the 
experiments (all repeated five times, with a uniform fragment count) are 
compared, as shown in Fig. 3.4. 

In summary, the square roots of the fragment mass and the natural 
logarithm of the fragment number derived from the simulations of both 
programs demonstrate an approximate inverse relationship. When the 
mass of the fragments is greater than 4 g, the number of fragments ob-
tained by the two programs is closer to the experimental value; however, 
when the mass of the fragments is less than 4 g, the natural fragment 
discrete unit generation algorithm (CDEM) yields a higher accuracy for 
the fragment quantity-mass relationship than that obtained by the Sto-
chastic random failure algorithm. This may be due to the fact that the 
latter cannot fully satisfy mass conservation. 

The difference in the number of small-mass fragments leads to a 
lower degree of shell fragmentation, as shown by AUTODYN (Fig. 3.2). 
The error between the total number of fragments  (from AUTODYN)  and 
the experimental value is − 61.91%, while the calculated results of 
CDEM are in good agreement with the experimental values, and the 
error of the total number of fragments is 22.9%. 

Notably, we use the shell deformation-detonation product equivalent 
dissipation algorithm, and the natural fragment discrete unit generation 
algorithm replaces the complex fluid-solid coupling and crack growth 
calculation. In this example, the computation time of the former (0.5 h) 
is much less than that of the latter (3–5 h). The accuracy and efficiency 
of CDEM for calculating the short-distance fragment field are verified. 

3.2. Long-distance fragment field verification 

We select the double-initiation grenade (M107) explosion test as a 
case study to verify the effect of the finite element-discrete element 
coupling algorithm on the long-distance fragment field of shell-bearing 

Fig. 2.7. Schematic of velocity inheritance.  

Table 3.1 
Material properties of shell.  

Material Density 
(kg•m − 3) 

Tensile 
strength 
(MPa) 

Shear 
strength 
(MPa) 

Elastic 
modulus 

Poisson`s 
ratio 

Steel 7800 800e6 800e6 2e11 0.3  
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explosives under the conditions of strong interactions between pro-
jectiles. This experiment is recorded in ADA066080 [35]. 

3.2.1. Modelling and parameter selection 
In this case, the grenade shell is composed of steel, with a length and 

diameter of 604 mm and 155 mm, respectively. The average thickness of 
the shell is 18 mm, and the material parameters of the shell are the same 
as those of Section 3.1. The charge powder is B explosive with a charge 
density of 1.71 g•cm3 and a detonation velocity of 7.99 km•s − 1. The 
settings of the finite element part are the same as those described in 

Table 3.2 
Modeling parameters (simulation parameters for AUTODYN are quoted from reference 34) .  

Software Module Material model / equation of state Grid type Total number of grids 
(103) 

Fragment generation model 

AUTODYN Shell (steel) Johnson-Cook Lagrangian 352.9 Stochastic random failure model  
Explosive 
(TNT) 

JWL high explosive model ALE   

CDEM Shell (steel) Tresca elastoplastic model with strain softening 
effect 

Lagrangian 349.2 Natural fragment discrete unit generation 
algorithm  

Explosive 
(TNT) 

Landau + detonation product dissipation Lagrangian    

Fig. 3.1. Finite element and fragment discrete element models.  

Fig. 3.2. Fragment acceleration process (shown in discrete element) .  
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Section 3.1. In the discrete element part, the calculation time step is 1e- 
4 s, air resistance is calculated by the dynamic air resistance coefficient 
that varies with the velocity in real time, and air density is 1.069 g/L. 

The arrangement of projectiles in the simulation is the same as that in 
literature: two projectiles are placed vertically, and the distance be-
tween the projectiles is 0.14 times the projectile diameter (21.7 mm). A 
circular witness plate is placed at 7.62 m from the stacking center to 
collect the maximum initial velocity of fragments with different azimuth 
angles. The site arrangement is shown in Fig. 3.5. 

3.2.2. Calculation results and analysis 
The acceleration process of fragments is shown in Fig. 3.6. The in-

teractions between projectiles can be categorized into three situations. 
(1) Inside the stacked ammunitions, when the distance between the 

projectiles is less than the projectile diameter (the cylindrical part of the 
grenade in the figure), the adjacent grenade shells will be extruded by 
each other and the fragments will be affected by the detonation product 
on both sides at the same time. Furthermore, a large directional angle 
results in a sharp deceleration of the fragments in this area. 

(2) Near the boundary of the extrusion zone, the directional angle of 
the driving force on the fragments gradually decreases, and a larger 
outward resultant force begins to form. The fragments are subjected to a 
stronger driving force than that of the single initiation detonation; 
therefore, the fragment velocity in this area increases significantly. 

(3) When the distance between the projectiles is more than the local 

diameter (the upper cone of the grenade in the figure), the mutual 
extrusion of adjacent shells can be ignored, and most of the fragments of 
the two projectiles will fly off crisscross and not stay inside the stack. 
Consequently, a blank area is observed in the sectional view. 

The above phenomena are consistent with the experimental results of 
the study by J. G. Powell [34]. After the detonation drive, the discrete 
element module is activated to calculate the fragment group trajectory, 
as shown in Fig. 3.7. 

When imitating double detonations, due to the interactions between 
projectiles, a large number of fragments fly off along the direction 
perpendicular to the connecting line of the two projectiles; this results in 
a significant increase in the fragment number density in this region 
(centered in the directions of 90◦ and 270◦). The morphology of the 
fragment field is significantly different from the circumferential uniform 
distribution obtained with single detonation. The data on fragment ve-
locity and quantity distribution are collected by the witness plate at the 
distance of 7.62 m from the explosion center( As shown in Figure 3.8）. 

The interaction between projectiles is verified by experimental re-
sults. The focusing effect is formed in the direction perpendicular to the 
line of the two projectiles, and the fragment number density and initial 
velocity in this region increase significantly; meanwhile, the distribution 
of fragments outside the focus area is basically consistent with the result 
of single initiation (no interaction). The simulation results of CDEM can 
adequately reflect the above characteristics, and the polar angle is close 
to the experimental results. The initial velocity of the fragment and the 
number density in the focus area increase by 83.3% and 263%, 
respectively; the corresponding errors as compared to those associated 
with the experimental values are less than 10%. 

4. Conclusion 

By utilizing the continuous-discontinuous element method (CDEM), 
a natural fragment discrete unit generation algorithm has been devel-
oped on the basis of coupled FEM and DEM, along with the shell 
equivalent layer-detonation product dissipation model based on con-
tinuum mechanic calculation, efficient point-face and face-face contact 
algorithms, and dynamic drag flight calculations; the resulting analysis 
method can fully simulate a natural fragment field in the full space-time 
domain, thereby resolving the problems associated with research on 
shell-bearing explosives such as natural fragment generation cross-scale 
calculation, efficiency and convergence. Furthermore, comparison with 
experimental data verifies the feasibility and reliability of CDEM. 

The following conclusions can be drawn from the simulation results: 

Fig. 3.3. Distribution of the initial velocity of fragments along the projectile.  

Fig. 3.4. Quantity distribution of fragments in different mass intervals. The 
small figure is the fitted Mott curve, abscissa is the square root of the fragment 
mass mf, and ordinate is the natural logarithm of the fragment quantity N whose 
mass is greater than mf. 

Fig. 3.5. Schematic of the site layout.  
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(1) CDEM is applicable for describing the whole process of natural 
fragment generation-fragments dispersion and landing in single / 
multiple shell explosives simulation. No similar method has been 
found in current literature.  

(2) The full time-space fragment field calculated by this method has 
high precision. For key indexes, such as natural fragment 
quantity-mass relationship (Mott curve), initial velocity of frag-
ments, and the fragment quantity-velocity-azimuth distribution 
of stacked explosives, the calculation errors are less than 10%, 
which are well comparable with the experimental values.  

(3) The natural fragment discrete unit generation algorithm and shell 
equivalent layer-detonation product dissipation model improves 
computing efficiency and convergence, reducing the calculation 
time by more than 75% compared with commercial software 
(AUTODYN), greatly saving resources. 

In further research, the long-range testing (hundreds of meters) on 
actual shelled explosives to directly verify the CDEM calculation results 
will be conducted. At the same time, based on this method, research on 
fragment safety distance of shell -bearing explosives with different 
charges, casing materials, and initial positions-movement status will be 
carried out. 

Fig. 3.6. Fragment acceleration process.  

Fig. 3.7. Flying off process diagram of fragments.  
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