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ABSTRACT

A numerical test of isotropic turbulence compressibility reduction with helicity in a cyclic box is performed. The ratios of compressibility-
relevant-mode spectra over those of kinetic energy present power laws at large wavenumbers in the dissipation range, indicating a common
difference of 11/15 in the exponents of the algebraic prefactor of the nonhelical power spectra over those of helical ones. Our results being
not derived from the shapes of the spectra themselves, the implied information about the helicity effect on the complex singularities of the
discretized dynamical system can be of reasonable value for insight of the Navier–Stokes equation, though the high-order finite difference
scheme used for computation may not be as accurate in the dissipation range as the state-of-the-art of incompressible turbulence with the
pseudo-spectral method. Possible applications in controlling flows, for the purpose of, say, decreasing turbulence noise, are also discussed
according to the spectral fluctuations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0089333

I. INTRODUCTION

The “helicity effect” in classical fluids and plasmas1–3 has
long been studied, but few clear messages are available for practi-
cal applications, say, in the problems of aeroacoustics of wind
engineering or aeronautics, to the best of our knowledge. A recent
effort has been made with statistical analysis,4 updating that of
Kraichnan5 (K55) with the information of helicity, which indicates
the possibility that, compared to nonhelical flows, a turbulence
with (more) helicity would bear less proportions of the energy of
compressibility relevant fluctuations such as those of the compres-
sive, density, and internal energy modes. Such flow compressibil-
ity reduction has been termed the “fastening” effect of helicity,
with potential applications in turbulence noise and heating
problems.

Further studies have been performed, as done6 with the associa-
tion via boost to a rotating frame to the mechanics or geometry in the
compressible Taylor–Proudman theorem7 for a particular type of heli-
cal field, which is locally generic and finding some universality, say, in
plasma flows. The preliminary test in some low-Reynolds-number,
thus essentially laminar, flows also appear to be consistent with the
aforementioned fastening notion.8

In this communication, we present the first test of the fastening
notion in fully developed turbulence with reasonably high Reynolds
number, followed by further analyses with the purpose of deeper

mathematical understanding and practical applications: such funda-
mental research, just to mention the aeroacoustic aspect,9 is indeed rel-
evant in civil engineering, aeronautics, rapid public transportation,
and car transportation.10,11

An important application would be in the design problem (e.g.,
shape of airfoils or wings12 and aeroacoustic and aerodynamic optimi-
zation of propeller blades13), among other objectives such as those
combined with trajectory-based operations for enhancing the predict-
ability of air traffic and flight efficiency with the idea of helicity control
to reduce flow noise. Without substantial experiments in the labora-
tory or in silico, such discussions would be of speculative nature but
are based on solid results.

Thus, the key results are on fundamental turbulence, but our pur-
poses also include applications, especially the optimal design of, say,
aircraft with the objective of reducing (turbulence) noise, the latter
being of course based on the former. We first lay out the formulation
of the problem and the methods of analysis, together with a simple
variational argument, in Sec. II; the comparisons of the time-averaged
spectra with and without helicity injection are then presented in
Sec. III followed by Sec. IV for further measurements and discussions
associated with the dissipation-range behavior and complex-
singularity properties and then by Sec. V with insight from the addi-
tional information of fluctuations around the time averages for our
expectations of future relevant studies.
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II. BASICS ANDMETHODS

Let u, q, g, and c represent the velocity, density, viscosity, and
velocity of sound in a compressible flow; then, the pressure p is given
by the following adiabatic (actually isothermal) relation:

p ¼ c2q and q ¼ q0e
f; with an equilibrium q0: (1)

Both c and q0 may be set to be unit (¼1), but sometimes we still let
them present explicitly to emphasize the physical reality. The use of
the logarithmic variable5 f is convenient for the quadratic expressions
of the approximate energy for small f and is also exploited in many
numerical solvers8,14,15 to naturally preserve the positiveness of q and
obey the governing equation of self-consistent dimensionally reduced
flows.16,17 The equations of motion then can be written as

@tfþ f;aua þ ua;a ¼ 0; (2)

@tuk þ uruk;r þ c2f;k � ghkr;r ¼ 0; (3)

where hab ¼ ua;b þ ub;a � 2
3 d

a
bur;r; ð�Þ;c ¼ @ð�Þ=@xc. Working in a

cyclic box of dimension 2p with V ¼ ½0; 2pÞ3 and applying Fourier
representation for all the dynamical variables vðrÞ ! v̂ðkÞ, say,

uðrÞ ¼ P
k ûðkÞ exp f̂ik � rg with î

2 ¼ �1, we can construct a phase
space by the real and imaginary parts of vs and Galerkin truncation,
imposing all modes with k ¼ jkj greater than some cutoff value K to
be zero may be performed, which does not change the approximated
conservation of energy due to its being quadratic and diagonal in k.18

We can show that the flow in such a phase space is incompressible
(the Liouville theorem) in the inviscid case. Reasoning with the H-
theorem, K55 expects an ensemble of systems tend toward an absolute
statistical equilibrium state.

The helicity, or mean helicity density in the volume V,

H :¼
ð
x � ud3r

2V ; with the vorticity x ¼ r� u; (4)

is an ideal barotropic invariant.2 Using the helical representation19

ûðkÞ ¼ ûþðkÞĥþðkÞ þ û�ðkÞĥ�ðkÞ þ ûjðkÞk=k; (5)

with the property of the helical basis îk � ĥs ¼ skĥs (for î
2 ¼ �1 and

s ¼ 6), and that

E ¼ 1
2

X
k

jûþj2 þ jû�j2 þ jûjj2 þ c2jf̂j2 (6)

and

H ¼ 1
2

X
k

kjûþj2 � kjû�j2; (7)

we then can obtain with the canonical distribution� exp f�ðaE þ bHÞg
the absolute-equilibrium modal spectra, which indicate that the pro-
portion of compressibility-relevant-mode energy may be reduced
with helicity.4

A probably even simpler variational argument further proposed
in Ref. 17 is the following. Suppose there be a maximally helical flow
with given energy. With the Lagrangian multiplier r to form Hþ rE,
the constrained extremization (variations with respect to, respectively,
uþ; u�; uj, and f) requires that

ûj ¼ f̂ ¼ 0 ¼ û� and r ¼ �k for ûþðkÞ 6¼ 0; (8)

or that

ûj ¼ f̂ ¼ 0 ¼ ûþ and r ¼ k for û�ðkÞ 6¼ 0: (9)

Thus, it is expected that, in general, flows with larger jHj corresponds
to less non-vortical-mode excitations, i.e., “less compressible” or
“more strongly fastened.”

We performed direct numerical simulations of the compressible
Navier–Stokes equations (NSE) in a cyclic box, using Pencil Code15

with sixth-order accuracy scheme for spatial finite difference and
third-order Runge–Kutta time marching. Moreover, as summarized in
Fig. 1 and as will be further explained below, we also introduce the
one-dimensional (1D) spectra

E� :¼
X
jkj¼k

jû�j2
2

; Eþ :¼
X
jkj¼k

jûþj2
2

; Ej :¼
X
jkj¼k

jûjj2
2

EðkÞ :¼ E� þ Eþ þ Ej:

(10)

A specific statistical conjecture is that Ej is of smaller fraction for a
helical, compared to the nonhelical, system, as shown in Fig. 1 by,
respectively,

Eþ 6¼ E� with½
HðkÞ ¼ kEþ � kE�� and Eþ ¼ E�: (11)

III. RESULTS

It should also be noted that even with the same viscosity coeffi-
cients and strength of forcing (helical or not), since the helicity can
change the dynamical properties,18,20 energy levels and precise shapes
of the spectra from two simulations with and without helicity injection
are different. Thus, a naive comparison of helical and nonhelical tur-
bulence without appropriate normalization would not be very illumi-
nating. In our simulations, the isotropic and d-correlated stochastic
accelerations were added at around wavenumber kf ¼ 1:54, and the
solenoidal forcing scheme using essentially the helical representation
as in Eq. (5) in Ref. 21 was applied for controlling the degree of chiral-
ity of the accelerations (and thus, the respective flows), the latter being
the genuine difference between the two runs. [Forcing only on the
transversal modes is mainly from the consideration of simplicity and
fairness in the comparison, although we believe other forcing schemes
with (statistically) appropriate drivings on the longitudinal or even the
other compressibility relevant modes, not exhausted in this note,
should also work. We adopted for this particular test the setup of the
magnetohydrodynamic one of Ref. 21 (thus, a particularly detailed
explanation of the method would be redundant), with the magnetic
field removed.]

Both cases are of the root mean square turbulent Mach number
Mt � 0:4 and of Reynolds numbers Re � 250 in terms of Taylor
micro-scales [the “n(onhelical)” case is slightly (6%) higher than the
“h(elical)” one, Ren¼ 257 vs Reh¼ 243; and, for dissipation wavenum-
bers, kdn¼ 31.7 vs kdh¼ 30]. Accordingly, two normalizations are then
designed for physical analysis: Fig. 1 presents various spectra normal-
ized by Eðkf Þ, including the (unnormalized) Kolmogorov spectrum
(“K41”)22 / k�5=3 for reference, with kf ¼ 1:54 for the reason that all
modes of jkj ¼ ffiffiffi

2
p

and
ffiffiffi
3

p
are forced; while the spectra of the density

and compressive modes normalized by E(k) are plotted in Fig. 2, left
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panel, both showing consistent results of reduced compressibility with
helicity.

Relevant to (aero)acoustic noise measured by the pressure fluctu-
ation p0, it is typical to gain a benefit

DSPLrms :¼ 20 log10
p0nonhelicalrms

p0helicalrms
� 3:0 dB; (12)

evaluated here with the root mean squares of the pressure fluctuation
of the helical and nonhelical cases computed from the normalized
time-averaged power spectra in our simulations. The benefits fluctuat-
ing with time and depending on the scales, such a gain of 3.0 dB

should, however, mainly be considered as a more definite “proof of the
concept” rather than a solid number for practical guidance, although it
is not impossible that our fundamental results may also further be
applied to various situations, from understanding to control, and from
nature to laboratory and to industry (cf. e.g., Refs. 10 and 11 for rele-
vant problems).

IV. FURTHER DISCUSSIONS

The computation and measurement of the dissipation-range fluc-
tuations are highly nontrivial, due to the smallness of both space-time
scales and amplitudes of the fluctuations (especially those of the

FIG. 1. The normalized power spectra (time-averaged) of kinematic energy and its components, for the cases with and without helicity injections: the nonhelical case shows
basically identical spectra of the left- and right-handed vortical modes, while the helical case presents larger right-handed vortical-mode spectra at small k. Due to the numerical
and computer noise problem, the results of compressive (and density: not shown) modes are not reliable at the high k ends.

FIG. 2. The time-averaged compressible- and density-mode power spectra of the helical and non-helical cases: the left panel is for the “self-normalization,” i.e., EjðkÞ and R(k)
of, respectively, helical (“hEj=E” and “hR/E”) and nonhelical (“nhEj=E” and “nR/E”) cases normalized by E(k) of the same case (k=kd of the same fashion); the right panel is for
the “cross-normalization,” i.e., helical R normalized by nonhelical E (“hR/nhE”) and nonhelical R normalized by helical E (“nhR/hE”), while k is normalized by the common Kd.
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compressive and density modes), and the current high-order numeri-
cal schemes, “almost spectral accuracy”15,21 though, probably would
not be able to produce a reliably accurate shapes of the spectra of tur-
bulence at this regime [see also, e.g., Ref. 23 for the great efforts, but no
clear success yet, to determine the dissipation range spectra of incom-
pressible flow from (pseudo-)spectral simulations which are in princi-
ple of most numerical reliability with spectral accuracy]. However, the
phenomena of the ordinary-difference dynamical system defined by
the numerical scheme to discretize NSE by themselves are of course
interesting; and it is possible that differences between the computed
spectra and those of the original NSE be reasonably removed or greatly
reduced in the ratios Thus, we will slightly extend the further scaling
analysis in Ref. 17 for additional insights.

We observe in Fig. 2, as designated by short straight lines in the
dissipation ranges,

EjðkÞ=EðkÞ / k�1; (13)

and

RðkÞ=EðkÞ / k�5=3; (14)

a new universality agreed by the helical and nonhelical cases. The
above results indicate that, in either the helical or nonhelical case, the
EjðkÞ and R(k) are different from the E(k) only up to power-law pre-
factors in the (stretched-)exponential decay.

We may then accordingly postulate the (asymptotic) ansatz for
the four spectra, helical and nonhelical R(k) and E(k) (the Ej relevant
behaviors are consistent with but not as clean or as strongly indicative
for such a postulation: see below)

/ kaFðkÞ: (15)

F(k) is some empirical (stretched) exponential function, with the
argument k usually normalized by kd in the K41 universality phenom-
enology, or both further “renormalized” with lnRe in the multifractal-
universality phenomenology.22–24

The observed Eq. (13) in this dissipation range indicates that,
with again h(elical) and n(onhelical) and the self-evident superscripts,

F
Ej
h ðkÞ ¼ FE

h ðkÞ; F
Ej
n ðkÞ ¼ FE

n ðkÞ; (16)

and

a
Ej
h � aEh ¼ �5=3 ¼ a

Ej
n � aEn : (17)

In addition, Eq. (14) leads to

FR
h ðkÞ ¼ FE

h ðkÞ; FR
n ðkÞ ¼ FE

n ðkÞ; (18)

and

aRh � aEh ¼ �5=3 ¼ aRn � aEn : (19)

The cross-normalizations added to the right panel of Fig. 2 also
present in the dissipation range (with Kd ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kdnkdh

p
for normalization)

Rh=En / k�12=5 and Rn=Eh / k�14=15: (20)

This observation means that

FR
h ðkÞ ¼ FE

h ðkÞ; FR
n ðkÞ ¼ FE

n ðkÞ (21)

and

aRh � aEn ¼ �12=5; aRn � aEh ¼ �14=15: (22)

Thus, we deduce

FR
h ðkÞ ¼ FE

h ðkÞ ¼ FR
n ðkÞ ¼ FE

n ðkÞ; (23)

and

Da ¼ aEn � aEh ¼ 11=15 ¼ aRn � aRh ; (24)

with all exponents determined up to a constant c.
(The precise figures of the “measured” exponents in the above

are obtained in an error-and-trial way with some iterations to reach
the overall best fits, as shown by the respective straight lines in the fig-
ures, to all the data.) We remark that since Ej in this range is much
smaller than R, thus aEn � aEh we deduced in the above is essentially for
the transversal modes of the velocity fluctuations (more on the scalings
of the helically decomposed spectra below).

Evaluation of the common part, kcFðkÞ, by fitting the spectra,
however, can be subtle due to unknown ansatz for F(k)23 and is not of
our current interest.

Equation (24) can also be verified, a posteriori, by EhðkÞ=EnðkÞ
and RhðkÞ=RnðkÞ even extended to characterize Ej, with however
much less obvious scaling behaviors to be used for derivation from the
beginning, due to the errors in our data: Fig. 3 plots in the left panel
EhðkÞ=EnðkÞ (“hE/nE”) and RhðkÞ=RnðkÞ (“hR/nR”), with the short
straight line denoting the power law / k�Da, verifying a posteriori the
result obtained from Fig. 2 and indicating the extension to the parallel-
mode spectra ð5�ÞEjhðkÞ=EjnðkÞ (“5hEj/nEj”) in the short range inside
the dashed rectangular (the parallel-mode spectra, being much smaller
than the density spectra, have at large k less reliable data not seriously
contaminated by numerical errors); also plotted in the right panel is
the ratio of the helically decomposed spectra, presenting accurately (as
designated by the straight short line)

EþðkÞ=E�ðkÞ / k�Db; (25)

with Db ¼ 1=45 in the “tail” (inset) for the helical case and indicating
that the prefactor of E(k) in our data actually is contributed by two
slightly different powers of k of comparable magnitudes (thus, no
clean power-law): the asymptotic subdominant prefactor actually has
an exponent very close to the dominant one, so our previous results
are accurate enough, with Db 	 Da, for our purpose.

A positive Da indicates “effectively” (assembling the nature, dis-
tances to the real world and possible interactions) stronger complex
singularities22 of the discretized system or asymptotically the NSE for
the nonhelical case. It is possible to make the analysis more definite
with additional assumptions of the nature and distribution of the sin-
gularities25 or more systematic techniques of singularity detection
(highly subtle in high dimensions26) which, however, is beyond the
scope of this work.

V. EXPECTATION

There are two opposite but fundamentally connected directions
for future investigations, i.e., exposing even more basic dynamical
mechanisms leading to the above statistical results and, as already
remarked in the introductory discussions, applying the results in rele-
vant practices such as those involving flow noise in civil engineering,
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rapid public transportation and car transportation, and aeronautics
including the aircraft design. To motivate further discussions, we also
present in Fig. 4 the typical snapshots of the normalized density-mode
power spectra to show the fluctuations around the means in Fig. 2.
The results, representative for others at different instants (not shown),
clearly show fluctuations of the “benefit” from helicity injection, much
larger at the scales around those forced than at small scales (across the
inertial and dissipation scales). Similar behavior presents in the snap-
shots of Ej (not shown). The fact that more stable benefits are in the
smaller scales, into which both (kinetic) energy and helicity transfer
(from the forced large scales) and where helicity is much smaller, is
probably an effect of “self-averaging” (more effective for smaller scales
with more spatial samples) at each instant.

Thus, in the “downward” basic direction, it would be even more
illuminating to look into more quantitatively at different scales such

effects of different values of helicity or degrees of reflexional symmetry
breaking of the flow. A survey of different forcing scales can be helpful.
Also, the analyses in the dissipation range of Sec. IV are for the data
from the discrete dynamical system defined by the specific numerical
scheme applied, and other numerical schemes (such as those applied
in Ref. 8, among others) and methods are expected to be used for
checking the possible universality of any sort, including the asymptotic
behavior of the NSE: in principle, the grid spacing of our simulations
should be small enough to resolve a reasonable span of k in the dissi-
pation range, but we indeed do not have a systematic nonlinear
numerical analysis result to estimate the possible influence on the
measured scaling exponents by the back scattering of the unresolved-k
modes (for the aliased modes of k up to 512, particularly left in Fig. 4),
the latter depending on the algorithm and discretization scheme.
Reflecting upon the state-of-the-art of the results, with no complete

FIG. 3. Left panel: EhðkÞ=EnðkÞ (hE/nE) and RhðkÞ=RnðkÞ (hR/nR) and 5EjhðkÞ=EjnðkÞ (5hEj/nEj); Right panel: EþðkÞ=E�ðkÞ for the helical case.

FIG. 4. Snapshots at two different times (240 and 420), among many others (not shown), of the original raw data (without wavenumber normalization) of RðkÞ=EðkÞ showing
fluctuations around the means in Fig. 2. The “hooks” at the large k ends are due to the numerical errors and should be ignored (removed in the previous plots).
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success of determining the precise shape of the spectra, of incompress-
ible turbulence with spectral accuracy in the literatures of Ref. 23, we
expect that three-dimensional Burgers equation should be able to help
(preliminary results in Ref. 17 with much lower Reynolds number
comfirm the current test of compressibility reduction with helicity by
even a much larger amount of savings).

And, in the “upward” application direction, in the aircraft design
optimization with the objective of noise reduction, at least two useful
indications can be derived from the results. First, to have as more and
stable benefits as possible, we should try to control the flow with spe-
cific design at scales as large as possible, and that the optimization
through a single local small region at the rear of the wing may not be
as efficient as that through multiple locations at the cutting edges to
result in more spatially global effects. Second, Fig. 4 shows that the
fluctuations of benefic at large scales (small k) can even be strongly
negative, which indicates that the helicity control involves the potential
systems penalties and we should try to make such fluctuations as small
as possible; otherwise, the negative benefit could lead to even higher
peaks/spikes of noise, though the mean appears still smaller with
helicity. The latter may be relevant in taking both sound pressure level
and annoyance into account for considering the various noise sources
in engine system design.27 Of course, a lot of practical studies, along
with other fundamental ones (c.f., e.g., Ref. 28), are still left for future,
because, although there are many ways to perform flow control, far
fewer have net system savings.
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