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a b s t r a c t 

Quasicrystal materials have aroused extensive attentions of researchers due to their ex- 

cellent properties. In this paper, for the first time, functionally graded two-dimensional 

piezoelectric QC wedges and spaces which subjected to line force, charge or dislocation 

are investigated. By virtue of equilibrium and constitutive equations, the real form expres- 

sions of stresses and displacements are directly derived without introducing complex vec- 

tors. All expressions can be degraded to the classical solutions of homogeneous materials 

when material parameters have no concern with angle. Before the numerical results are 

presented, the comparative study between solutions of homogeneous materials from Stroh 

formalism and solutions of homogeneous materials from our method is performed to ver- 

ify the accuracy of the formulation and numerical procedure. The mechanical behaviors of 

QC wedges and spaces under different loads are analyzed carefully by numerical exam- 

ples. The numerical results reveal that the variations of stress and displacement in each 

field have much to do with the wedge angle and boundary conditions; line force has little 

effect on lattice rearrangement. Moreover, the numerical results can be used as references 

in engineering application when analyzing functionally graded materials. 

© 2022 Elsevier Inc. All rights reserved. 

 

 

 

1. Introduction 

Quasicrystals (QCs) which have quasi-periodic long-range translational symmetry and long-range orientation symmetry 

were discovered by Levine and Shechtman in 1984 [1] . According to the arrangement of atoms, QCs can be defined as one-

dimensional (1D), two-dimensional (2D) and three-dimensional (3D) QCs [2] . For example, the atom arrangement of 2D 

QCs possesses quasi-period in two directions and period in another direction. The unique atomic structures result in special 

physical and mechanical properties, such as high corrosion resistance [3] , high wear resistance [4] , high hardness [5] and

low friction coefficient [6] . However, QCs also have the drawbacks of the high brittleness and low plasticity at room temper-

ature [7] , and these disadvantages prevent the QCs from being completely independent structural materials. Furthermore, 

QC materials have low thermal conductivity and negative temperature coefficients, and their thermal conductivity will be 

enhanced with higher temperature [8–11] . In practical applications, QCs can be used as composite reinforcement phases, 

non-stick coatings, thermal insulation materials, solar thin film materials, sensors and so on. 
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Piezoelectric effect is widely used in the field of electronic science and technology, such as sensors and actuators. Before 

the piezoelectric effect in QCs was discovered, many researchers [12–15] have done lots of studies for piezoelectric materials. 

Mohammad-Rezaei Bidgoli and Arefi [16] studied the problem of vibration for composite micro plate reinforced with func- 

tionally graded (FG) graphene nanoplatelets, by virtue of third-order shear deformation theory and modified strain-gradient 

theory, they obtained the maximum stiffness when graphene nanoplatelets are parabolic distribution and found that ther- 

mal loads have evident effect on natural frequencies. The Green’s functions for transversely isotropic piezoelectric FG and 

multilayered half spaces are derived by Pan and Han [17] with the aid of propagator matrix method. Chen [18] explored

the singularities of piezoelectric bonded wedge which subjected to thermal effect under mixed boundary using generalized 

Lekhnitskii formulation and Mellin transform. Arefi et al. [19] investigated 3D vibration analysis of a sandwich cylindrical 

shell containing an FG core and two FG piezoelectric layers by first-order shear deformation theory and Hamilton’s princi- 

ple. Zhou et al. [20] obtained the electro-elastic solutions of an elliptical hole in transversely isotropic piezoelectric material 

with complex potentials method, they found that sharp stress concentration existed near the hole. These theories and stud- 

ies provide crucial theoretical reference and support for the researches of elastic, defects and multi-field coupling problems 

of QCs. 

Considerable research efforts have been devoted to the theoretical analyzes of multi-field coupling problems of QCs since 

the discovery in 1984. Li et al. [21] investigated the QC material with eighteen-fold rotation symmetry properties, and 

constructed its constitutive and governing equations. They not only found that the phonon field is not coupled with the 

phason field, but also gave the expressions of the static elastic fields and dislocations. Wang and Pan [22] obtained a gen-

eral solution for the dislocation problem of 1D hexagonal piezoelectric QCs. Li et al. [23] studied the basic solutions of the

thermo-electro-elastic problem for 1D hexagonal QC, and got the 3D general solutions by using rigorous operator theory and 

Almansi’s theorem. Meanwhile, they also obtained the Green’s function solutions of this problem. Zhang et al. [24] studied 

thermoelastic plane problems of 2D decagonal QCs, and exhibited the formulas of phonon field, phason field and thermal 

field by virtue of Almansi’s theorem. Li et al. [25] explored the FG multilayered 2D thermoelastic decagonal QC plates, espe-

cially analyzed the effects of the changes of FG exponential factor, coupling elastic constants and the thickness of QC layers

on the phonon, phason and thermal fields of the plates. Yu et al. [26] investigated the plane piezoelasticity theory of 1D QCs

which include all point groups by symmetry operations of point groups. Li et al. [27] proposed an analytical solution method

to analyze arbitrarily shaped planar cracks which locates in 2D hexagonal QCs with thermal effects. Hu et al. [28] studied

a partially-debonded circular inclusion in a 1D piezoelectric QC, and analyzed the influences of the crack angle and loads 

on the field singularities. These theoretical methods provide good inspiration for solving other planar problems, such as the 

multifield coupling problem of wedge shape. 

Wedge is a piece of material with V-shaped edges. For the 2D plane problem, Xu and Rajapakse [29] studied the prob-

lems of piezoelectric wedges and multi-material wedges/junctions, and paid attention to examine the influence of wedge 

angle, polarization orientation, material types, and boundary and interface conditions on the order of singularity of electroe- 

lastic fields. Lv and Liu [30] considered the interaction between many parallel dislocations and a wedge-shaped crack in 1D 

hexagonal piezoelectric QC, they analyzed influence of wedge angle on the field intensity factors. Chen et al. [31] analyzed

the singularity problem for piezoelectric-elastic wedges and junctions by specially developed 1D finite element formulation. 

Hwu and Ikeda [32] explored the cracks of piezoelectric materials by solutions of piezoelectric multi-wedges. In addition, 

they also extended the stress/electric intensity factors which were defined for cracks, interface cracks and interface corners 

to normal angles. Hwu [33] and Ting [34] have discussed the solutions for the wedge of general anisotropic material at

critical wedge angles. 

Stroh formalism [34–37] is a powerful approach to deal with 2D deformation problems. However, the Stroh formalism 

does not apply to inhomogeneous materials [38–40] , such as FG materials. Here, a different approach [ 39 , 40 ], the surface

traction on any radial plane is invariant with θ , is employed and the general anisotropic problem is extended to more

complex QC problem. The analytical expressions of displacements and stresses are derived by considering stresses are pro- 

portional to r −1 , and the effects of different loads on stresses, displacements and electric field are analyzed in detail. What’s

more, the FG 2D piezoelectric QC can be degraded to homogeneous piezoelectric QC, which is compared with literature 

results to verify the correctness of method and numerical results. The approach employed here can be used to solve singu-

larity problems, such as angularly inhomogeneous piezoelectric composite wedges, an infinite plane containing two different 

half-planes and the composite wedges including several inhomogeneous anisotropic wedges. 

2. Basic equations and the key equations 

According to the elastic theory of QCs [41–43] , the basic equations without body force of 2D piezoelectric QCs are ex-

pressible as 

ε kl = 

1 

2 

(
∂ u k 

∂ x l 
+ 

∂ u l 

∂ x k 

)
, w αl = ∂ l w α, E l = −∂ l φ, (1) 

σi j = C i jkl ε kl + R i jαl w αl − e li j E l , 

H β j = R klβ j ε kl + K β jαl w αl , 

D j = e jkl ε kl + χ jl E l , 

(2) 
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Fig. 1. The infinite FG space subjected to line force f , charge λ and Burgers vector ˆ b at the origin r = 0. 

 

 

 

 

 

 

 

 

 

∂ j σi j = 0 , ∂ j H β j = 0 , ∂ j D j = 0 , (3) 

where i, j, k, l = 1, 2, 3, α, β = 1, 2. The phonon displacements u k denote atomic translation, but the phason displacements

w α denote rearrangements of atoms along the quasi-period directions [43] . Furthermore, σ ij , H βj , D j and φ are the phonon

stresses, phason stresses, electric displacements and electric potential, respectively; ε kl , w αl , E l represent the phonon strains, 

phason strains and electric field intensities, respectively; C ijkl , K βj αl are the elastic constants in phonon and phason fields,

respectively; R ij αl are the coupling elastic constants; e lij are the piezoelectric constants in the phonon field; χ jl are the 

dielectric constants. 

In polar coordinates 

x 1 = r cos θ, x 3 = r sin θ, x 2 = z. (4) 

It is assumed that the material constants of the FG 2D piezoelectric QC follow the exponential function law [44] with

respect to θ . Then, 

C i jkl = C 0 i jkl e 
ηθ , K β jαl = K 

0 
β jαl e 

ηθ , R i jαl = R 

0 
i jαl e 

ηθ , e li j = e 0 li j e 
ηθ , χ jl = χ0 

jl e 
ηθ , (5) 

where η is an FG exponential factor. The superscript “0” represents the initial material constants which are independent of 

θ . We have the following properties that 

C i jkl = C jikl = C kli j = C i jlk , K β jαl = K αlβ j , R i jαl = R jiαl , e li j = e l ji , χ jl = χl j , C i jkl ε i j ε kl > 0 , 

K β jαl w β j w αl > 0 , χ jl E j E l > 0 . (6) 

In present work, we consider the generalized 2D problem which means that all field variables are dependent on x 1 and

x 3 . Two typical problems are considered, problem A: an infinite FG 2D piezoelectric QC space is subjected to line force,

charge and line dislocation at the origin r = 0; problem B: an FG 2D piezoelectric QC wedge of wedge angle α(0 ≤ θ ≤ α),

which two sides are traction free, subjected to the line force and charge at the wedge apex r = 0. 

In order to simplify the calculation process, the generalized displacement vector is introduced 

u = [ u 1 , u 2 , u 3 , w 1 , w 2 , φ] 
T 
, (7) 

where the superscript “T” denotes the transpose of the matrix. Hence, the constitutive equations and the equilibrium equa- 

tions are expressed as 

σI j = E I jKl u K,l , σI j, j = 0 ( I, K = 1 , 2 , 3 , 4 , 5 , 6 ; j, l = 1 , 2 , 3) , (8)

u K = u K (K = 1 , 2 , 3) , u K = w K−3 (K = 4 , 5) , u K = φ(K = 6) , 

σI j = σI j (I = 1 , 2 , 3) , σI j = H (I−3) j (I = 4 , 5) , σI j = D j (I = 6) , 

E I jKl = C I jKl (I, K = 1 , 2 , 3) , E I jKl = K (I−3) j(K−3) l (I, K = 4 , 5) , 

E I jKl = R I j(K−3) l (I = 1 , 2 , 3 ; K = 4 , 5) , E I jKl = R (I−3) jKl (I = 4 , 5 ; K = 1 , 2 , 3) , 

E I jKl = e I jl (I = 1 , 2 , 3 ; K = 6) , E I jKl = e jKl (I = 6 ; K = 1 , 2 , 3) , 

E I jKl = −χ jl (I, K = 6) . (9) 

Figures 1 and 2 describe the situations of problem A and problem B, respectively. The line force f and free charge density

λ act at r = 0; ˆ b denotes Burgers vector. 
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Fig. 2. The FG piezoelectric QC wedge with wedge angle α, subjected to line force and charge at the wedge apex r = 0. 

 

According to the literature [45] and Eq. (A1) , the stresses are proportional to r −1 , so we get 

σα j = 

1 

r 
ξα j (θ ) , (α = 1 , 2 , 3 , 4) , (10) 

H γ j = 

1 

r 
ς γ j (θ ) , (γ = 1 , 2 , j = 1 , 2 , 3) , (11) 

where σαj denote stresses in the phonon field and electric displacement, H γ j denote stresses in the phason field, ξαj and 

ς γ j vary with the angle θ . 

Substituting Eqs. (10) and (11) into the equilibrium Eq. (3) , we get 

1 

r 

[
−1 

r 

∂r 

∂ x j 
ξα j (θ ) + ξα j (θ ) ,θ

∂θ

∂ x j 

]
= 0 , (12) 

1 

r 

[
−1 

r 

∂r 

∂ x j 
ς γ j (θ ) + ς γ j (θ ) ,θ

∂θ

∂ x j 

]
= 0 . (13) 

With the aid of Eqs. (A2) , (12) and (13) can be rewritten as 

1 

r 2 

[ (
ξα j (θ ) m j 

)
,θ

] 
= 0 , (14) 

1 

r 2 

[ (
ς γ j (θ ) 

)
m j 

)
,θ

] 
= 0 . (15) 

By Eqs. (14) and (15) , we get 

ζI j (θ ) m j = 

1 

π
p I (I = 1 , 2 , 3 , 4 , 5 , 6) , (16) 

where ζ Ij ( θ )( I = 4, 5) and ζ Ij ( θ )( I = 6) in connection with the phason field and electric field, respectively, p I is a constant

column vector. 

Assuming that t θ is the surface traction vector on the radial plane θ = constant, through ( t θ ) α = σαj m j , ( t θ ) γ = H γ j m j 

and Eqs. (10) , (11) , we obtain 

( t θ ) I = 

1 

r 
ζI j (θ ) m j = 

1 

π r 
p I . (17) 

Eq. (17) can be expressed as 

t T θ= 

1 

π r 
p 

T . (18) 

Take the form of displacement u 

u = − 1 

π
( ln r ) q + ν( θ ) , (19) 

where q is a constant column vector and ν ( θ ) depends on θ . Considering the component form of Eq. (19) , we have 

u k = − ln r 
q k + νk (θ )(k = 1 , 2 , 3 , 4 , 5 , 6) , (20) 
π
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where k = 4, 5, 6 denote displacements in the phason field and electric potential, respectively. Substituting Eq. (20) into

Eq. (2) , and using Eqs. (A2) , (5) , (9) (10) , (11) and (17) we get 

e ηθ

(
− 1 

π
E 0 I jKl m j n l q k + E 0 I jKl m j m l 

∂ νk (θ ) 

∂θ

)
= 

1 

π
p I , (21) 

Eq. (21) can be expressed in matrix form 

− 1 

π
R 

T ( θ ) q + T ( θ ) ν( θ ) ,θ = 

1 

π
p . (22) 

Let 

Q IK (θ ) = e ηθ E 0 I jKl n j n l 

R IK (θ ) = e ηθ E 0 I jKl n j m l 

T IK (θ ) = e ηθ E 0 I jKl m j m l 

⎫ ⎪ ⎬ 

⎪ ⎭ 

, (23) 

R 

T 
IK (θ ) = R KI (θ ) = e ηθ E 0 I jKl m j n l . (24) 

It should be pointed out that Q ( θ ) and T ( θ ) are symmetric. Introducing the 6 × 6 matrices 

N 1 (θ ) = −T 

−1 (θ ) R 

T (θ ) 

N 2 (θ ) = T 

−1 (θ ) 

N 3 (θ ) = R (θ ) T 

−1 (θ ) R 

T (θ ) − Q (θ ) 

⎫ ⎬ 

⎭ 

, (25) 

where N 2 ( θ ) and N 3 ( θ ) are symmetric, Eq. (22) can be simplified as 

ν( θ ) ,θ = 

1 

π
[ N 2 ( θ ) p − N 1 ( θ ) q ] . (26) 

Eq. (26) is integrated from 0 to θ , and using Eq. (A4) to yield, 

ν( θ ) = H ( θ ) p − S ( θ ) q . (27) 

With the aid of Eqs. (19) and (27) , we obtain 

u = − ln r 

π
q − S ( θ ) q + H ( θ ) p , (28) 

where p and q are unknown arbitrary vectors, but they can be determined by boundary conditions. 

Through ( t r ) α = σαj n j ,( t r ) γ = H γ j n j , surface traction t r on the surface r = constant is denoted as 

( t r ) I = 

1 

r 
e ηθ

(
− 1 

π
E 0 I jKl n j n l q k + E 0 I jKl n j m l 

∂ νk (θ ) 

∂θ

)
. (29) 

Eqs. (23) , (25) , (26) and (29) are used to obtain 

t r = 

1 

π r 

[
N 3 (θ ) q − N 

T 
1 (θ ) p 

]
. (30) 

According to the equilibrium Eq. (3) , we get 

σα1 = −ϕ α, 3 , σα3 = ϕ α, 1 , 

H γ 1 = −ϕ γ , 3 , H γ 3 = ϕ γ , 1 , (31) 

where ϕ is the stress function. 

In polar coordinates, we have 

( t r ) I = − ∂ 

r∂θ
ϕ I , ( t θ ) I = 

∂ 

∂r 
ϕ I . (32) 

Therefore, the generalized traction vectors can be denoted as 

t r = − ∂ 

r∂θ
ϕ , t θ = 

∂ 

∂r 
ϕ . (33) 

With the help of Eqs. (18) and (30) , we obtain 

ϕ = 

ln r 

π
p + L ( θ ) q + S T ( θ ) p . (34) 
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3. An infinite space and a wedge 

3.1. An infinite space 

Considering that line force f and free charge λ act on the center of an infinite space, we have [39] 

f I + 

∫ 2 π

0 

( t r ) I rdθ = 0 , (35) 

or 

ϕ ( 2 π) − ϕ ( 0 ) = ̂

 f , (36) 

where 

ˆ f T = [ f 1 , f 2 , f 3 , f 4 , f 5 , −λ] . 

At the same time, a dislocation with Burgers vector ˆ b 

T = [ b 1 , b 2 , b 3 , b 4 , b 5 , b 6 ] also act on the center of the infinite space,

we get 

u (2 π) − u (0) = 

ˆ b . (37) 

From Eqs. (28) and (34) , we obtain 

u = − ln r 

π
V 

−1 
[ 

ˆ f − S T ( 2 π) H 

−1 ( 2 π) ̂  b 

] 
− S ( θ ) V 

−1 
[ 

ˆ f − S T ( 2 π) H 

−1 ( 2 π) ̂  b 

] 

+ H ( θ ) U 

−1 
[ 

S ( 2 π) L −1 ( 2 π) ̂ f + 

ˆ b 

] 
, (38) 

ϕ = 

ln r 

π
U 

−1 
[ 

S ( 2 π) L −1 ( 2 π) ̂ f + 

ˆ b 

] 
+ L ( θ ) V 

−1 
[ 

ˆ f − S T ( 2 π) H 

−1 ( 2 π) ̂  b 

] 

+ S T ( θ ) U 

−1 
[ 

S ( 2 π) L −1 ( 2 π) ̂ f + 

ˆ b 

] 
. (39) 

The derivation procedure of the above equations is shown in (A5-A8). It is worth mentioning that if FG exponential factor

η = 0, the material constants are independent of the θ , then we can acquire the solutions of homogeneous space. 

3.2. A wedge 

Consider a piezoelectric QC wedge of wedge angle α(0 ≤ θ ≤ α), subjected to the line force and charge at the wedge

apex r = 0 while wedge edges are traction free. From Eq. (18) , we know that 

p = 0 . (40) 

In Eq. (36) , 2 π is replaced by α. Then 

ϕ ( α) − ϕ ( 0 ) = ̂

 f , (41) 

or Eq. (41) can be obtained from Eq. (34) 

L (α) q = ̂

 f . (42) 

Therefore, 

u = − ln r 

π
L −1 ( α) ̂ f − S ( θ ) L −1 ( α) ̂ f , (43) 

ϕ = L ( θ ) L −1 ( α) ̂ f . (44) 

4. Numerical results and analyzation 

2D decagonal piezoelectric QC is used in the numerical research. The relevant material constants are shown below in 

Table 1 , [35] . 

To avoid ill-conditioned matrices, we introduce the following dimensionless values 

x ∗1 = 

x 1 
l 

, x ∗3 = 

x 3 
l 

, u 

∗
m 

= 

u m 

l 
, w 

∗
i = 

R 1 w i 

( C 11 l ) 
, σ ∗

mj = 

σmj 

C 11 

, H 

∗
mj = 

H mj 

R 1 

, D 

∗
j = 

D j 

e 33 

, φ∗ = e 33 
φ

( C 11 l ) 
, (45) 

where l = 1 m. 
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Table 1 

Material constants of the 2D piezoelectric QC material. 

Material constants 

Phonon field (GPa) 
C 11 = 234 . 33 , C 12 = 57 . 41 , C 13 = 66 . 63 , 

C 33 = 232 . 22 , C 44 = 70 . 19 , C 66 = 88 . 46 , 

Phason field (GPa) K 1 = 122, K 2 = 24, K 3 = 12 

Couple field (GPa) R 1 = R 2 = R 1 = 8.85, 

Piezoelectric constant(Cm 

−2 ) e 31 = −2 . 2 , e 33 = 9 . 3 , e 15 = 5 . 8 , 

Dielectric constants (10 −9 C 2 /(Nm 

2 )) ξ 33 = 25.2, ξ 11 = ξ 22 = 22.4. 

Table 2 

QC wedges and infinite plane under different loadings. 

Numerical case Loading conditions Description 

Case 1 ˆ f = [1 , 0 , 0 , 0 , 0 , 0] 
T 

The numerical results of homogeneous infinite plane (space) which are subjected to line force 
ˆ f = [1 , 0 , 0 , 0 , 0 , 0] 

T 
at the origin r = 0 are compared with the results in Ref. [35] . 

Case 2 ˆ f = [1 , 0 , 0 , 0 , 0 , 0] 
T 

The numerical results of FG wedges with angle range of 0 ° ≤ α ≤ 360 ° which subjected to line force 
ˆ f = [1 , 0 , 0 , 0 , 0 , 0] 

T 
at the wedge apex. 

Case 3 ˆ f = [0 , 0 , 0 , 0 , 0 , 1] 
T 

The numerical results of FG wedges with angle range of 0 ° ≤ α ≤ 180 ° which subjected to line 

charge ̂  f = [0 , 0 , 0 , 0 , 0 , 1] 
T 

at the wedge apex. 

Case 4 ˆ f = [1 , 0 , 0 , 0 , 0 , 0] 
T 

The effect of FG exponential factor η on mechanical behaviors of infinite space which subjected to 

line force and line dislocation. 
ˆ b = [1 , 0 , 0 , 0 , 0 , 0] 

T 

Fig. 3. Comparison of the numerical results in our case with the reference: (a) dimensionless phonon stress σ ∗
rr , (b) dimensionless phason stress H ∗rr ( 10 −1 ) , 

(c) dimensionless electric potential φ∗ (10 −3 ) and (d) dimensionless electric displacement D r 
∗(10 −1 ). 

 

 

 

Next, the numerical examples of 2D decagonal piezoelectric QC wedges and infinite space in different cases are given 

below in Table 2 . 

Case 1. In this part, we set polar diameter r = 2, η = 0 which means that material is homogeneous, and discuss the

mechanical behavior of homogeneous infinite plane which subjected to line force ˆ f = [1 , 0 , 0 , 0 , 0 , 0] 
T 

at the center r = 0. In

order to verify the correctness of the program, we compared the numerical results of this case with the Ref. [35] , and the

relevant results are shown in Fig. 3 . 
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Fig. 4. Changing curves of dimensionless phonon displacement, phason displacement with θ (a) u ∗r , (b) w 

∗
r ( 10 −2 ) . 

Fig. 5. Changing curves of dimensionless phonon stress and phason stress (a) σ ∗
rr , (b) H ∗rr . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows the comparisons of dimensionless stresses, dimensionless electric potential and electric displacement for 

Ref. [35] and Case 1. According to Fig. 3 (a) and (b), the changing curves of dimensionless stresses in the infinite plane are

consistent with those of the Ref. [35] , and they are both symmetric at θ = 180 o . Moreover, the values of σ ∗
rr are bigger than

H 

∗
rr , which indicates that the effect of a single line force on the phonon stress is greater than that on the phason stress.

From Fig. 3 (c) and (d), the changing curves of dimensionless electric potential and electric displacement are in accordance 

with the Ref. [35] . D r 
∗ is several orders of magnitude bigger than φ∗ which indicates that the influence of a single line force

on the electric displacement is more evident than that on electric potential. What’s more, the change of φ∗ is similar to that

of Sine function in the range [0, 4 π ] and the variation of D r 
∗ is similar to that of Cosine function in the range[ − (3/2) π ,

(5/2) π ]. 

Case 2. In this part, we set r = 2, η = 1. The wedge subjected to line force ˆ f = [1 , 0 , 0 , 0 , 0 , 0] 
T 

at the wedge apex, and

the mechanical behavior of wedge whose angle α= 60 
◦
, 90 

◦
, 120 

◦
, 150 

◦
, 180 

◦
is discussed. 

The changing curves of dimensionless displacements with respect to θ are shown in Fig. 4 . According to Fig. 4 , the

absolute values of u ∗r decrease with the increase of wedge angle α, and the values of u ∗r decrease first and then increase

with θ when α = 180 °. The values of w 

∗
r decrease initially, followed by an increase, but then decrease and then increase

with θ when α = 180 °. Since the phason displacement is much smaller than the phonon displacement, the line force 
ˆ f = [1 , 0 , 0 , 0 , 0 , 0] 

T 
has little influence on the atomic rearrangement of 2D decagonal piezoelectric QC. 

As can be seen from Fig. 5 , the changing curves of dimensionless stresses σ ∗
rr and H 

∗
rr do not show any symmetry because

elastic constants depend on θ . From Fig. 5 (a), we can find that the absolute values of σ ∗
rr decrease with the growth of the

wedge angle α, and the values of σ ∗
rr increase with θ . In addition, the values of H 

∗
rr increase gradually and then decrease with

θ when α = 180 °. By comparing Figs. 5 , 3 (a) and (b), the values of stresses in Fig. 5 are greater than those in Fig. 3 (a) and

(b), which implies that the line force has more effect on stresses in FG piezoelectric QC wedges than those in homogeneous

piezoelectric QC wedges. 

Figure 6 shows the changing curves of dimensionless electric potential and electric displacement with θ . The effect 

of force and electricity coupling is very obvious from Fig. 6 . When single line force is applied to a 2D piezoelectric QC

wedge, it will generate equal positive and negative charges on the surface of the material. This phenomenon is called the

“positive piezoelectric effect”. Furthermore, we also notice that the line force has a greater effect on D r 
∗ than that on φ∗
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Fig. 6. Changing curves of dimensionless electric potential and electric displacement (a) φ∗ (10 −1 )and (b) D r 
∗ . 

Fig. 7. Changing curves of dimensionless phonon displacement, phason displacement (a) u ∗r , (b) w 

∗
r ( 10 −2 ) . 

Fig. 8. Changing curves of dimensionless phonon stress and phason stress (a) σ ∗
rr , (b) H ∗rr . 

 

 

 

 

 

 

owing to the values of D r 
∗ being bigger. The values of electric potential φ∗ in Fig. 7 (a) are bigger than those in Fig. 3 (c),

which indicates that the line force may have a more evident influence on electric potential in FG material than that in

homogeneous material. 

Next, the mechanical behaviors of wedge with different angles α = 240 °, 270 °, 300 °, 330 °, 360 ° are discussed below. 

The changing curves of dimensionless displacements are illustrated in Fig. 7 . The values of u ∗r decrease first and then

increase with θ when 0 ° ≤ θ ≤ 180 °, and the values of w 

∗
r decrease initially, followed by an increase, but then decrease

and then increase with θ when 0 ° ≤ θ ≤ 180 °. In addition, w 

∗
r has a maximum when θ = 180 ° for the same wedge angle.

We find that the line force has little effect on lattice rearrangement when 180 ° ≤ α ≤ 360 °, which is in accordance with

Fig. 4 (b). 
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Fig. 9. Changing curves of dimensionless electric potential φ∗ (10 −3 ) (a) homogeneous material (b) FG material, which located at r = 2, θ = 0 °. 

Fig. 10. Changing curves of dimensionless phonon stress σ ∗
rr which located at r = 2, θ = 0 °. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The changing curves of dimensionless stresses with θ are shown in Fig. 8 . It is obvious that, the variation of phason

stress is more sophisticated than that of phonon stress. From Fig. 8 (a), the values of σ ∗
rr first increase and then decrease

with θ . From Fig. 8 (b), the values of H 

∗
rr become bigger with α when θ = 180 °, α ≥ 270 °, and increase initially, followed

by a decrease, but then raise and then reduce with θ when α ≥ 330 °. What’s more, by comparing Fig. 5 with Fig. 8 , the

absolute values of σ ∗
rr are maximum when α = 60 °, θ = 60 °, and the values of σ ∗

rr and H 

∗
rr go to 0 within 0 ° ≤ θ ≤ 90 ° as

wedge angle α increases. 

As shown in Fig. 9 , a point which located at r = 2, θ = 0 ° is selected and the changes of φ∗ for homogeneous material

and FG material at this point are investigated. By comparing the variations of Fig. 9 (a) and (b), it is obvious that the trend

in Fig. 9 (b) is more complex than that in Fig. 9 (a) due to the inhomogeneity of materials. The absolute values of φ∗ are

the largest when α = 80 °, α = 90 °, respectively, for homogeneous material and FG material. In addition, the values of φ∗

in Fig. 6 (a) are several orders of magnitude bigger than those in Fig. 9 (b) due to the discontinuous boundary conditions.

Therefore, the line force has a more significant effect on electric potential at surface θ = α than that at θ = 0 °. It’s worth

mentioning that, with the aid of strain gradient theory and first-order shear deformation theory, Arefi and Zenkour [ 46 , 47 ]

have investigated the electric potential distribution of piezoelectric materials in detail. 

The variation of σ ∗
rr with wedge angle α at the point r = 2, θ = 0 ° is shown in Fig. 10 . It is worth noting that the absolute

values of σ ∗
rr gradually decrease with the increasing of α, and they are going to zero which start at about 90 ° from Fig. 10 .

Through Eq. (41) , we know that the bigger ϕ( α) , the smaller ϕ(0 ) is. In our calculation, we find that the values of ϕ(0) are

small, which means that the values of ϕ( α) are big and line force has little effect on θ = 0 ° when α increases. Through the

analysis of Figs. 9 and 10 , the boundary conditions have a significant effect on electric potential and phonon stress σ ∗
rr . 

Case 3. In this part, when the wedge subjected to line charge ˆ f = [0 , 0 , 0 , 0 , 0 , 1] 
T 
, the mechanical behaviors of wedge

with different wedge angles α = 60 °, 90 °, 120 °, 150 °, 180 ° are analyzed. 

Figure 11 shows the variations of dimensionless stresses with θ . From Fig. 11 (a), σ ∗
rr has the greatest absolute value when

α, θ = 120 °. From Fig. 11 (b), H 

∗
rr has the largest absolute value when α, θ = 180 °, and the change of H 

∗
rr firstly reduces and

then increases with θ when α = 180 °. The values of σ ∗
rr and H 

∗
rr in Fig. 11 are smaller than those in Figs. 5 and 8 , which can

be explained that a temperature field will be generated when the current flows in the conductor, so the current does not

completely act on stress, resulting in small stresses. The mechanical deformation was produced by piezoelectric QC wedge 

under line charge, which is the inverse piezoelectric effect. 
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Fig. 11. Changing curves of dimensionless phonon stress and phason stress (a) σ ∗
rr ( 10 −3 ) , (b) H ∗rr ( 10 −3 ) . 

Fig. 12. Changing curves of dimensionless electric potential and electric displacement (a) φ∗ (10 −1 ) and (b) D r 
∗ . 

 

 

 

 

 

 

 

 

 

 

 

From Fig. 12 (a), it is obvious that the values of φ∗ reduce as wedge angle α increases and they decrease first and then

increase with θ . Also, the values of D r 
∗ fall when α descends and they decline gradually with the growth of θ . The values

of D r 
∗ are larger than the values of φ∗, which implies that line charge has a more evident effect on D r 

∗ than φ∗. 

Case 4. In this part, the infinite space subjected to line force ̂  f = [1 , 0 , 0 , 0 , 0 , 0] 
T 

and line dislocation 

ˆ b = [1 , 0 , 0 , 0 , 0 , 0] 
T 

, 

simultaneously. The effect of FG exponential factor η on mechanical behavior of a QC is researched. 

As shown in Fig. 13 (a) and (b), the values of σ ∗
rr first increase and then decrease with θ and have maximum absolute

value at θ = 0 ° when the graded FG factor η < 0, but they have the greatest absolute values at θ = 360 ° when η > 0. The

values of H 

∗
rr have similar trends with θ when 0 ° ≤ θ ≤ 180 °, and η has little effect on H 

∗
rr when 90 ° ≤ θ ≤ 270 °. From

Fig. 13 (c) and (d), the absolute values of φ∗ enlarge as η increases when η > 0, but the absolute values of φ∗ enlarge with

the decreasing of η when η < 0. In addition, the values of φ∗ reduce first and then increase gradually with θ when η >

0. The values of D r 
∗ increase with η when 15 ° ≤ θ ≤ 30 °, the absolute values of D r 

∗ enlarge as η increases when η < 0,

180 ° ≤ θ ≤ 360 °. Based on the above analysis, the FG exponential factor has more effect on electric potential and electric

displacement than stresses. 

5. Conclusions 

In summary, the infinite homogeneous 2D decagonal piezoelectric QCs space, infinite FG space and FG wedge which 

subjected to line force, charge or dislocation are investigated. Real form expressions of stresses and displacements are di- 

rectly derived without introducing complex vectors. By means of numerical examples and illustrations, the coupling effect 

of different loads is clearly expressed. The research conclusions are as follows: 

(1) σ ∗
rr , H 

∗
rr and φ∗ in FG 2D piezoelectric QC wedge are several orders of magnitude bigger than those in 2D piezoelectric

QC wedge, so the line force has more effect on σ ∗
rr , H 

∗
rr and φ∗ of FG 2D piezoelectric QC wedge. 

(2) Wedge angle and boundary conditions have great influences on displacements and stresses. The absolute values of 

u ∗r caused by line force decrease with the increase of wedge angle α when 0 ° ≤ α ≤ 180 °. σ ∗
rr can get smaller and

smaller at the interface θ = 0 ° when α gets bigger and bigger due to discontinues stress boundary condition. 
261 



X. Mu, W. Xu, Z. Zhu et al. Applied Mathematical Modelling 109 (2022) 251–264 

Fig. 13. Changing curves of dimensionless phonon stress, phason stress, electric potential and electric displacement (a) σ ∗
rr , (b) H ∗rr , (c) φ∗ and (d) D r 

∗ . 

 

 

 

 

 

 

(3) The values of φ∗ at θ = α are several orders of magnitude greater than those at θ = 0 °, which indicates that the line

force has more significant effect on electric potential at surface θ = α than that at θ = 0 °. 
(4) The effect of line force on phonon displacement is greater than that on phason displacement, which means that line 

force has little effect on lattice rearrangement. In addition, the FG exponential factor η has more effect on electric 

potential and electric displacement than stresses. 

Piezoelectric QCs are expected to be used as sensors and actuators of intelligent structures and systems [48] . This study

may provide some theoretical guidance and references to design and optimize wedge structures, such as electronic wedge 

actuators and fiber optic sensors [49] . Furthermore, these new results can help us to further understand the complex prop-

erties and the mechanical behaviors of FG 2D piezoelectric QC wedges and spaces. 
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Appendix 

For an FG 2D piezoelectric QC wedge subjected to line force f at the wedge apex, according to the requirement of stress

equilibrium and ( t r ) α = σαj n j , ( t r ) γ = H γ j n j , we have [39] 

f I + 

∫ α

0 

( t r ) I rd θ = f I + 

∫ α

0 

σI j n j r d θ = 0 , (I = 1 , 2 , 3 , 4 , 5 , 6) , (A1)

where σ Ij ( I = 1, 2, 3) represent stresses in the phonon field, and σ Ij ( I = 4, 5, 6) denote stresses in the phason field and

electric displacement. Therefore, Eqs. (10) and (11) can be derived by dimensional analyzes. 

In the above equation, 

r , j = n j , θ, j = 

1 

m j , m j,θ = −n j , n j,θ = m j , (A2) 

r 

262 



X. Mu, W. Xu, Z. Zhu et al. Applied Mathematical Modelling 109 (2022) 251–264 

 

 

 

 

 

 

 

 

 

 

 

 

where 

n 

T = [ cos θ, 0 , sin θ, 0 , 0 , 0 ] , m 

T = [ − sin θ, 0 , cos θ, 0 , 0 , 0 ] , (A3) 

and ( n, m ) are the unit vectors normal and tangent to a circle. 

We have [38] 

S ( θ ) = 

1 

π

∫ θ

0 

N 1 ( � ) d� , 

H ( θ ) = 

1 

π

∫ θ

0 

N 2 ( � ) d� , 

L ( θ ) = 

1 

π

∫ θ

0 

N 3 ( � ) d� . 

(A4) 

Substituting Eqs. (28) and (34) into Eqs. (36) and (37) to yield 

S T (2 π) p + L (2 π) q = ̂

 f , (A5) 

H (2 π) p − S (2 π) q = 

ˆ b . (A6) 

From Eqs. (A5) and ( A6 ), the undetermined vectors p, q are derived as 

p = U 

−1 
[ 

S (2 π) L −1 (2 π) ̂ f + ̂

 b 

] 
, (A7) 

q = V 

−1 
[ 

ˆ f − S T (2 π) H 

−1 (2 π) ̂  b 

] 
, (A8) 

where, 

U = S (2 π) L −1 (2 π) S T (2 π) + H (2 π) , V = L (2 π) + S T (2 π) H 

−1 (2 π) S (2 π) . 
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